
Hierarchical Reasoning Game Theory Based Approach for Evaluation
and Testing of Autonomous Vehicle Control Systems

Nan Li1, Dave Oyler1, Mengxuan Zhang1, Yildiray Yildiz2, Anouck Girard1 and Ilya Kolmanovsky1

Abstract— A hierarchical game theoretic decision making
framework is exploited to model driver decisions and inter-
actions in traffic. In this paper, we apply this framework to
develop a simulator to evaluate various existing autonomous
driving algorithms. Specifically, two algorithms, based on Stack-
elberg policies and decision trees, are quantitatively compared
in a traffic scenario where all the human-driven vehicles are
modeled using the presented game theoretic approach.

I. INTRODUCTION

Predictive models of driver actions in complex traffic

scenarios have several potential applications for autonomous

vehicle control. Firstly, these models can be employed in

simulators to generate realistic traffic scenarios, which can

be utilized for testing, verification and validation, and com-

parison of competing autonomous driving control algorithms.

Such simulators can save time in the development phase

by providing a model-based testing environment, before the

actual road tests. Secondly, these models can be used in the

design of hierarchical control schemes for driverless cars:

typically, in an autonomous vehicle, a higher level outer

loop controller generates the reference trajectories for the

lower level inner loop controller, which determines the steer-

ing angles, acceleration/deceleration inputs, etc., required to

follow the reference trajectory [1]. Predictive driver models

can be utilized in the higher level outer loop controller

generating the reference trajectories for the lower level inner

loop controller, thereby ensuring similar behavior to that of

a human-driven vehicle and improving the comfort level of

the passengers [1]. In addition, these models can provide

predictions of the future trajectories of the vehicles in the

vicinity of the host autonomous vehicle and be used as

inputs for the inner loop controllers such as model predictive

controllers (MPC) [2]–[4].

The literature on driver modeling is vast. In [5] and [6],

Hidden Markov Model (HMM) based driver models are

considered, which are developed using real driving data. In

[7] and [8], k-means clustering is used to determine the

driving mode, and an approach to predict and overbound

future vehicle trajectory is proposed. It is shown that a

*The research of Ilya Kolmanovsky and Nan Li is supported by the
National Science Foundation under Award Number CNS-1544844. The
research of Yildiray Yildiz is sponsored by the Scientific and Technological
Research Council of Turkey under grant number 114E282.

1Nan Li, Dave Oyler, Mengxuan Zhang, Anouck Girard and Ilya Kol-
manovsky are with the Department of Aerospace Engineering, University of
Michigan, 1320 Beal Avenue, 48109-2140 Ann Arbor, MI, USA {nanli,
dwoyler, mengxuan, anouck, ilya}@umich.edu

2Yildiray Yildiz is with the Department of Mechanical
Engineering, Bilkent University, 06800 Cankaya, Ankara, Turkey
yyildiz@bilkent.edu.tr

prediction of the driver inputs can improve the performance

of an assisted driving algorithm. In [9], a “cognitive archi-

tecture” approach, which is “a computational framework that

incorporates built-in, well-tested parameters and constraints

on cognitive and perceptual-motor processes,” is utilized for

driver modeling. Built in logical (if-then-else) rules are used

to represent the decision making process. In [10], lane change

behavior of drivers is modeled using a multi agent simulation

system called “Simulation of Intelligent TRAnsport Systems

(SITRAS).” Several logical algorithms are used to model the

decision making during lane changes. The resulting actions

of the drivers are therefore predefined with strict rules. Driver

aggressiveness can also be incorporated into the model by

tuning certain parameters.

Some other references represent drivers as feedback con-

trollers (e.g., see [11]–[15]). In [16], another driver model is

proposed, in which support vector machines together with a

Bayesian filter are used to capture the intention of a driver for

a lane change, which can then be used as an input to a driver

assistance system. The method uses local measurements such

as the lateral position in a lane, the steering angle, and the

derivatives of these variables, to predict a lane change before

it occurs. A comprehensive list of existing human driver

models, control based or behavioral based, can be found in

[17], [18].

With respect to the existing approaches, the present paper

is distinguished by advanced modeling of driver-to-driver

interactions in traffic scenarios using a specific game the-

oretic formulation which is scalable to multiple vehicles.

