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(Abstract re-adapted from: OpenFPM: A scalable open framework for par-
ticle and particle-mesh codes on parallel computers. Comput. Phys. Commun.,
241:155– 177, 2019.)

Scalable and efficient numerical simulations continue to gain importance, as
computation is firmly established tool of discovery, together with theory and
experiment. Meanwhile, the performance of computing hardware grows with
increasing heterogeneous hardware, enabling simulations of ever more complex
models. However, efficiently implementing scalable codes on heterogeneous,
distributed hardware systems becomes the bottleneck. This bottleneck can
be alleviated by intermediate software layers that provide higher-level abstrac-
tions closer to the problem domain, hence allowing the computational scientist
to focus on the simulation. Here, we present OpenFPM, an open and scal-
able framework that provides an abstraction layer for numerical simulations
using particles and/or meshes. OpenFPM provides transparent and scalable
infrastructure for shared-memory and distributed-memory implementations of
particles-only and hybrid particle-mesh simulations of both discrete and con-
tinuous models, as well as non-simulation codes. This infrastructure is com-
plemented with frequently used numerical routines, as well as interfaces to
third-party libraries. This thesis will present the architecture and design of
OpenFPM, detail the underlying abstractions, and benchmark the framework in
applications ranging from Smoothed-Particle Hydrodynamics (SPH) to Molecu-
lar Dynamics (MD), Discrete Element Methods (DEM), Vortex Methods, sten-
cil codes, high-dimensional Monte Carlo sampling (CMA-ES), and Reaction-
Diffusion solvers, comparing it to the current state of the art and existing soft-
ware frameworks.
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Chapter 1

Introduction

1.1 Motivation

,
Computer and numerical simulations are at the base of studies to understand

complex physical phenomena, described through equations or more in general
mathematical models. With the rapid explosion of computational power pro-
vided by modern many-core CPUs and GPUs, numerical simulations became
more valuable. This increase of power came at the price of new complex pro-
gramming paradigms and techniques to take advantage of such new computa-
tional devices.

Because of these ever-growing new paradigms and techniques, it is of con-
siderable interest to understand how we can construct and design environments
able to separate expertises. In particular, while internally dealing with the
hardware’s complexity, this environment must offer a simplified way to program
numerical methods or algorithms without or with minimal knowledge of hard-
ware details. Abstract hardware details are fundamental because, as we have
seen in the last two decades, knowledge to program on modern heterogeneous
supercomputing platforms efficiently becomes more complex with time. New
and continuously evolving hardware, computer systems, and platforms require
many years of experience found only in a small group of people [1].

To address such a problem, a design able to abstract and hide the details of
the wide variety of hardware, computer systems, and platforms becomes vital.
Creating abstractions able to couple generality and flexibility with performance
is challenging. It is well known in high performance computing field that, having
abstraction more general and flexible reduces the possibility of doing certain
types of optimization. Most of the time, optimizations work in a narrow set
of cases imposing restrictions and code specialization. For this reason, a big
challenge and effort reside in providing an environment where abstractions work
orthogonality to performances.

Many attempt has been made and approaches have been extensively stud-
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CHAPTER 1. INTRODUCTION 2

ied in order to achieve this goal. These are typically provided as programming

language extensions, high-level programming languages, software libraries, or
framework. The most basic level to abstract hardware is a programming lan-
guage and a compiler. For example, it has been shown that a programming
languages, and compilers can abstract many architectures. A compiler trans-
lates an architecture-independent file into a binary for multiple CPUs architec-
tures likes: x86, AArch64, ARM, Itanium, Lanai, MIPS, PowerPC, RISC-V,
SPARC, and accelerators like Nvidia and AMD GPUs. More recently, archi-
tecture independent languages like C/C++ has also been used to drive FPGA
development.

While programming languages have been used successfully to abstract the
architecture, they provide very little for parallelization paradigms needed for
multi/many-core CPUs or massively parallel architectures like GPUs. Numer-
ous programming language extensions and libraries have been introduced to
fill this gap. Among them it is possible to cite OpenACC [2] and OpenMP
[3] that provide a directive-based parallel programming model, CUDA [4] and
OpenCL [5] for GPGPU and accelerator programming, and High-Performance
Fortran (HPF) [6]. Examples of higher-level programming languages for parallel
computing include Linda [7], providing a model for coordination and commu-
nication between parallel processes, Vectoral [8] for direct vector-processor pro-
gramming. Julia [9] designed for high-performance numerical analysis, Rust, a
multi-paradigm programming language, focused on performance and safety [10].
While general-purpose programming languages with their extensions in modern
days cover multi/many-core CPUs and different types of accelerator, for the
most they does not cover distributed computing.

Many other libraries and computational paradigms have been created and
studied deeply to fill this gap for distributed computing. We can find imple-
mentations for the Message Passing Interface (MPI) [11] like OpenMPI [12] and
MPICH [13], as well as runtime systems for parallel and distributed applications
like HPX [14] StarPU [15] and Legion [16], or various implementation of Parti-
tioned global Address Space (PGAS) models like co-array Fortran (CAF) [17],
Unified Parallel C (UPC) [18], SHMEM [19], DASH [20] and NVSHMEM[21]. In
contrast, as an example of a framework for distributed parallel programming, we
have Charm++ [22]. These libraries generally focus on a generic programming
style in which the user has to take care of decomposing data and computation
explicitly.

