3,736 research outputs found

    Assessment of different models for bathymetry calculation using SPOT multispectral images in a high-turbidity area: the mouth of the Guadiana Estuary

    Get PDF
    Periodic calculation of coastal bathymetries can show the evolution of geomorpholo- gical features in active areas such as mesotidal estuary mouths. Bathymetries in shallow coastal areas have been addressed mainly by two technologies, lidar and optical remote sensing. Lidar provides good accuracy, but is an expensive technique, requiring planned flights for each region and dates of interest. Optical remote sensing acquires images periodically but its results are limited by water turbidity. Here we use a lidar bathymetry to compare different bathymetry computation methods using a SPOT optical image from a nearby date. Three statistical models (green-band, PCA correlations, and GLM) were applied to obtain mathematical expressions to estimate bathymetry from that image: all gave errors lower than 1 m in an area with depths ranging from 0 to 6 m. These algorithms were then applied to images from three different dates, correcting the effects caused by different tidal and atmospheric condi- tions. We show how this allows the study of morphological changes. We discuss the accuracy obtained with respect to the reference bathymetry (0.9 m on average, but less than 0.5 m in low-turbidity areas), the effects of the turbidity on our estimations, and compare both with previously published results. The results show that this approach is effective and allows identification of known features of coastal dynamics, and thus it would be an important step towards short-term bathymetry monitoring based on optical satellite remote sensing.Ministerio de Ciencia e Innovación CSO2010-15807Consejería de Innovación, Ciencia y Empresa P10-RNM-620

    GETNET: A General End-to-end Two-dimensional CNN Framework for Hyperspectral Image Change Detection

    Full text link
    Change detection (CD) is an important application of remote sensing, which provides timely change information about large-scale Earth surface. With the emergence of hyperspectral imagery, CD technology has been greatly promoted, as hyperspectral data with the highspectral resolution are capable of detecting finer changes than using the traditional multispectral imagery. Nevertheless, the high dimension of hyperspectral data makes it difficult to implement traditional CD algorithms. Besides, endmember abundance information at subpixel level is often not fully utilized. In order to better handle high dimension problem and explore abundance information, this paper presents a General End-to-end Two-dimensional CNN (GETNET) framework for hyperspectral image change detection (HSI-CD). The main contributions of this work are threefold: 1) Mixed-affinity matrix that integrates subpixel representation is introduced to mine more cross-channel gradient features and fuse multi-source information; 2) 2-D CNN is designed to learn the discriminative features effectively from multi-source data at a higher level and enhance the generalization ability of the proposed CD algorithm; 3) A new HSI-CD data set is designed for the objective comparison of different methods. Experimental results on real hyperspectral data sets demonstrate the proposed method outperforms most of the state-of-the-arts

    Histopathological image analysis : a review

    Get PDF
    Over the past decade, dramatic increases in computational power and improvement in image analysis algorithms have allowed the development of powerful computer-assisted analytical approaches to radiological data. With the recent advent of whole slide digital scanners, tissue histopathology slides can now be digitized and stored in digital image form. Consequently, digitized tissue histopathology has now become amenable to the application of computerized image analysis and machine learning techniques. Analogous to the role of computer-assisted diagnosis (CAD) algorithms in medical imaging to complement the opinion of a radiologist, CAD algorithms have begun to be developed for disease detection, diagnosis, and prognosis prediction to complement the opinion of the pathologist. In this paper, we review the recent state of the art CAD technology for digitized histopathology. This paper also briefly describes the development and application of novel image analysis technology for a few specific histopathology related problems being pursued in the United States and Europe

    A New Spatio-Spectral Morphological Segmentation For Multi-Spectral Remote-Sensing Images

    No full text
    International audienceA general framework of spatio-spectral segmentation for multi-spectral images is introduced in this paper. The method is based on classification-driven stochastic watershed (WS) by Monte Carlo simulations, and it gives more regular and reliable contours than standard WS. The present approach is decomposed into several sequential steps. First, a dimensionality-reduction stage is performed using the factor-correspondence analysis method. In this context, a new way to select the factor axes (eigenvectors) according to their spatial information is introduced. Then, a spectral classification produces a spectral pre-segmentation of the image. Subsequently, a probability density function (pdf) of contours containing spatial and spectral information is estimated by simulation using a stochastic WS approach driven by the spectral classification. The pdf of the contours is finally segmented by a WS controlled by markers from a regularization of the initial classification

    Mitigating the effect of covariates in face recognition

    Get PDF
    Current face recognition systems capture faces of cooperative individuals in controlled environment as part of the face recognition process. It is therefore possible to control lighting, pose, background, and quality of images. However, in a real world application, we have to deal with both ideal and imperfect data. Performance of current face recognition systems is affected for such non-ideal and challenging cases. This research focuses on designing algorithms to mitigate the effect of covariates in face recognition.;To address the challenge of facial aging, an age transformation algorithm is proposed that registers two face images and minimizes the aging variations. Unlike the conventional method, the gallery face image is transformed with respect to the probe face image and facial features are extracted from the registered gallery and probe face images. The variations due to disguises cause change in visual perception, alter actual data, make pertinent facial information disappear, mask features to varying degrees, or introduce extraneous artifacts in the face image. To recognize face images with variations due to age progression and disguises, a granular face verification approach is designed which uses dynamic feed-forward neural architecture to extract 2D log polar Gabor phase features at different granularity levels. The granular levels provide non-disjoint spatial information which is combined using the proposed likelihood ratio based Support Vector Machine match score fusion algorithm. The face verification algorithm is validated using five face databases including the Notre Dame face database, FG-Net face database and three disguise face databases.;The information in visible spectrum images is compromised due to improper illumination whereas infrared images provide invariance to illumination and expression. A multispectral face image fusion algorithm is proposed to address the variations in illumination. The Support Vector Machine based image fusion algorithm learns the properties of the multispectral face images at different resolution and granularity levels to determine optimal information and combines them to generate a fused image. Experiments on the Equinox and Notre Dame multispectral face databases show that the proposed algorithm outperforms existing algorithms. We next propose a face mosaicing algorithm to address the challenge due to pose variations. The mosaicing algorithm generates a composite face image during enrollment using the evidence provided by frontal and semiprofile face images of an individual. Face mosaicing obviates the need to store multiple face templates representing multiple poses of a users face image. Experiments conducted on three different databases indicate that face mosaicing offers significant benefits by accounting for the pose variations that are commonly observed in face images.;Finally, the concept of online learning is introduced to address the problem of classifier re-training and update. A learning scheme for Support Vector Machine is designed to train the classifier in online mode. This enables the classifier to update the decision hyperplane in order to account for the newly enrolled subjects. On a heterogeneous near infrared face database, the case study using Principal Component Analysis and C2 feature algorithms shows that the proposed online classifier significantly improves the verification performance both in terms of accuracy and computational time

    Random Germs and Stochastic Watershed for Unsupervised Multispectral Image Segmentation

    No full text
    International audienceThis paper extends the use of stochastic watershed, recently introduced by Angulo and Jeulin [1], to unsupervised segmentation of multispectral images. Several probability density functions (pdf), derived from Monte Carlo simulations (M realizations of N random markers), are used as a gradient for segmentation: a weighted marginal pdf a vectorial pdf and a probabilistic gradient. These gradient-like functions are then segmented by a volume-based watershed algorithm to define the R largest regions. The various gradients are computed in multispectral image space and in factor image space, which gives the best segmentation. Results are presented on PLEIADES satellite simulated images
    • …
    corecore