The proposed method of traffic modeling has the following

advantages: a) driver responses to environmental changes

are determined utilizing a human decision making process,

instead of assuming that the actions of the drivers are

known in advance for a given state of the system, b) multi-

ple human-human and human-automation (e.g., autonomous

cars) interactions can be modeled simultaneously, which

helps investigate traffic scenarios with several vehicles and

c) all the vehicles in a traffic scenario can simultaneously

be modeled as decision makers (as opposed to predicting

the decisions of one vehicle while assuming that the rest of

the vehicles move based on certain kinematic and dynamic

constraints), in a computationally tractable way.

The exploited game theoretic model makes it possible to

conduct a quantitative analysis of the traffic. For example,

a) the increase in the number of accidents corresponding

to the increase in the traffic density can be estimated, b)

the effect of certain parameter value selections in an au-

tonomous driving algorithm on the safety of the vehicle can

2016 IEEE 55th Conference on Decision and Control (CDC)
ARIA Resort & Casino
December 12-14, 2016, Las Vegas, USA

978-1-5090-1837-6/16/$31.00 ©2016 IEEE 727

be evaluated, c) competing autonomous driving algorithms

can be compared quantitatively in a multi-vehicle time-

extended scenario, based on certain safety and performance

metrics, and finally, d) these quantitative analyses can be used

for optimization purposes based on a predefined objective

function including safety and performance measures. What

makes the above mentioned analyses possible is a method

that uniquely combines game theory, which is used to model

human interactions, and reinforcement learning, which is

used to obtain the policy which models the driver actions.

At the core of this method is an approach known as “semi

network-form games” [19], which helps us obtain the prob-

able outcomes of a complex traffic scenario in the presence

of multiple driver-driver interactions.

There have been other game theoretic approaches proposed

to model highway driving, such as [20] and [21]. Although

these approaches exploit driver interaction models developed

in a game theoretic setting, they did not consider dynamic

(multi-move) scenarios. The latter are exploited in [22] for

Hybrid Electric Vehicle (HEV) energy management where

the driver and the powertrain are considered to be two

players in a game. However, increasing the number of players

(drivers, in our case) beyond three complicates computing a

Stackelberg solution, especially in a time extended (multi-

move) scenario. On the other hand, the hierarchical reasoning

based game theoretic approach exploited in this paper is

easily scalable. Indeed, an implementation of the proposed

approach for a 50 player game can be found in [23], and

scenarios with up to 25 vehicles are treated in this paper.

Some preliminary results of using our game theoretic

approach for driver modeling presented in this paper have

been published in [24], including the application of rein-

forcement learning and the demonstration of the effect of

driver level on the number of lane changes and driving safety.

In this paper, we show that a traffic simulator consisting

of interacting drivers that are modeled using the proposed

approach can be utilized to quantitatively and comparatively

evaluate different autonomous driving methods. As case

studies, we present simulation results for two different au-

tonomous driving methods, based on Stackelberg equilibrium

policies and decision trees, and compare them in terms of

safety and performance.

The organization of this paper is as follows: The problem

formulation is given in Section II. The process of obtaining

driver policies by exploiting game theory and reinforcement

learning is explained in Section III. The autonomous driving

algorithms to be tested and compared are described in

Section IV. Simulation results are reported in Section V.

Finally, a summary is given in Section VI.

II. PROBLEM FORMULATION

The problem we treat in this paper is to model the behavior

of drivers in a traffic scenario where the cars are driven on

a 3-lane highway. We then demonstrate that such models

can be used in simulators to evaluate autonomous vehicle

policies. Fig. 1 shows an example scenario with 6 cars. Note

that using the method we propose, scenarios with more cars

and more lanes can be handled.

Fig. 1: Traffic in a 3-lane highway.

In this scenario, the cars are assumed to be traveling in

the same direction and driven by human drivers who obey

the general traffic laws.

A. Action space

Drivers are assumed to have 5 basic actions:

1) “Maintain” current speed,

2) “Accelerate” at rate = 2.5 m/s2, provided velocity does

not exceed 98 km/h,

3) “Decelerate” at rate = −2.5 m/s2, provided velocity is

above 62 km/h,

4) Change lane to the left,

5) Change lane to the right.

This action space may represent typical actions that human

drivers may use in highway traffic. A larger action space may

improve the fidelity of the model, while also increasing its

complexity. The exploration of larger action spaces is left to

future work.

B. Observation space

In real traffic flows, a driver can neither observe nor

process all the information about all the cars on the road.

A human can possibly observe and use the information

he/she obtains from the cars in a certain vicinity of him/her.