Toward fully abstract the data decomposition and computation, there is
an enormous number of specialized libraries and solvers for problem-specific
cases. In molecular dynamic, there is LAMMPS [23], Gromacs[24], NAMD
[25], HOOMD-blue [26], and Espresso[27]. In the case of SPH-only solvers
coupled with DEM there is DualSPH [28], and GPUSPH[29]. In Finite Elements
Methods (FEM) libraries and environments, there is Trilinos[30], DUNE[31],
and Deal. II[32]. For DEM, there is Rocky-DEM[33] with its GUI/Workbench.
For more adaptive mesh resolution cases, there is the SAMRAI[34] library and
AMREx [35] framework. For Finite Volume Methods (FVM) and stencil-based
code there is OpenFOAM [36] and LibGeoDecomp [37].
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Beyond HPC, and to a higher level than libraries, several languages and
problem-solving environments [38] for simulation exist that focus on sequential
processing, including the equation-based simulation language Modelica [39], a
Matlab-based compiler [40], and the scientific computing environment FALCON
[40]. In the area of multi-physics solver environments, we can find ANSYS [41]
that provide a DSL and a GUI/workbench to solve partial derivatives equations
as well as COMSOL [42].

The libraries and environment cited before reduce or, in particular cases,
eliminate the need for code development, narrowing down the problem to a
more specific one. LAMMPS, for example, provides a simple DSL to set up a
molecular dynamics simulation with few lines of coding in their DSL before run-
ning it. GROMACS narrows the problem to protein folding in water, providing
a simple interface based on configuration files, and eliminating completely the
need for coding. However, there is a trade-off between flexibility and simplicity
to use. While the first provides flexibility and a steep learning curve, the second
provides less flexibility but a gentle learning curve. Choosing a general-purpose
language gives even more flexibility, but the learning curve can become even
steeper.

This thesis will explore the idea of constructing a library called Open Frame-
work for Particle Mesh (OpenFPM) for distributed particle-only, mesh-only, and
particle-mesh methods without specializing to a particular numerical method.
The thesis focus on the goal of providing distributed data structures for sim-
ulation in N-dimensional space with N>3. Such a library has to work on a
broad type of hardware, accessing low-level hardware functionality like GPUs,
and communication libraries to connect computational nodes, mainly written
in C/C++. This mostly force the choice of the programming language for
OpenFPM to C/C++.

Despite its design not being theoretically bound to a particular language, all
the internal layers presented in the thesis are written in C++ 2011 for the most,
and 2014 in few cases. The C++ template meta-language engine is useful to do
source code generation at compile-time and as already mentioned the availability
of high-performance computing tools written in C++made it suitable to develop
the library’s lower level layers. Although C++ is a very complex programming
language, simplicity of coding, even at a high level, can be achieved by restricting
the OpenFPM API to expose features that require knowledge of only a subset
of the C++ language. For example, OpenFPM API avoids forcing users to use
pointers,new/delete operations, indirection operators, pointer arithmetic, and
general memory management, hence eliminating its intrinsic complexity.

Another way to reduce the complexity in a general-purpose language is to
construct a higher level abstraction that narrows the problem to a more specific
case where it is possible to expose few degrees of freedom. For example, we could
embed an entire particle simulation with n-lines of code into a function exposing
only the possibility to change the particle-particle interaction kernel. The only
limit resides in the syntax to expose such degrees of freedom and how many it
is possible to expose in a reasonably compact form. The choice of what we want
to hide and what we want to expose reside on how we design our abstraction.



CHAPTER 1. INTRODUCTION 4

However, the capabilities of the base language to redefine operators and create
specific constructs are fundamental to create such abstractions. C++ up to
now remain one of the most flexible languages reinforcing our choice as base
language.

If abstractions are constructed vertically like in figure 1.1, the design will
benefit from having fewer dependencies between layers. Ideally, the change
of one layer should at the most influence the layers up. OpenFPM pursues
this direction, creating a hierarchical level of abstractions bottom-up, starting
with the multi-hardware memory management to distributed data structures
on multi-hardware. On top of them, we have numerical methods and higher
abstractions, like expression-based computation and generic PDE expression-
based computation. The entire development stack remains mainly in the C++
language. Although some top-level development like generic PDE solvers could
be done in a higher-level language like Python or a DSL, currently, the devel-
opment is still in C++.

In constructing such environment, the thesis use distributed particle only
and particle-mesh methods. Such methods are particularly appealing from a
software-engineering viewpoint because they require various data structures in
interaction with each other. This thesis will show how this requirement creates
several challenges in terms of the design of the library.

