637 research outputs found

    Thirty Years of Machine Learning: The Road to Pareto-Optimal Wireless Networks

    Full text link
    Future wireless networks have a substantial potential in terms of supporting a broad range of complex compelling applications both in military and civilian fields, where the users are able to enjoy high-rate, low-latency, low-cost and reliable information services. Achieving this ambitious goal requires new radio techniques for adaptive learning and intelligent decision making because of the complex heterogeneous nature of the network structures and wireless services. Machine learning (ML) algorithms have great success in supporting big data analytics, efficient parameter estimation and interactive decision making. Hence, in this article, we review the thirty-year history of ML by elaborating on supervised learning, unsupervised learning, reinforcement learning and deep learning. Furthermore, we investigate their employment in the compelling applications of wireless networks, including heterogeneous networks (HetNets), cognitive radios (CR), Internet of things (IoT), machine to machine networks (M2M), and so on. This article aims for assisting the readers in clarifying the motivation and methodology of the various ML algorithms, so as to invoke them for hitherto unexplored services as well as scenarios of future wireless networks.Comment: 46 pages, 22 fig

    Detection Of Insider Attacks In Block Chain Network Using The Trusted Two Way Intrusion Detection System

    Full text link
    For data privacy, system reliability, and security, Blockchain technologies have become more popular in recent years. Despite its usefulness, the blockchain is vulnerable to cyber assaults; for example, in January 2019 a 51% attack on Ethereum Classic successfully exposed flaws in the platform's security. From a statistical point of view, attacks represent a highly unusual occurrence that deviates significantly from the norm. Blockchain attack detection may benefit from Deep Learning, a field of study whose aim is to discover insights, patterns, and anomalies within massive data repositories. In this work, we define an trusted two way intrusion detection system based on a Hierarchical weighed fuzzy algorithm and self-organized stacked network (SOSN) deep learning model, that is trained exploiting aggregate information extracted by monitoring blockchain activities. Here initially the smart contract handles the node authentication. The purpose of authenticating the node is to ensure that only specific nodes can submit and retrieve the information. We implement Hierarchical weighed fuzzy algorithm to evaluate the trust ability of the transaction nodes. Then the transaction verification step ensures that all malicious transactions or activities on the submitted transaction by self-organized stacked network deep learning model. The whole experimentation was carried out under matlab environment. Extensive experimental results confirm that our suggested detection method has better performance over important indicators such as Precision, Recall, F-Score, overhead

    Deep Learning for Network Traffic Monitoring and Analysis (NTMA): A Survey

    Get PDF
    Modern communication systems and networks, e.g., Internet of Things (IoT) and cellular networks, generate a massive and heterogeneous amount of traffic data. In such networks, the traditional network management techniques for monitoring and data analytics face some challenges and issues, e.g., accuracy, and effective processing of big data in a real-time fashion. Moreover, the pattern of network traffic, especially in cellular networks, shows very complex behavior because of various factors, such as device mobility and network heterogeneity. Deep learning has been efficiently employed to facilitate analytics and knowledge discovery in big data systems to recognize hidden and complex patterns. Motivated by these successes, researchers in the field of networking apply deep learning models for Network Traffic Monitoring and Analysis (NTMA) applications, e.g., traffic classification and prediction. This paper provides a comprehensive review on applications of deep learning in NTMA. We first provide fundamental background relevant to our review. Then, we give an insight into the confluence of deep learning and NTMA, and review deep learning techniques proposed for NTMA applications. Finally, we discuss key challenges, open issues, and future research directions for using deep learning in NTMA applications.publishedVersio