Therefore, we assign the following observation space to the

drivers:

1) The longitudinal distance (range) to the car in front and

in the same lane (front center), quantified as “close”

(range ≤ 30m), “nominal” (30m< range ≤ 60m) or

“far” (range > 60m),

2) The range to the car in front and to the left (front left),

quantified as “close,” “nominal” or “far,”

3) The range to the car in front and to the right (front

right), quantified as “close,” “nominal” or “far,”

4) The range to the car in the rear and to the left (rear

left), quantified as “close,” “nominal” or “far,”

5) The range to the car in the rear and to the right (rear

right), quantified as “close,” “nominal” or “far,”

6) The relative motion of the car in the front center,

quantified as “approaching” (range decreasing), “stable”

(range not changing), or “moving away” (range increas-

ing),

7) The relative motion of the car in the front left, quantified

as “approaching,” “stable” or “moving away,”

728

8) The relative motion of the car in the front right, quan-

tified as “approaching,” “stable” or “moving away,”

9) The relative motion of the car in the rear left, quantified

as “approaching,” “stable” or “moving away,”

10) The relative motion of the car in the rear right, quanti-

fied as “approaching,” “stable” or “moving away,”

11) The lane of the car, quantified as “left lane,” “center

lane” or “right lane.”

Similar to the action space, a larger observation space

with more observations may improve the performance of the

model, but may also entail heavier computational effort.

C. Reward function
A “reward function” is a mathematical representation of

the goals of a driver. Basic goals of the drivers in real traffic

are 1) to not have a collision (safety), 2) to minimize the time

needed to reach the destination (performance), 3) to keep a

reasonable headway from preceding cars (comfort) and 4) to

minimize driving effort (comfort).
These goals can be reflected in a reward function given

by

R = w1c+w2v+w3h+w4e, (1)

where wi, i = 1,2,3,4, are the weights for each term and

c,v,h and e represent “collision,” “velocity,” “headway” and

“effort” metrics, respectively.
The weighting terms wi may change depending on the

aggressiveness of the driver, but intuitively, collision avoid-

ance should be the most important factor. Thus, the following

relationship between the weights should be kept: w1 �
w2,w3,w4.

These terms are further explained below.
c (collision): The term c gets the value of −1 when a

collision occurs and the value of 0 otherwise. This term

enforces driver’s safety.
v (velocity): The term v gets the value of v =

(current velocity − nominal velocity) ÷ (acceleration rate),
where “nominal velocity” = 80 km/h. This term encourages

the driver to pursue higher traveling speed and shorten travel

time.
h (headway): The term h is set to the following values

depending on the headway distance (range to the car in front)

h =

⎧⎨
⎩
−1 if headway is “close,”

0 if headway is “nominal,”

1 if headway is “far.”

(2)

This term reflects the observation that a larger headway

distance improves the safety and comfort of the driver.
e (effort): The term e gets the value of 0 if the driver’s

action is “maintain” and −1 otherwise. This term discourages

the driver from making unnecessary maneuvers.

D. Car dynamics
It is assumed that all cars accelerate/decelerate at

±2.5m/s2, and lane changes occur with constant lateral

velocity such that the total time to change lanes is 3s. We also

assume that during lane changes, the longitudinal velocity

remains constant, and once a lane change begins, it always

continues to completion.

III. OBTAINING HIERARCHICAL REASONING BASED

DRIVER MODELS

A policy is defined as a stochastic map from the obser-

vation space (see Section II-B), to the action space (see

Section II-A), i.e., the drivers have a probability distribution

over their possible actions corresponding to each observation

state. To obtain driver policies, two main tools are exploited:

the hierarchical reasoning game theoretic (also called “level-

k”) approach, and the Jaakkola reinforcement learning algo-

rithm. In this section, both of these tools are explained.

A. Level-k reasoning

The driver models developed in this work are based on the

observation that humans make decisions exploiting various

levels of reasoning. The lowest level, level 0, represents an

intelligent agent (driver) who chooses his/her actions without

considering the possible actions of other agents. For example,

if a driver decides to make a lane change, say, from lane A to

lane B, without considering the possible actions of the other

drivers in the vicinity, that driver is referred to as a level 0

driver. However, if the same driver assumes that the other

drivers are level 0 drivers, and then chooses his/her actions

as the best response to the possible actions of other drivers,

then he/she is referred to as a level 1 driver. So, a level k
driver assumes that the rest of the drivers are level (k− 1)
and acts accordingly. More detailed explanations about this

approach can be found in [25] and [26].