Many of the libraries already cited for mesh-based simulation like AMREx
and Samrai support a hybrid approach, where particles works as an extension
of the mesh-based structure. Others like LAMMPS,FDPS and many of the par-
ticles only based libraries cited, support some mesh computation as an exten-
sion to support long-range interactions. While few libraries like POOMA [43],
and the Parallel Particle Mesh (PPM) library [44, 45] with its domain-specific
Parallel Particle Mesh Language (PPML) [46, 47] support both particles-only
and mesh-only within the same library without having a privileged base data-
structure. While these libraries have successfully provided abstractions for rapid
development of scalable parallel implementations of particle and particle-mesh
methods, both seems to be discontinued. Additionally, these libraries do not
support dimensionality bigger than 3, modern accelerators and complex prop-
erties.

1.2 Contribution

Many separated libraries exist able to handle particle-only particle-mesh and
mesh-only simulations. To the best of our knowledge, none of them expose
general data structures supporting CPU and GPUs natively at the same time
for particle-only mesh-only and particle-mesh methods. The level of flexibility
given by the design and abstractions of OpenFPM cannot be found in any other
library. None of the libraries can do N-dimension or have particle or mesh
nodes with an unlimited number of variables, where each variable can also be a
nested structure. We will see how by design, OpenFPM gives the possibility to
construct data-structures with natively the feature of switchable layout arrays,
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such as array of struct (AoS) and struct of array (SoA) or reshape memory
coming from an arbitrary source. Another characteristic not seen in others
libraries is having distributed data structures where the layout switching is not
limited to AoS or SoA or fundamental types like floating-point or integers. In
OpenFPM, the C++ type extensions like array the operator [] is recognized
and supported by the layout switching mechanism. In particular, an array of
double[4] or, in general a compile-time M-dimensional matrix double[4]...[6] can
be re-arranged in memory at the granularity of the single components. This
thesis will show how such a mechanism by design is transparent to the concept
of being a double an int or a general type.

In addition to compile-time matrixes and general types, OpenFPM supports
general N-dimensional distributed data structures where N can be bigger than 3.
The possibility to have ghost areas with unlimited size and disentangled from the
space decomposition. Where ghost areas are intended as the area overlapping
two or more processors like in figure 3.2. This feature makes cases like having a
grid 2×2 and a ghost of 1 with 1024 processors possible in OpenFPM. The result
will be that four processors will have one point each, and the other processors
will be able to access reading or writing by the ghost area. The final result
is 4 points shared across all processors to exchange information or implement
tree-based long-range reductions without employing or developing unique data
structures for such tasks.

In addition to unlimited ghost areas, another novel point of OpenFPM is
its design of having distributed templated containers that automatically make
distributed shared memory or non-distributed containers. In order to do so, the
non-distributed containers must respect a specific interface; such design open-up
to the possibility to use the distributed containers to external non-distributed
containers with different implementations. With this feature, it is possible to
potentially distribute external library containers that were not designed to be
distributed, with an adapter interface.

Another essential feature of OpenFPM is to support CPU and GPU natively.
In this regard, some libraries like AMREx recently also started to provide multi-
hardware data structures on GPU. To the best of our knowledge, this is the
only library to support such a feature. In particular, the thesis will show how
OpenFPM has been designed to have low-level modules specialization to handle
multiple types of hardware. The thesis will show how many components has
been modularized in order to reduce hardware specialization to fewer modules.
As an example it will show how to code one distributed mesh structure able to
handle uniform grid and sparse grids with few changes.

Another contribution resides in providing a successor to the discontinued
PPM Library [44, 45], based on this past success. In showing its design, this
thesis will explain and use advanced scientific software design and engineering
techniques. This thesis will extend the capabilities by adding transparent dy-
namic load balancing, support for accelerator hardware, and automatic memory
layout optimization in comparison to PPM. Using OpenFPM is further facili-
tated by complete and up-to-date documentation and a series of tutorial videos
and example codes. It is actively supported in the long term, with new func-
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tionality continuously being added.

1.3 Particle Methods

Particle methods give a unified framework able to simulate discrete and continu-
ous models. In the discrete case, particles model real physical entities like atoms
in molecular dynamic simulations or granules in the discrete element method.
A particle can also represent complex entities like an animal, human, or car in
agent-based simulation. In the continuous case, particles represent, combined
with their kernel function, mathematical collocation points. The set of points
represent the finite-dimensional space of functions. In both cases, a particle p
has position in space xp ∈ R

n and properties wp where each property can have
a different data types.

Particles can interact with each other and move in space. Several particle
method interactions are limited to be pairwise and restricted to be additive,
ensuring that the overall result is independent of the particle indexing order.
Once the interactions are computed, particles evolve their positions and prop-
erties according to pre-defined rules. The update rules can come from a cellular
automaton, or from the discretization of continuous differential operators like
integration schemes.

In formulas, particle methods restricted to pairwise interaction can be writ-
ten as

dxp

dt
=

N(t)
∑

q=1

K(xp,xq,wp,wq) (1.1)

dwp

dt
=

N(t)
∑

q=1

F (xp,xq,wp,wq) (1.2)

Where N(t) indicate the total number of particles at time t,K is the interaction
kernel K and F contain the evolution rules of the model being simulated or
the numerical method used. During a simulation, the number of particles can
change. In particular, to implement adaptive resolution methods, we have to
add or remove particles locally.

