174 research outputs found

    Hierarchical Shape Abstraction of Dynamic Structures in Static Blocks

    Get PDF
    International audienceWe propose a hierarchical shape abstract domain, so as to infer structural invariants of dynamic structures such as lists living inside static structures, such as arrays. This programming pattern is often used in safety critical embedded software that need to ''allocate'' dynamic structures inside static regions due to dynamic memory allocation being forbidden in this context. Our abstract domain precisely describes such hierarchies of structures. It combines several instances of simple shape abstract domains, dedicated to the representation of elementary shape properties, and also embeds a numerical abstract domain. This modular construction greatly simplifies the design and the implementation of the abstract domain. We provide an implementation, and show the effectiveness of our approach on a problem taken from a real code

    Timing-predictable memory allocation in hard real-time systems

    Get PDF
    For hard real-time applications, tight provable bounds on the application\u27s worst-case execution time must be derivable. Employing dynamic memory allocation, in general, significantly decreases an application\u27s timing predictability. In consequence, current hard real-time applications rely on static memory management. This thesis studies how the predictability issues of dynamic memory allocation can be overcome and dynamic memory allocation be enabled for hard real-time applications. We give a detailed analysis of the predictability challenges imposed on current state-of-the-art timing analyses by dynamic memory allocation. We propose two approaches to overcome these issues and enable dynamic memory allocation for hard real-time systems: automatically transforming dynamic into static allocation and using a novel, cache-aware and predictable memory allocator. Statically transforming dynamic into static memory allocation allows for very precise WCET bounds as all accessed memory addresses are completely known. However, this approach requires much information about the application\u27s allocation behavior to be available statically. For programs where a static precomputation of a suitable allocation scheme is not applicable, we investigate approaches to construct predictable dynamic memory allocators to replace the standard, general-purpose allocators in real-time applications. We present evaluations of the proposed approaches to evidence their practical applicability.Harte Echtzeitsysteme bedingen beweisbare obere Schranken bezüglich ihrer maximalen Laufzeit. Die Verwendung dynamischer Speicherverwaltung (DSV) innerhalb eine Anwendung verschlechtert deren Zeitvorhersagbarkeit im Allgemeinen erheblich. Folglich findet sich derzeit lediglich statische Speicherverwaltung in solchen Systemen. Diese Arbeit untersucht Wege, Probleme bezüglich der Vorhersagbar von Anwendungen, die aus dem Einsatz einer DSV resultieren, zu überbrücken. Aufbauend auf einer Analyse der Probleme, denen sich Zeitanalysen durch DSV konfrontiert sehen, erarbeiten wir zwei Lösungsansätze. Unser erster Ansatz verfolgt eine automatische Transformation einer gegebenen DSV in eine statische Verwaltung. Dieser Ansatz erfordert hinreichend genaue Information über Speicheranforderungen der Anwendung sowie die Lebenszyklen der angeforderten Speicherblöcke. Hinsichtlich Anwendungen, bei denen dieser erste Ansatz nicht anwendbar ist, untersuchen wir neuartige Algorithmen zur Implementierung vorhersagbarer Verfahren zur dynamischen Speicherverwaltung. Auf diesen Algorithmen basierende Speicherverwalter können die für Echtzeitsysteme ungeeigneten, allgemeinen Speicherverwalter bei Bedarf ersetzen. Wir belegen weiter die praktische Anwendbarkeit der von uns vorgeschlagenen Verfahren

    Hybrid Multiresolution Simulation & Model Checking: Network-On-Chip Systems

    Get PDF
    abstract: Designers employ a variety of modeling theories and methodologies to create functional models of discrete network systems. These dynamical models are evaluated using verification and validation techniques throughout incremental design stages. Models created for these systems should directly represent their growing complexity with respect to composition and heterogeneity. Similar to software engineering practices, incremental model design is required for complex system design. As a result, models at early increments are significantly simpler relative to real systems. While experimenting (verification or validation) on models at early increments are computationally less demanding, the results of these experiments are less trustworthy and less rewarding. At any increment of design, a set of tools and technique are required for controlling the complexity of models and experimentation. A complex system such as Network-on-Chip (NoC) may benefit from incremental design stages. Current design methods for NoC rely on multiple models developed using various modeling frameworks. It is useful to develop frameworks that can formalize the relationships among these models. Fine-grain models are derived using their coarse-grain counterparts. Moreover, validation and verification capability at various design stages enabled through disciplined model conversion is very beneficial. In this research, Multiresolution Modeling (MRM) is used for system level design of NoC. MRM aids in creating a family of models at different levels of scale and complexity with well-formed relationships. In addition, a variant of the Discrete Event System Specification (DEVS) formalism is proposed which supports model checking. Hierarchical models of Network-on-Chip components may be created at different resolutions while each model can be validated using discrete-event simulation and verified via state exploration. System property expressions are defined in the DEVS language and developed as Transducers which can be applied seamlessly for model checking and simulation purposes. Multiresolution Modeling with verification and validation capabilities of this framework complement one another. MRM manages the scale and complexity of models which in turn can reduces V&V time and effort and conversely the V&V helps ensure correctness of models at multiple resolutions. This framework is realized through extending the DEVS-Suite simulator and its applicability demonstrated for exemplar NoC models.Dissertation/ThesisDoctoral Dissertation Computer Science 201