Level 0 policy: In general, level 0 policies are considered

as “reflexive” behavior, the kind of actions one takes without

really taking into account other players’ possible actions.

These actions can be random, meaning that every possible

action is given the same probability of realization given a

state, or it can be a simple but reasonable policy that is

formed using very basic principles of the scenario one is in.

In our scenario, the level 0 policy is formulated as follows:

actionl0 =

⎧⎪⎨
⎪⎩

“Decelerate,” if the car in front is “close”

and “approaching,”

“Maintain,” otherwise.
(3)

Note that a level 0 driver would never change lanes. As

a matter of fact, it may not be an uncommon assumption in

the simulations of autonomous driving algorithms that other

vehicles in traffic do not change lanes, e.g., see [27], [28].

However, in this work, the level k (k≥1) drivers would make

lane changes to pursue higher rewards, which makes the

traffic model developed by our approach of higher fidelity

compared to some of previous traffic models.

B. Jaakkola reinforcement learning

The Jaakkola reinforcement learning (RL) algorithm (see

[29]) is similar to other conventional RL methods (see

[30]). It involves a policy evaluation step, where state-

action pairs of a policy are assigned values based on the

cumulative rewards gained, and a policy improvement step,

where the existing policy is refined so that actions that

have higher expectations of cumulative reward values have

729

increased probability of actually being chosen. A feature

of the Jaakkola RL algorithm is that when the underlying

dynamics of the problem is Markov while the system states

are only partially observable to the agents, i.e., the problem is

modeled as a Partially Observable Markov Decision Process

(POMDP), the Jaakkola RL was shown to be able to converge

at least to a local maximum in terms of the average over

infinite horizon rewards under certain conditions [29]. Note

that the highway problem defined in this paper is modeled as

a POMDP, due to the drivers’ restricted observation spaces

(see Section II-B).

C. Complete algorithm

The complete algorithm is a combination of the level-

k reasoning game theory and the Jaakkola reinforcement

learning approach.

To obtain a level k driver policy, we assign level (k− 1)
policies to all the drivers in the traffic except the driver we

want to “train.” By training we mean that we run the Jaakkola

RL algorithm where the trained driver is the learner and the

rest of the drivers, together with the vehicles, constitute the

environment.
To start the procedure, we first assign a level 0 policy

(see Section III-A) to all the drivers except the learner, and

then train a level 1 policy and save it. We then train a level

2 policy by assigning the level 1 policy we just saved to

all the other drivers, and train and save a newly obtained

level 2 policy. This can continue until we reach the depth of

reasoning (level k) we want to achieve. It is shown in some

experimental studies (see [26]) that humans are generally

level 0, 1, or 2 players in a game. Therefore, we train driver

policies up to level 2 in this paper.

IV. EVALUATING AUTONOMOUS DRIVING APPROACHES

Two autonomous driving strategies, based on Stackelberg

policies and decision trees, are evaluated and compared using

a simulator in which the traffic, other than the host vehicle,

consists of drivers modeled using the above level-k approach.

Below, brief explanations of the Stackelberg and decision tree

approaches are provided. See [20], [21], [27], and [31] for

further details.

A. Stackelberg policies

To generate Stackelberg policies for the autonomous ve-

hicle, we consider three vehicles as players, and the rest of

the vehicles are considered to be a part of the environment.

The three players are assigned roles as the “leader,” “first

follower,” and “second follower,” and they choose their

actions sequentially, where the leader chooses its action

first, followed by the first follower, and, finally, the second

follower. Each player evaluates its actions according to a

utility function that consists of two parts. The first, referred

to as the positive utility, is defined as follows:

Upos =

{
min(d�,dv), if there is a vehicle ahead,

dv, otherwise,
(4)

where d� is the distance to the car in front, and dv is the

maximum visibility distance. The second part of the utility

is referred to as the negative utility:

Uneg = d∇− vrT −dmin, (5)

where d∇ and vr are, respectively, the distance to and the

relative velocity of the car behind, T is a prediction time

window, and dmin is the minimum distance required to allow

a lane change; here, dmin is set to the car length. Thus,

overtaking vehicles are taken into consideration, and lane

changes that cut off overtaking vehicles are discouraged.