In the above equation, the summation extends to all particles; this leads to a
computational cost of O(N2) where N is the number of particles. In many cases,
the interaction kernel is local or compact. In these cases, it is possible to use
efficient algorithms to retrieve neighborhoods like cell lists or Verlet lists [48].
Such algorithms are able to reduce the computational cost to O(N) on average,
if the density of the particles remains constant. When the kernel is non-local,
the interaction is decomposed into short- and long-range components. While
the short-range component is evaluated using Verlet and cell-list algorithms,
the long-range interactions are evaluated on a uniform Cartesian background
mesh [49], like remeshed vortex methods for solving the incompressible Navier-
Stokes equations [50]. Additionally for long-range interaction approximation
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Figure 1.1: Diagram of the OpenFPM software stack. The top-level modules
in the dark blue provide scalable numerical algorithms implemented using the
transparently distributed data structure of the lower level. The distributed data
structures are implemented based on efficient single-core data structures through
a domain-decomposition and inter-processor-communication layer. The memory
layout of the single-core data structures is parametrically decided at compile-
time and managed at runtime by the lowest layer: the memory allocators.

algorithms, there are Barnes-Hut [51], and fast multipole methods [52] and
the Ewald method for including electrostatic interactions in molecular dynamic
simulations [53]. Hybrid particle-mesh methods allow each computational step
to be performed in the best-suited formulation, moment-conserving particle-
mesh and mesh-particle interpolation are used to translate between the two
discretizations [54].

1.4 The OpenFPM Library

As stated in the introduction, the OpenFPM project aims to build an open-
source software library to implement scalable particle and hybrid particle-mesh
simulations on shared-memory and distributed-memory parallel computer sys-
tems. OpenFPM is written entirely in C++, and at the user level, provides a
scalable infrastructure to implement custom particle and particle-mesh codes.
In figure 1.1 the layers below in red and light red mainly feature methods for
domain decomposition, dynamic load balancing, communication abstractions,
checkpoint/restart, asymmetric and symmetric (i.e., “action-reaction law”) in-
teractions, and iterators for particles and meshes.

Under the red layers, there are efficient single-core data structures (light
blue layers), which rely on compile-time memory layout module and runtime
memory allocators. On top of the distributed data structures, this infrastructure
is complemented by a set of frequently used numerical solvers indicated in the
dark blue (Numerics). Typically these solvers are built on top of other numerical
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libraries like PetSc [55] and Eigen [56], for linear algebra and matrix inversion.
One step below the numeric layer, the user level is built on top of the dis-

tributed data structures. OpenFPM provides the flexibility through templated
parametric data types. A data structure parameter can define the dimensional-
ity of the space or the floating-point precision used. On the other hand, it can
also add or modify the internal code of the data structure. The thesis will show
how this mechanism is used in OpenFPM to design layers to fit very different
requirements, like those coming from supporting multiple types of hardware.
We will see how designing each layer, separating each concern, and stacking
them together to create flexible code that can fit different requirements using
most possible compact code.

OpenFPM, in addition to provides a modular and compact code, also aims
to give a public available long-term supported tool. For this reason, OpenFPM
is developed under test-driven development concept and code quality assur-
ance. The code is checked every commit by the continuous integration, and
overnight the code is automatically tested on a local HPC cluster with a dif-
ferent number of processes, nodes, and hardwares (AMD CPU, ARM CPU,
Nvidia GPUs), with different compilers (clang, gcc, intel), MPI implementa-
tions (OpenMPI, MPICH), and different debugging tools (libsanitizer, Valgrind,
Cuda-memcheck). Static analyzers, coverage reports, and automated perfor-
mance test graphs give a reference if a commit introduces a coverage or perfor-
mance regression.

The installer/CMake scripts are also tested overnight cross-platform on dif-
ferent Linux distributions (Mint, OpenSuse, Fedora, Debian, CentOS, Ubuntu)
and OS (Windows with MSYS2 and macOS) to guarantee a working cross-
platform installation process. The docker images with OpenFPM installed,
generated during testing are provided to the user as an alternative way to use
the OpenFPM library. We will see in the last chapter of the thesis the OpenFPM
build and release pipeline.

1.5 Design of the OpenFPM library

In this section, is going to explain the design of the OpenFPM library. Figure
1.1 shows an overview of the OpenFPM design at a global level. These modules
are grouped into six repositories. Memory allocation stays in openfpm devices.
Layout and single-core data structures stay in openfpm data. Communica-
tions stay in openfpm vcluster, Domain decomposition and Distributed data-
structures live in openfpm pdata and Numerics live in openfpm numerics. There
is an additional module called openfpm io that lives external to this vertical de-
sign, and its purpose is to provide functionality to write data to VTK, HDF5,
OpenPMD [57] files, and other output formats. Each repo has its tests and can
run independently from the repo stacked above.

