10,240 research outputs found

    APOM-project : a study of pharmacy practice

    Get PDF
    In 1994, a Ph.D-study started regarding pharmacy, organization and management (APOM) in the Netherlands. The APOM-project deals with the structuring and steering of pharmacy organization. This article describes the summary of the empirical results of a survey in a relatively large sample (n=169). Generalization to the population of pharmacies in the Netherlands was made. The results for thought, the perceived importance of activities, comprised a total number of seven clusters of priorities of pharmacy mixes. Most pharmacy managers perceived the product (pharmaceutical) activities and the customer activities as the most important. The results for action, the actual performance of activities, comprised a total number of five clusters of activities of pharmacy mixes. Most pharmacy managers performed the product activities and the process (financial-economic) activities most frequently. The results showed that the traditional conception of the work in the community pharmacy is still vividly present.

    Sparsity with sign-coherent groups of variables via the cooperative-Lasso

    Full text link
    We consider the problems of estimation and selection of parameters endowed with a known group structure, when the groups are assumed to be sign-coherent, that is, gathering either nonnegative, nonpositive or null parameters. To tackle this problem, we propose the cooperative-Lasso penalty. We derive the optimality conditions defining the cooperative-Lasso estimate for generalized linear models, and propose an efficient active set algorithm suited to high-dimensional problems. We study the asymptotic consistency of the estimator in the linear regression setup and derive its irrepresentable conditions, which are milder than the ones of the group-Lasso regarding the matching of groups with the sparsity pattern of the true parameters. We also address the problem of model selection in linear regression by deriving an approximation of the degrees of freedom of the cooperative-Lasso estimator. Simulations comparing the proposed estimator to the group and sparse group-Lasso comply with our theoretical results, showing consistent improvements in support recovery for sign-coherent groups. We finally propose two examples illustrating the wide applicability of the cooperative-Lasso: first to the processing of ordinal variables, where the penalty acts as a monotonicity prior; second to the processing of genomic data, where the set of differentially expressed probes is enriched by incorporating all the probes of the microarray that are related to the corresponding genes.Comment: Published in at http://dx.doi.org/10.1214/11-AOAS520 the Annals of Applied Statistics (http://www.imstat.org/aoas/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Clustering in an Object-Oriented Environment

    Get PDF
    This paper describes the incorporation of seven stand-alone clustering programs into S-PLUS, where they can now be used in a much more flexible way. The original Fortran programs carried out new cluster analysis algorithms introduced in the book of Kaufman and Rousseeuw (1990). These clustering methods were designed to be robust and to accept dissimilarity data as well as objects-by-variables data. Moreover, they each provide a graphical display and a quality index reflecting the strength of the clustering. The powerful graphics of S-PLUS made it possible to improve these graphical representations considerably. The integration of the clustering algorithms was performed according to the object-oriented principle supported by S-PLUS. The new functions have a uniform interface, and are compatible with existing S-PLUS functions. We will describe the basic idea and the use of each clustering method, together with its graphical features. Each function is briefly illustrated with an example.

    Assessing multivariate predictors of financial market movements: A latent factor framework for ordinal data

    Full text link
    Much of the trading activity in Equity markets is directed to brokerage houses. In exchange they provide so-called "soft dollars," which basically are amounts spent in "research" for identifying profitable trading opportunities. Soft dollars represent about USD 1 out of every USD 10 paid in commissions. Obviously they are costly, and it is interesting for an institutional investor to determine whether soft dollar inputs are worth being used (and indirectly paid for) or not, from a statistical point of view. To address this question, we develop association measures between what broker--dealers predict and what markets realize. Our data are ordinal predictions by two broker--dealers and realized values on several markets, on the same ordinal scale. We develop a structural equation model with latent variables in an ordinal setting which allows us to test broker--dealer predictive ability of financial market movements. We use a multivariate logit model in a latent factor framework, develop a tractable estimator based on a Laplace approximation, and show its consistency and asymptotic normality. Monte Carlo experiments reveal that both the estimation method and the testing procedure perform well in small samples. The method is then used to analyze our dataset.Comment: Published in at http://dx.doi.org/10.1214/08-AOAS213 the Annals of Applied Statistics (http://www.imstat.org/aoas/) by the Institute of Mathematical Statistics (http://www.imstat.org

    A Revenue Function for Comparison-Based Hierarchical Clustering

    Full text link
    Comparison-based learning addresses the problem of learning when, instead of explicit features or pairwise similarities, one only has access to comparisons of the form: \emph{Object AA is more similar to BB than to CC.} Recently, it has been shown that, in Hierarchical Clustering, single and complete linkage can be directly implemented using only such comparisons while several algorithms have been proposed to emulate the behaviour of average linkage. Hence, finding hierarchies (or dendrograms) using only comparisons is a well understood problem. However, evaluating their meaningfulness when no ground-truth nor explicit similarities are available remains an open question. In this paper, we bridge this gap by proposing a new revenue function that allows one to measure the goodness of dendrograms using only comparisons. We show that this function is closely related to Dasgupta's cost for hierarchical clustering that uses pairwise similarities. On the theoretical side, we use the proposed revenue function to resolve the open problem of whether one can approximately recover a latent hierarchy using few triplet comparisons. On the practical side, we present principled algorithms for comparison-based hierarchical clustering based on the maximisation of the revenue and we empirically compare them with existing methods.Comment: 26 pages, 6 figures, 5 tables. Transactions on Machine Learning Research (2023

    DeepCoder: Semi-parametric Variational Autoencoders for Automatic Facial Action Coding

    Full text link
    Human face exhibits an inherent hierarchy in its representations (i.e., holistic facial expressions can be encoded via a set of facial action units (AUs) and their intensity). Variational (deep) auto-encoders (VAE) have shown great results in unsupervised extraction of hierarchical latent representations from large amounts of image data, while being robust to noise and other undesired artifacts. Potentially, this makes VAEs a suitable approach for learning facial features for AU intensity estimation. Yet, most existing VAE-based methods apply classifiers learned separately from the encoded features. By contrast, the non-parametric (probabilistic) approaches, such as Gaussian Processes (GPs), typically outperform their parametric counterparts, but cannot deal easily with large amounts of data. To this end, we propose a novel VAE semi-parametric modeling framework, named DeepCoder, which combines the modeling power of parametric (convolutional) and nonparametric (ordinal GPs) VAEs, for joint learning of (1) latent representations at multiple levels in a task hierarchy1, and (2) classification of multiple ordinal outputs. We show on benchmark datasets for AU intensity estimation that the proposed DeepCoder outperforms the state-of-the-art approaches, and related VAEs and deep learning models.Comment: ICCV 2017 - accepte
    corecore