The actions chosen by the leader, first follower, and second

follower, denoted by γ�, γ f 1, and γ f 2, respectively, are the

Stackelberg equilibrium actions, i.e., the leader chooses its

actions to maximize its utility for the worst-case actions that

the two followers might choose. Thus, the leader chooses:

γ∗� ∈ argmax
γ�

min
γ f 1,γ f 2

[
U ′

pos +U ′
neg

]
, (6)

where U ′
pos and U ′

neg are the utilities that correspond to

a specific set of actions {γ�,γ f 1,γ f 2}. The two followers

maximize their own utilities with the known choice of γ�. In

this paper, when constructing Stackelberg policies, the host

vehicle is the leader, and the two cars immediately behind

are the followers. Alternatively, the host vehicle could be one

of the followers instead of the leader, and this can be treated

similarly.

Note that [20], [21] consider different vehicle dynamics

than the ones in this paper. Additionally, [20], [21] consider

uncertainties in recognition distance, side-viewing, and re-

sponse delays, but these are not considered in this paper.

B. Decision tree policies

In the decision tree approach to autonomous driving, all

vehicles except the host vehicle are a part of the environment,

and it is assumed that the environment evolves determin-

istically over a planning horizon (the vehicles maintain

their current lanes and velocities), independently of the host

vehicle’s actions. The host vehicle maintains its current lane

and velocity unless there is an obstruction in front of it

within a critical headway distance (60m, in this work). If an

action is required, a path planner is triggered that evaluates a

specified number of pre-selected action profiles by building a

tree of potential action sequences and evaluating each branch

according to a specified metric. Branches are pruned from

the decision tree if they lead to collisions or other unsafe

behaviors.

In this paper, the decision tree consists of two layers,

where each layer allows the five actions listed in Section

II-A. Thus, the action profiles consist of two actions each,

and 25 profiles are evaluated. The evaluation metric is the

sum of the headway distances after each action.

V. SIMULATION RESULTS

A. Environment and set-up

We model the environment as follows: the width of a

lane is 3.6m, and all cars are modeled as 6m x 2m boxes.

730

Fig. 2: Simulation Environment.

Cars always drive at the center of a lane unless they are

changing lanes. All cars accelerate or decelerate at ±2.5m/s2,

and lane changes occur with constant lateral velocity such

that the total time to change lanes is 3s. During lane

changes, the longitudinal velocity remains constant, and once

a lane change begins, it always continues to completion. The

longitudinal axis is called x, and its origin is collocated with

the car that is to be trained or evaluated.

Five cars are observable, as described in Section II-B, and

a car is considered “close” if its relative longitudinal position,

xc ≤ 30, “nominal” if 30 < xc ≤ 60, and “far” if 60 < xc ≤
90, where 90m is considered to be the maximum visibility

distance. Cars more than 90m away are considered to be out

of visual range and unobservable. If no car can be observed

in a position, it is considered equivalent to a car that is “far”

and “moving away.”

Fig. 2 shows a snapshot of an example simulation with

three lanes. The rectangles represent cars, which are all

moving to the right, and the arrows show the velocities of

the cars relative to the car under evaluation, which is located

in the center lane at x = 0. The observation is as follows:

• Front left: close, moving away.

• Front center: far, moving away.

• Front right: far, approaching.

• Rear left: nominal, approaching.

• Rear right: nominal, stable.

• Lane: center.

Note that two cars are unobservable in this scenario. The

car in the front center position is beyond visual range, so

the corresponding observed status is “moving away” even

though it is actually “stable.” Also, the car in the rear right

“far” position is hidden by the car in the rear right “nominal”

position. This reflects the POMDP nature of the problem, as

discussed previously.

Initialization of a simulation requires the specification of

the following values:

1) the number of lanes, n�,
2) the number of cars, nc,

3) the maximum allowable initialization distance, x0
max,

4) the simulation duration, t f .

When a car is initialized, its position is assigned to a lane

randomly based on uniform distribution, and then it is placed

within that lane randomly based on uniform distribution

in [−x0
max,x

0
max] such that its distance to any previously

initialized cars is at least 30m. Also, the car is initialized

with random longitudinal velocity uniformly distributed in

the range [62,98] km/h and assigned the action “Maintain.”

The car is then assigned a policy to follow (level 0, 1, or 2).

This process repeats until all cars have been initialized, and

then the simulation proceeds according to Algorithm 1.