One advantage of having different repositories is that each functionality can
be isolated, and the OpenFPM project can be redistributed with only a subset of
functionalities. For example, when we need only the memory allocation, we use
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only openfpm devices. If we want single-core data structures on CPU and GPU
without any further functionality, we use openfpm devices + openfpm data.
If we also want to write data, we can redistribute the OpenFPM project to
use openfpm devices + openfpm data + openfpm io. If we go parallel and we
need to communicate data, we can repack openfpm devices + openfpm data +
openfpm io + openfpm vcluster. If we also want the distributed data structure,
we incrementally add openfpm pdata, and the same reasoning goes for numerics
and openfpm numerics.

Repacking the project with a smaller number of modules/repositories reduces
the number of dependencies and consequently simplifies the installation process.
A table of the external dependencies for each of the repositories can be found
in table 1.5

openfpm io Boost,HDF5, ADIOS2, OpenPMD
openfpm numerics Boost,PETSc,SuiteSparse,Algoim,Blitz,Eigen, OpenBLAS
openfpm pdata Boost, HDF5, Metis, ParMetis, LibHilbert, MPI

openfpm vcluster Boost, MPI
openfpm data Boost, Vc

openfpm devices Boost,

Repacking the project means that OpenFPM can be used in non-parallel
projects without requiring MPI dependencies or the complete set of dependen-
cies. In particular, separate repositories are convenient if a project does need
or require parallelization across multiple nodes.

Another reason to use separated repositories is the possibility to enforce a
particular design and modularity. For example, complex data-structures require
memory objects to allocate memory, but memory allocations do not require
layout concepts or complex data structures to allocate memory. With separate
repositories and separate tests, it is possible to enforce the memory allocation
objects to work in a self-contained way without any need for concepts defined
in the upper modules. With a single repository, we do not have a mechanism
to restrict what we are allowed to include. It would be easy to fall into the case
where we have nested inclusions that spread across the entire project violating
the software stack design in figure 1.1.



Chapter 2

Hardware independent
data-structures

The following subsections will explore the three lowest modules: memory allo-
cation, memory layout, and single-core data structures. These layers are shown
as the three blue layers in figure 1.1. This chapter outlines how the memory
allocation module creates memory buffers for different types of hardware. The
memory layout module and the single-core data structures have the duty to
shape and give meaning to the allocated memory.

2.1 Memory Allocation

As previously mentioned, OpenFPM, at the base of its design, has memory allo-
cators. Memory allocators are objects that expose a common interface to create
memory. Internally each of this object implement different memory hardware
sources, alignment or organization of the allocated memory.

The standard C++, define to have allocator objects that allocate memory
and return pointers leaving the duty to deallocate them at the end manually.
In comparison, OpenFPM allocates memory and wraps it around objects, mak-
ing the lifetime of the memory linked to the object’s lifetime. This design has
the advantage of being easier to maintain and less error-prone to memory leaks
because the memory object automatically performs deallocation. Memory de-
struction is automatically managed when the memory object goes out of scope.

In few scenarios, having a memory object imposes some limits. One is when
there are memory objects shared across resources. Although attempts are made
to avoid such conditions whenever possible, they cannot be avoided entirely.
For this reason, all the memory objects expose an interface for explicit reference
counting. The reference counter can be increased, decreased, or queried to
understand if the memory is shared and indicate how often this memory chunk
is referenced. Explicit destruction of the memory and linked memory object
happens only if the reference counter reaches zero.

10
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Memory objects also introduce the concept of single and double-buffering.
Double buffering means that one buffer exists on the host and the other exists
on the device, where the device can be an accelerator like a GPU or even the
system memory. In the case of single buffering, there is only one buffer, either
device or host, but both pointers point to the same buffer. The possibility of
using a device buffer on the host or a host buffer on the device depends on the
limitations imposed by the hardware vendor. In CUDA, host pointers and device
pointers can be created with unified virtual memory, making them accessible by
both CPU and GPU hardware.

Here is shown the hardware-independent memory interface the objects must
follow to be valid memory allocators for OpenFPM.

Listing 2.1: ”Interface of a memory allocator object”

1

2 bool flush()
3 bool allocate(size_t sz)
4 bool resize(size_t sz)
5 void destroy()
6 bool copy(const memory & m)
7 size_t size()
8 void * getPointer()
9 void incRef()

10 void decRef()
11 long int ref()
12 bool isInitialized()
13 void * getDevicePointer()
14 void deviceToHost()
15 void hostToDevice()
16 void hostToDevice(size_t start, size_t stop)
17 void deviceToHost(size_t start, size_t stop)
18 void fill(unsigned char c)

The most important functions are allocate, getPointer, getDevicePointer.
Respectively they allocate memory, retrieve the pointer either on host (getPointer)
or device (getDevicePointer). The function destroy explicitly delete the in-
ternal memory. The call to this function is optional but useful to deallocate the
internal memory while the memory object is still alive; in all the other cases,
the memory is automatically deallocated when the object goes out of scope.

In order to facilitate deallocation in the case of shared memory resource, the
functions incRef, decRef, and ref are methods to increase/decrease and get
the reference counter to know how many resources are using this memory object.
The function size returns the size in bytes of the internal memory allocated, and
the resize function makes the previously allocated memory bigger or smaller.
A resize function at a low level allows us to use virtual memory addressing
to remap new memory consecutively to the already allocated memory without
physically moving it.