    Computational Theory of Mind for Human-Agent Coordination

    Get PDF
    In everyday life, people often depend on their theory of mind, i.e., their ability to reason about unobservable mental content of others to understand, explain, and predict their behaviour. Many agent-based models have been designed to develop computational theory of mind and analyze its effectiveness in various tasks and settings. However, most existing models are not generic (e.g., only applied in a given setting), not feasible (e.g., require too much information to be processed), or not human-inspired (e.g., do not capture the behavioral heuristics of humans). This hinders their applicability in many settings. Accordingly, we propose a new computational theory of mind, which captures the human decision heuristics of reasoning by abstracting individual beliefs about others. We specifically study computational affinity and show how it can be used in tandem with theory of mind reasoning when designing agent models for human-agent negotiation. We perform two-agent simulations to analyze the role of affinity in getting to agreements when there is a bound on the time to be spent for negotiating. Our results suggest that modeling affinity can ease the negotiation process by decreasing the number of rounds needed for an agreement as well as yield a higher benefit for agents with theory of mind reasoning.</p

    OpenFPM: A scalable environment for particle and particle-mesh codes on parallel computers

    Get PDF
    Scalable and efficient numerical simulations continue to gain importance, as computation is firmly established tool of discovery, together with theory and experiment. Meanwhile, the performance of computing hardware grows with increasing heterogeneous hardware, enabling simulations of ever more complex models. However, efficiently implementing scalable codes on heterogeneous, distributed hardware systems becomes the bottleneck. This bottleneck can be alleviated by intermediate software layers that provide higher-level abstractions closer to the problem domain, hence allowing the computational scientist to focus on the simulation. Here, we present OpenFPM, an open and scalable framework that provides an abstraction layer for numerical simulations using particles and/or meshes. OpenFPM provides transparent and scalable infrastructure for shared-memory and distributed-memory implementations of particles-only and hybrid particle-mesh simulations of both discrete and continuous models, as well as non-simulation codes. This infrastructure is complemented with frequently used numerical routines, as well as interfaces to third-party libraries. This thesis will present the architecture and design of OpenFPM, detail the underlying abstractions, and benchmark the framework in applications ranging from Smoothed-Particle Hydrodynamics (SPH) to Molecular Dynamics (MD), Discrete Element Methods (DEM), Vortex Methods, stencil codes, high-dimensional Monte Carlo sampling (CMA-ES), and Reaction-Diffusion solvers, comparing it to the current state of the art and existing software frameworks

    Rely-guarantee Reasoning about Concurrent Reactive Systems: The PiCore Framework, Languages Integration and Applications

    Full text link
    The rely-guarantee approach is a promising way for compositional verification of concurrent reactive systems (CRSs), e.g. concurrent operating systems, interrupt-driven control systems and business process systems. However, specifications using heterogeneous reaction patterns, different abstraction levels, and the complexity of real-world CRSs are still challenging the rely-guarantee approach. This article proposes PiCore, a rely-guarantee reasoning framework for formal specification and verification of CRSs. We design an event specification language supporting complex reaction structures and its rely-guarantee proof system to detach the specification and logic of reactive aspects of CRSs from event behaviours. PiCore parametrizes the language and its rely-guarantee system for event behaviour using a rely-guarantee interface and allows to easily integrate 3rd-party languages via rely-guarantee adapters. By this design, we have successfully integrated two existing languages and their rely-guarantee proof systems without any change of their specification and proofs. PiCore has been applied to two real-world case studies, i.e. formal verification of concurrent memory management in Zephyr RTOS and a verified translation for a standardized Business Process Execution Language (BPEL) to PiCore.Comment: Submission to ACM Transactions on Programming Languages and Systems in 202
    • …
    corecore