1 t = 0;

2 while t < t f do
3 foreach car do
4 Get observation from environment;

5 Select action according to policy and

observation;

6 Update position and relative velocity according

to action;
7 end
8 if training a policy then
9 Evaluate reward function for trainee;

10 Update value function;

11 end
12 if the host car is in a collision state then
13 End the simulation;

14 end
15 t = t +Δt;
16 end

Algorithm 1: Single Episode Simulation.

B. Training level-k driver models

When training a new policy, the observation value func-

tion, V , for an observed message m, and the action value

function, Q, for a message/action pair (m,a), are initialized

as follows:
∀m, V (m) = 0;

∀m,∀a, Q(m,a) = 0.
(7)

For each observation, the actions are assigned equal proba-

bility of selection at initialization. And during each policy

improvement step, if

max
a

Q(m,a)>V (m), (8)

then 0.01 is added to the probability of selecting

argmaxa Q(m,a), after which the action probabilities are

normalized.

The observation space described in Section II-B has 311

different observations. In order to ensure that the learning

algorithm is exposed to a large portion of the observation

space, the trainee needs to be exposed to both sparse and

dense traffic. Therefore, during training, the number of

cars in the traffic is selected randomly, based on uniform

distribution, where 0≤ nc ≤ nmax
c . The maximum number of

cars, nmax
c , is chosen based on the number of lanes and x0

max
such that if nmax

c cars are placed in the environment, the road

is near full capacity.

Finally, after sufficient training time, we assign the level

0 policy to any observations that were encountered too few

731

times during the training for the policy to converge (i.e., not

well trained), so that in such rarely encountered observation

states, a conservative action is performed.

Training then proceeds according to Algorithm 2.

1 step=0;

2 while step < desired training cycles do
3 Randomly select nc ∈ [0,nmax

c];
4 Initialize all cars with level (k−1) policies;

5 Evaluate the level k policy using Algorithm 1;

6 Improve the policy;

7 step=step+1;

8 end
9 Assign level 0 policy to the not well trained observation

states.
Algorithm 2: Training Process.

Fig. 3 shows the average reward evolution during level 1

and level 2 training. The weights we choose are w1 = 10000,

w2 = 5, w3 = w4 = 1. They can alternatively be calibrated

based on real traffic data, but this will be addressed in our

future work.

0 0.5 1 1.5 2

x 10
4

−450

−400

−350

−300

−250

−200

−150

−100

−50

0

training times

av
g

re
w

ar
d

0 0.5 1 1.5 2

x 10
4

−450

−400

−350

−300

−250

−200

−150

−100

−50

training times

av
g

re
w

ar
d

(a) (b)

Fig. 3: Average rewards. (a) Training for level 1. (b) Training

for level 2.

After training, we run simulations to check the collision

rate of the trained policy, where collision rate is a metric

for safety defined as the proportion of simulation runs

during which the host vehicle touches another vehicle. Each

simulation is 200s long, and 1,000 simulations are run for

each number of cars, which represents traffic density. As

Fig. 4 shows, the level 2 player has higher collision rates

because it is in a level 1 environment, whose dynamics are

harder to predict than a level 0 environment where the level

1 player performs well.

C. Comparison of Stackelberg and decision tree policies

We consider a traffic environment where 10% of the

drivers make decisions based on level 0 policies, 60% of

the drivers act based on level 1 policies and 30% use level

2 policies. These percentages of various levels are based on

an experimental study conducted in [26]. Fig. 5 shows the

collision rates for the Stackelberg and decision tree policies

vs. the number of cars in the environment. Again, each

0 5 10 15 20 25
0

0.05

0.1

0.15

0.2

0.25

Number of cars

C
ol

lis
io

n
ra

te

Level 1 vs Level 0
Level 2 vs Level 1

Fig. 4: Collision rates for level 1 and level 2 policies.

Number of cars
0 5 10 15 20 25

C
ol

lis
io

n
ra

te

0

0.05

0.1

0.15

0.2

0.25

0.3

Decision Tree
Stackelberg

Fig. 5: Collision rates observed in the traffic simulator

configured with 10% level 0, 60% level 1, and 30% level

2 drivers.

simulation is 200s long, and 1,000 simulations are run for

each number of cars.

As Fig. 5 shows, both approaches experience collisions

in the simulations. One explanation for this is that both

algorithms may make erroneous assumptions about the en-

vironment. The Stackelberg approach assumes that only the

host vehicle and two others are decision makers, while the

decision tree approach assumes that only the host vehicle

is a decision maker. In these simulations, however, all

vehicles make observations and take actions to maximize

their rewards. Furthermore, not all collisions represented in

Fig. 5 result from poor decisions of the host vehicle. Other

vehicles in the environment may also be at fault.