Out of resizing memory at this level, as already mentioned, memory alloca-
tors introduce the abstraction of double buffering. Because of double buffering,
two methods to transfer memory from device to host deviceToHost and from
host to device hostToDevice are provided. It worth noticing that in single
buffer objects like HeapMemory, getPointer() and getDevicePointer()
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return the same pointer, and the function deviceToHost and hostToDevice
does not perform any operation. Such characteristic gives the option to avoid a
full implementation of double buffering, despite being forced to expose a double
buffering interface.

Memory objects also hide the mechanism of on-demand allocatio. The allo-
cate function does not actively allocate host or device memory until getPointer
or getDevicePointer is called to return the pointer explicitly to the allocated
memory. This feature allows the creation of device-only or host-only memory
even when double-buffering memory objects are used.

The type of object identifies the type of memory and the policy adopted
like single or double-buffering. The freedom to implement the memory interface
gives the possibility to have an object like HeapMemory to allocate system
memory from the heap in single buffering or CudaMemory for NVIDIA/AMD
GPU memory in double buffering. This freedom also gives the possibility to
construct objects with particular policies. One such object is PtrMemory
which can wrap a memory object around externally allocated memory. Its role
becomes relevant when we want to re-shape preallocated and filled memory.
PtrMemory can be used to force a high-level data structure to absorb exter-
nal raw memory and re-shape it to a multi-dimensional array. In the case of
PtrMemory, the resize function is limited to accept a size smaller or equal
to the size of the external buffer. New classes can be created to construct new
memory allocation policies.

Among particular allocation policies classes there is ExtPreAlloc. This mem-
ory object can be seen as a wrapper that maps a preallocated memory pool into
a subsequent series of allocate() method calls. For example, we can allocate
200 bytes of memory and call for the first time the method allocate with size
100. The subsequent getPointer() method will return a pointer to the first 100
bytes. A second call to allocate with size 100 and subsequent call to the func-
tion getPointer() will return a pointer to the second 100 bytes. This type of
functionality is beneficial if we want to have two distinct data structures contigu-
ous in memory. This feature is important to serialize multiple data structures
into a contiguous array to be sent over the network. Consider, for example, con-
structing a packet containing information about a collection of multiples data
structures. Such a mechanism enables the possibility to remap multiple data
structures over a contiguous portion of allocated memory ready to be sent over
the network. Memory policies can also be combined with internal debugging
features.

HeapMemory and CudaMemory for debugging purpose can initialize the
allocated host and device memory with all bits flipped to one when the pre-
processor macro GARBAGE INJECTOR is enabled. This debugging policy
because initialize floats to nan and integer to their maximum values, helps in
locating errors generated by reading uninitialized data.
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2.2 Shared memory data structures and layout

The previous section introduced general objects providing a standard interface
to allocate memory from different sources like heap memory or Cuda GPU
memory. Organizing data in OpenFPM is always done with an increasing set
of higher-level data structures. Because data require memory, data structures
are built on top of memory objects presented before.

Some of the features from memory allocators, like double buffering, are in-
herited and exposed by design, while others remain hidden. This thesis will
show how features like double buffering are inherited and exposed across all
openfpm layers, up to the user level of the distributed data structures.

In OpenFPM, data structures are implemented as a composition of layers;
where each layer introduces a feature to organize data. We will see how these
layers can be reused across multiple data structures and how the implementation
of one layer does not interfere with the others. We will see that some maps
determine complexity in accessing or performance like cache friendliness with
specific access patterns, while others define the structure of the container.

The first layer converts multi-indexes into one-dimensional linear memory.
The thesis will show how additional mapping layers can be combined to create
increasingly more complex data structures.

2.2.1 Multi-dimensional array of primitives

The first layer we are going to present is the multi-dimensional array. In par-
ticular, the layer takes as an argument a multi-index and transforms it into an
address in memory. In the code 2.2 we construct a multi-dimensional array map
in openfpm, and the following parameters characterize it

• dimensionality or how many indexes we have in our multi-dimensional
array.

• type Type stored by the multi-dimensional array. For example, integer or
float if we want to construct a multi-dimensional array of floats or integer.

• test mem: While in general a multi-dimensional array internally allocate
memory on heap, stack or other types of memory. Here our multidimen-
sional array can be seen as a pure map and accept accept external memory
that has been pre-allocated and is big enough to store all the elements.

• type of index The type of the index indicates if an index is runtime boost

::mpl::int<-1> or known at compile-time boost::mpl::int_<3> or boost::mpl

::int_<7>

• order The order of the indexes indicates how the indexes are ordered in the
array. This parameter controls the stride units of the indexes. Consider
for example the case of float[3][10][7] the index [7] has normally stride unit
1 while the index [10] has stride unit 7 and the index [3] has 7× 10 = 70.
This order is indicated as 0,1,2. We could reorder the indexes as 2,1,0 like
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in Fortran. In this case, the stride units would be 1 for [3] and 3 for the
index [10], and 30 for the index [7].

