5 research outputs found

    A graph theoretic approach to scene matching

    Get PDF
    The ability to match two scenes is a fundamental requirement in a variety of computer vision tasks. A graph theoretic approach to inexact scene matching is presented which is useful in dealing with problems due to imperfect image segmentation. A scene is described by a set of graphs, with nodes representing objects and arcs representing relationships between objects. Each node has a set of values representing the relations between pairs of objects, such as angle, adjacency, or distance. With this method of scene representation, the task in scene matching is to match two sets of graphs. Because of segmentation errors, variations in camera angle, illumination, and other conditions, an exact match between the sets of observed and stored graphs is usually not possible. In the developed approach, the problem is represented as an association graph, in which each node represents a possible mapping of an observed region to a stored object, and each arc represents the compatibility of two mappings. Nodes and arcs have weights indicating the merit or a region-object mapping and the degree of compatibility between two mappings. A match between the two graphs corresponds to a clique, or fully connected subgraph, in the association graph. The task is to find the clique that represents the best match. Fuzzy relaxation is used to update the node weights using the contextual information contained in the arcs and neighboring nodes. This simplifies the evaluation of cliques. A method of handling oversegmentation and undersegmentation problems is also presented. The approach is tested with a set of realistic images which exhibit many types of sementation errors

    A personal identification biometric system based on back-of-hand vein patterns

    Get PDF
    This report describes research on the use of back-of-hand vein patterns as a means of uniquely identifying people. In particular it describes a prototype biometric system developed by the Australian Institute of Security and Applied Technology (AISAT). This system comprises an infrared cold source, a monochrome CCD camera, a monochrome frame-grabber, a personal computer, and custom image acquisition, processing, registration, and matching software. The image processing algorithms are based on Mathematical Morphology. Registration is performed using rotation and translation with respect to the centroid of the two-dimensional domain of a hand. Vein patterns are stored as medial axis representations. Matching involves comparing a given medial axis pattern against a library of patterns using constrained sequential correlation. The matching is two-fold: a newly acquired signature is matched against a dilated library signature, and then the library signature is matched against the dilated acquired signature; this is necessary because of the positional noise exhibited by the back-of-hand veins. The results of a cross-matching experiment for a sample of 20 adults and more than 100 hand images is detailed. In addition preliminary estimates of the false acceptance rate (FAR) and false rejection rate (FRR) for the prototype system are given. Fuzzy relaxation on an association graph is discussed as an alternative to sequential correlation for the matching of vein signatures. An example is provided (including a C program) illustrating the matching process for a pair of signatures obtained from the same hand. The example demonstrates the ability of the fuzzy relaxation method to deal with segmentation errors

    Recognition of 2D modelized objects by a discrete relaxation method

    Get PDF
    In this paper, a discrete relaxation method is described . The aim of this method is the recognition of 2D objects, a model of which having prealably be established. The model is based on two kinds of features : straight segments and circles . The approach is both forward and backward ; so, it is not necessary to detect all the primitives at the beginning of the procedure new primitives may be detected, if necessary, during the relaxation procedure .L'article présente une méthode de relaxation discrète pour la reconnaissance d'objets plans dont on a effectué une modélisation préalable . Cette modélisation est réalisée à l'aide de primitives du type segments de droite ou cercles . L'approche est descendante et ascendante, permettant, par un retour au niveau de l'image pour détecter de nouvelles primitives, d'éviter un prétraitement exhaustif de l'image
    corecore