In Fig. 5, the Stackelberg policy has fewer collisions.

One explanation for this is that the Stackelberg approach

considers two other vehicles as decision makers, whereas in

the decision tree approach, the host vehicle is assumed to

be the only decision maker. However, both approaches can

732

be paired with lower level controllers to provide additional

collision avoidance capability as is done in [31]. Note that

the Stackelberg policy requires more measurements because

it must constantly measure the headway in each of the three

lanes as well as the positions and velocities of the two

followers. On the other hand, during most of the simulation

time, the decision tree policy only requires a measurement of

the headway in its current lane, and additional measurements

are only required when changing lanes.
Note that the above implementations of the two policies

are relatively simple, and serve as case studies to show the

functionality of the traffic simulator developed using the

level-k driver models in testing and evaluation of autonomous

vehicle policies. More evolved implementations of these

policies and their comparisons are left to future publications.

VI. SUMMARY

In this paper, we described a simulator for testing and com-

paring autonomous driving algorithms in terms of predefined

metrics. The simulator consists of human-driven vehicles

whose drivers are modeled as strategic decision makers using

a game theoretic decision making process. As case studies,

autonomous driving algorithms based on Stackelberg policies

and decision tree policies were tested. Their performances

were compared according to a safety metric.

REFERENCES

[1] A. Carvalho, S. Lefevre, G. Schildbach, J. Kong, and F. Borrelli,
“Automated driving: The role of forecasts and uncertainty-a control
perspective,” European Journal of Control, vol. 24, pp. 14–32, 2015.

[2] P. Falcone, F. Borrelli, J. Asgari, H. E. Tseng, and D. Hrovat,
“Predictive active steering control for autonomous vehicle systems,”
IEEE Transactions on Control Systems Technology, vol. 15, no. 3, pp.
566–580, 2007.

[3] P. Falcone, F. Borrelli, H. Tseng, J. Asgari, and D. Hrovat, “Linear time
varying model predictive control and its application to active steering
systems: Stability analysis and experimental validation,” International
Journal of Robust and Nonlinear Control, vol. 18, no. 8, pp. 862–875,
2008.

[4] A. Carvalho, Y. Gao, A. Gray, H. E. Tseng, and F. Borrelli, “Pre-
dictive control of an autonomous ground vehicle using linearization
approach,” in Proceedings of the 16th IEEE Annual Conference
on Intelligent Transportation Systems, The Hague, The Netherlands,
October 2013.

[5] S. Lefevre, Y. Gao, D. Vasquez, E. Tseng, R. Bajcsy, and F. Borrelli,
“Lane keeping assistance with learning-based driver model and model
predictive control,” in Proceedings of the 12th international sympo-
sium on advanced vehicle control, 2014.

[6] S. Lefevre, A. Carvalho, and F. Borrelli, “Autonomous car following:
A learning-based approach,” in IEEE Intelligent Vehicles Symposium,
2015, pp. 920–926.

[7] R. Vasudevan, V. Shia, Y. Gao, R. Cervera-Navarro, R. Bajcsy, and
F. Borrelli, “Safe semi-autonomous control with enhanced driver
modeling,” in Proceedings of American Control Conference (ACC),
2012, pp. 2896–2903.

[8] V. Shia, Y. Gao, R. Vasudevan, K. D. Campbell, T. Lin, F. Borrelli, and
R. Bajcsy, “Semiautonomous vehicular control using driver modeling,”
IEEE Transactions on Intelligent Transportation Systems, vol. 15,
no. 6, pp. 2696–2709, 2014.

[9] D. Salvucci, E. Boer, and A. Liu., “Toward an integrated model of
driver behavior in cognitive architecture,” Transportation Research
Record: Journal of the Transportation Research Board, vol. 1779, pp.
9–16, 2001.

[10] P. Hidas, “Modelling lane changing and merging in microscopic traffic
simulation,” Transportation Research Part C: Emerging Technologies,
vol. 10, no. 5, pp. 351–371, 2002.

[11] R. A. Hess and A. Modjtahedzadeh, “A control theoretic model of
driver steering behavior,” IEEE Control Systems Magazine, vol. 10,
no. 5, pp. 3–8, 1990.