Listing 2.2: Code to construct a multi-dimensional array

1

2 openfpm::general_storage_order<3> so = openfpm::ofp storage order();
3

4 openfpm::multi_array_ref_openfpm<float,
5 3,
6 boost::mpl::vector<
7 boost::mpl::int < −1 >,
8 boost::mpl::int < 3 >,
9 boost::mpl::int < 7 > >

10 ar((float *)test mem,10,so);
11

12 ar[5][2][5] = 8.0;
13 ar[9][2][6] = 4.0;

The code 2.2 define a multidimensional array of floats with sizes [10][3][7]
in which [10] is determined at runtime. Note that the number for the runtime
dimension is given in the constructor and not as a template parameter. Because
this structure can be seen as a view over the memory we pass in construction, it
does not allocate memory, but shapes preallocated memory. The constructor’s
first parameter is a memory pointer (test mem) big enough to contain all ele-
ments. Despite its complex definition, the multidimensional array can be used
easily with the operator[].

There is no limitation on which type of memory the pointer test mem is
pointing to, it can be memory allocated either on heap,gpu,stack or any other
valid memory type. In order to guarantee this structure works on accelerators, it
has been tested to compile and run on different specialized accelerator compilers
like Nvidia Cuda for Nvidia GPUs, and AMD hip-clang for AMD GPUs. The
implementation is based and inspired by a heavily modified boost::multi::array
version. There is a distinct separation between indices known at compile-time
and those known at runtime, which was not present in the boost original ver-
sion. The implementation has been also simplified and removed of features that
impact performance.

The structure presented here map multi-indexes and accept primitives like
floating-point types or integers of any size. It can also work with general objects
like a C++ struct but cannot remap the internal elements of a struct. In order
to achieve the flexibility to remap the elements of a struct, we should, in theory,
be able to parse the struct and get all its elements. Unfortunately, this is not
possible in standard C++. The following section will see how this feature can be
achieved when structures are expressed as tuples and the equivalent OpenFPM
wrapper aggregate.

2.2.2 Tuples as compile-time parse-able structures or ag-
gregates

A tuple can be seen as a fixed-size collection of heterogeneous values. This def-
inition also fits the concept of a simple C++ struct. From C++ standard 2011,
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the language officially introduces the variadic template syntax. This construct
can be used to express a variable list of heterogeneous types. The C++ standard
library provided an implementation called std::tuple, but because boost::fusion
provides an implementation with more functionalities at the beginning of this
project, we mainly wrapped around the boost implementation. Across this en-
tire thesis, we will see how in general, OpenFPM try not to expose a library
directly, and always wrap its functionality in order to have a more convenient
way to replace the implementation if necessary. For this reason, in OpenFPM,
there are aggregates as equivalent to tuples. Aggregates are implemented around
boost::fusion and work in a very similar manner to tuples. If we want to have a
structure that contains, for example, a scalar and a static array of 3 elements,
we write

1 aggregate<double,double[3]> data;

We can access each element with its positional number with at c

1 at_c<0>(data) = 1.0
2

3 at_c<1>(data)[0] = 1.0
4 at_c<1>(data)[1] = 2.0
5 at_c<1>(data)[2] = 3.0

or if we define some constant expression

1

2 constexpr int scalar = 0;
3 constexpr int vector = 1;
4

5 at_c<scalar>(data) = 1.0
6

7 at_c<vector>(data)[0] = 1.0
8 at_c<vector>(data)[1] = 2.0
9 at_c<vector>(data)[2] = 3.0

The code presented above with tuples can be written in an equivalent way
with a struct

1 struct Data
2 {
3 double scalar;
4 double vector[3];
5 };
6

7 Data data;
8

9 data.scalar = 1.0
10

11 data.vector[0] = 1.0
12 data.vector[1] = 2.0
13 data.vector[2] = 3.0

The first form is parseable at compile-time, while the second form is slightly
more readable at the cost of being non-parsable. In particular, using the tuples,
we can construct algorithms that transform a tuple into another tuple, this
property open to the possibility to transform a struct into a different struct
for layout or alignment. Suppose we want to construct a transformation of an
aggregate, where all the properties must homogenize to an 8 byte equivalent
primitive for alignment. More formally construct an algorithm 1.
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Algorithm 1 Convert the types into equivalent 8 byte

1: for all attribute in aggregate do
2: if attribute == float then
3: transform into double
4: if attribute == int then
5: transform into long int
6: else
7: Do not transform

It also possible to produce a version able to transform vectors types like
float[3] or matrices like float[4][5], but for the sake of simplicity, algorithm 1
use only scalars. In order to write the algorithm above at compile-time, it is
necessary to introduce the C++ template engine that can be seen as a touring
complete functional language at compile-time. The thesis in appendix A briefly
introduces how this language works and how to map constructs of a standard
imperative language into the C++ functional meta-programming language. The
meta-code equivalent to algorithm 1 is reported in listing 2.3

Listing 2.3: meta code to tranform a tuple with types into a tuple with types
alligned by eight bytes

1

2 template<typename T>
3 struct if_float_or_int // No tranform
4 {
5 typedef T value;
6 }
7

8 template<>
9 struct if_float_or_int<float> // transform float to double

10 {
11 typedef double value;
12 }
13

14 template<>
15 struct if_float_or_int<int> // tranform int to long int
16 {
17 typedef long int value;
18 }
19

20 template<typename T>
21 struct align_to_8_byte
22 {};
23

24 struct align_to_8_byte<typename ... props>
25 {
26 typedef aggregate<if_float_or_int<props>...> value;
27 }
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2.2.3 Toward multidimensional array and aggregates, lim-
its of openfpm::multi_array_ref_openfpm

This section will glue together the concepts introduced in 2.2.2 and 2.2.1, and
explain how to construct a general multidimensional array working on aggre-
gates (tuples) with a high degree of freedom in layout, ordering, and memory
type.