    Prospectiva de seguridad de las redes de sensores inalámbricos

    Get PDF
    En las Redes de Sensores Inalámbricos (WSN), los nodos son vulnerables a los ataques de seguridad porque están instalados en un entorno difícil, con energía y memoria limitadas, baja capacidad de procesamiento y transmisión de difusión media; por lo tanto, identificar las amenazas, los retos y las soluciones de seguridad y privacidad es un tema candente hoy en día. En este artículo se analizan los trabajos de investigación que se han realizado sobre los mecanismos de seguridad para la protección de las WSN frente a amenazas y ataques, así como las tendencias que surgen en otros países junto con futuras líneas de investigación. Desde el punto de vista metodológico, este análisis se muestra a través de la visualización y estudio de trabajos indexados en bases de datos como IEEE, ACM, Scopus y Springer, con un rango de 7 años como ventana de observación, desde 2013 hasta 2019. Se obtuvieron un total de 4.728 publicaciones, con un alto índice de colaboración entre China e India. La investigación planteó desarrollos, como avances en los principios de seguridad y mecanismos de defensa, que han llevado al diseño de contramedidas en la detección de intrusiones. Por último, los resultados muestran el interés de la comunidad científica y empresarial por el uso de la inteligencia artificial y el aprendizaje automático (ML) para optimizar las medidas de rendimiento.In Wireless Sensor Networks (WSN), nodes are vulnerable to security attacks because they are installed in a harsh environment with limited power and memory, low processing power, and medium broadcast transmission. Therefore, identifying threats, challenges, and solutions of security and privacy is a talking topic today. This article analyzes the research work that has been carried out on the security mechanisms for the protection of WSN against threats and attacks, as well as the trends that emerge in other countries combined with future research lines. From the methodological point of view, this analysis is shown through the visualization and study of works indexed in databases such as IEEE, ACM, Scopus, and Springer, with a range of 7 years as an observation window, from 2013 to 2019. A total of 4,728 publications were obtained, with a high rate of collaboration between China and India. The research raised developments, such as advances in security principles and defense mechanisms, which have led to the design of countermeasures in intrusion detection. Finally, the results show the interest of the scientific and business community in the use of artificial intelligence and machine learning (ML) to optimize performance measurements

    The Reputation of Machine Learning in Wireless Sensor Networks and Vehicular Ad Hoc Networks

    Get PDF
    It's difficult to deal with the dynamic nature of VANETs and WSNs in a way that makes sense. Machine learning (ML) is a preferred method for dealing with this kind of dynamicity. It is possible to define machine learning (ML) as a way of dealing with heterogeneous data in order to get the most out of a network without involving humans in the process or teaching it anything. Several techniques for WSN and VANETs based on ML are covered in this study, which provides a fast overview of the main ML ideas. Open difficulties and challenges in quickly changing networks, as well as diverse algorithms in relation to ML models and methodologies, are also covered in the following sections. We've provided a list of some of the most popular machine learning (ML) approaches for you to consider. As a starting point for further research, this article provides an overview of the various ML techniques and their difficulties. This paper's comparative examination of current state-of-the-art ML applications in WSN and VANETs is outstanding

    Management And Security Of Multi-Cloud Applications

    Get PDF
    Single cloud management platform technology has reached maturity and is quite successful in information technology applications. Enterprises and application service providers are increasingly adopting a multi-cloud strategy to reduce the risk of cloud service provider lock-in and cloud blackouts and, at the same time, get the benefits like competitive pricing, the flexibility of resource provisioning and better points of presence. Another class of applications that are getting cloud service providers increasingly interested in is the carriers\u27 virtualized network services. However, virtualized carrier services require high levels of availability and performance and impose stringent requirements on cloud services. They necessitate the use of multi-cloud management and innovative techniques for placement and performance management. We consider two classes of distributed applications – the virtual network services and the next generation of healthcare – that would benefit immensely from deployment over multiple clouds. This thesis deals with the design and development of new processes and algorithms to enable these classes of applications. We have evolved a method for optimization of multi-cloud platforms that will pave the way for obtaining optimized placement for both classes of services. The approach that we have followed for placement itself is predictive cost optimized latency controlled virtual resource placement for both types of applications. To improve the availability of virtual network services, we have made innovative use of the machine and deep learning for developing a framework for fault detection and localization. Finally, to secure patient data flowing through the wide expanse of sensors, cloud hierarchy, virtualized network, and visualization domain, we have evolved hierarchical autoencoder models for data in motion between the IoT domain and the multi-cloud domain and within the multi-cloud hierarchy
    • …
    corecore