[12] R. S. Sharp, D. Casanova, and P. Symonds, “A mathematical model for
driver steering control, with design, tuning and performance results,”
Vehicle System Dynamics, vol. 33, no. 5, pp. 289–326, 2000.

[13] M. Treiber, A. Hennecke, and D. Helbing, “Congested traffic states in
empirical observations and microscopic simulations,” Physical Review
E, vol. 62, no. 2, pp. 1805–1824, 2000.

[14] D. D. Salvucci and R. Gray, “A two-point visual control model of
steering,” Perception, vol. 33, no. 10, pp. 1233–1248, 2004.

[15] A. Y. Ungoren and H. Peng, “An adaptive lateral preview driver
model,” Vehicle System Dynamics, vol. 43, no. 4, pp. 245–259, 2005.

[16] P. Kumar, M. Perrollaz, S. Lefevre, and C. Laugier, “Learning-
based approach for online lane change intention prediction,” in IEEE
Intelligent Vehicles Symposium, 2013, pp. 797–802.

[17] C. C. Macadam, “Understanding and modeling the human driver,”
Vehicle System Dynamics, vol. 40, no. 1-3, pp. 101–134, 2003.

[18] M. Plchl and J. Edelmann, “Driver models in automobile dynamics
application,” Vehicle System Dynamics, vol. 45, no. 7-8, pp. 699–741,
2007.

[19] R. Lee and D. Wolpert, Chapter: Game theoretic modeling of pilot
behavior during mid-air encounters. in Decision making with
multiple imperfect decision makers. Intelligent Systems Reference
Library Series. Springer, 2011.

[20] J. H. Yoo and R. Langari, “Stackelberg game based model of highway
driving,” in Proc. ASME Dynamic Systems and Control Conference
joint with JSME Motion and Vibration Conference, Fort Lauderdale,
Florida, Oct. 2012.

[21] ——, “A stackelberg game theoretic driver model for merging,” in
Proc. ASME Dynamic Systems and Control Conference, Palo Alto,
California, Oct. 2013.

[22] C. Dextreit and I. V. Kolmanovsky, “Game theory controller for hybrid
electric vehicles,” IEEE Transactions on Control Systems Technology,
vol. 22, no. 2, pp. 652–663, 2014.

[23] Y. Yildiz, A. Agogino, and G. Brat, “Predicting pilot behavior in
medium-scale scenarios using game theory and reinforcement learn-
ing,” Journal of Guidance, Control, and Dynamics, vol. 37, no. 4, pp.
1335–1343, 2014.

[24] D. W. Oyler, Y. Yildiz, A. R. Girard, N. I. Li, and I. V. Kolmanovsky,
“A game theoretical model of traffic with multiple interacting drivers
for use in autonomous vehicle development,” in Proceedings of
American Control Conference (ACC). IEEE, 2016, pp. 1705–1710.

[25] D. Stahl and P. Wilson, “On players models of other players: Theory
and experimental evidence,” Games and Economic Behavior, vol. 10,
no. 1, p. 218254, 1995.

[26] M. A. Costa-Gomes, V. P. Crawford, and N. Iriberri, “Comparing
models of strategic thinking in Van Huyck, Battalio, and Beil’s
coordination games,” Journal of the European Economic Association,
vol. 7, no. 2-3, pp. 365–376, 2009.

[27] I. Miller, M. Campbell, D. Huttenlocher, F.-R. Kline, A. Nathan,
S. Lupashin, J. Catlin, B. Schimpf, P. Moran, N. Zych, E. Garcia,
M. Kurdziel, and H. Fujishima, “Team cornell’s skynet: Robust
perception and planning in an urban environment,” Journal of Field
Robotics, vol. 25, no. 8, pp. 493–527, 2008.

[28] C. Chen, A. Seff, A. Kornhauser, and J. Xiao, “Deepdriving: Learning
affordance for direct perception in autonomous driving,” in Proceed-
ings of the IEEE International Conference on Computer Vision, 2015,
pp. 2722–2730.

[29] T. Jaakkola, P. S. Satinder, and I. Jordan., “Reinforcement learning al-
gorithm for partially observable markov decision problems,” Advances
in Neural Information Processing Systems 7: Proceedings of the 1994
Conference, 1994.

[30] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction.
Cambridge: MIT press, 1998.

[31] L. Claussman, A. Carvalho, and G. Schildbach, “A path planner
for autonomous driving on highway human mimcry approach with
binary decision diagrams,” in Proceedings of the European Control
Conference, Linz, Austria, July 2015.

733