Section 2.2.2 introduced tuples and the C++ template engine as a meta-
language to manipulate them. The thesis also presented in section 2.2.1 the
first structure, openfpm::multi_array_ref_openfpm, that can be used to create a
multidimensional array of primitives or objects like a class on external memory.
This structure could re-arrange indices and have both static- and runtime-sized
arrays or a mixture of them.

While it provides great flexibility and a way to switch array striding, it does
not provide any mechanism to do layout switching at compile-time, like array
of struct or struct of array. Consider the case where the type for openfpm::

multi_array_ref_openfpm is a struct defined in listing 2.4

Listing 2.4: standard C structure

1

2 struct A
3 {
4 float scalar;
5 double vector[3];
6 int matrix[6][7];
7 };

If we now pass struct A to the map openfpm::multi_array_ref_openfpm, we will
have a multidimensional array of struct A. In order to do a compile-time layout
switch into a struct of arrays, we need a method to input structures that are
compile-time parse-able. In section 2.1 we have shown how it is possible to
achieve this with tuples. The second step would be to extend the previous
multidimensional array map to also work on tuples.

Because we want to maintain a component-based system instead of extending
the previous code, another additional map layer is created on top of the previous
one to maintain the code development vertical and reusable. Two requirements
are necessary for this map.

• A parameter indicating the type of layout we want to use.

• A way to access the data-structure independent from the layout chosen.

Consider an example in which we want to construct a multi-dimensional
array of size 10× 10 of a struct A defined in listing 2.4. As we said before, we
have to convert our struct into a parse-able tuple like show in listing 2.5

Listing 2.5: struct A converted into aggregate

1

2 constexpr int scalar = 0;
3 constexpr int vector = 1;
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4 constexpr int matrix = 2;
5

6 typedef aggregate<float,double[3],int[6][7]> A;

In the case we want an array of structures A, we can create a single
openfpm::multi array ref openfpm, and pass the aggregate defined in listing 2.5.

Naively, if one tries to implement a struct of arrays based on
openfpm::multi array ref openfpm, he could create manually three
openfpm::multi array ref openfpm like in listing 2.6. Although the final goal
is to have an automatic way, rather than manual, to construct an SoA object
from the tuple.

Listing 2.6: Manual implementation of a SoA

1

2 // for the scalar
3 openfpm::multi_array_ref_openfpm<float,
4 1,
5 boost::mpl::vector<
6 boost::mpl::int < −1 >,
7 >
8 ar_scalar(...100...);
9

10 // for the vector
11 openfpm::multi_array_ref_openfpm<double,
12 2,
13 boost::mpl::vector<
14 boost::mpl::int < −1 >,
15 boost::mpl::int < 3 >

16 >
17 ar_vector(...100,so);
18

19 // for the matrix
20 openfpm::multi_array_ref_openfpm<int,
21 3,
22 boost::mpl::vector<
23 boost::mpl::int < −1 >,
24 boost::mpl::int < 6 >,
25 boost::mpl::int < 7 > >
26 ar_matrix(...100...);

In the manual case shown in listing 2.6 the 10 × 10 elements has been lin-
earized to 100 and mapped into one runtime index of openfpm::multi_array_ref_openfpm
, the compile-time indices of vector and matrix are instead specified at compile-
time into openfpm::multi_array_ref_openfpm.

At this point, someone could have argued why not map the two runtime in-
dexes into two runtime indexes of the multi-dimensional array. The reason reside
in the limited number of indexes linearization openfpm::multi_array_ref_openfpm

provides. Later this thesis will introduce an additional layer on top of openfpm

::multi_array_ref_openfpm, to provide a more generalized way to linearize multi-
indices. For now, we consider that the linearization follows the standard C++
striding linearization.

Reading the manual implementation in listing 2.6 we realize that the algo-
rithms written on top of a manual SoA restructuring depend from the layout
chosen. The ideal case would be constructing an abstraction to define a stan-
dard API to access data independently from the layout. Before introducing this
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solution, we must fuse the map openfpm::multi_array_ref_openfpm, that accepts
external memory, with allocators, that create a memory. The thesis will explain
this in the next section introducing the object memory c.

2.2.4 Introducing memory allocation memory c

The previous sub-section, introduced the object openfpm::multi_array_ref_openfpm

an object that shapes memory and does not handle memory on its own. This
section introduce the class memory c that glues a memory object allocator like
CudaMemory or HeapMemory with the object openfpm::multi_array_ref_openfpm

that shape memory.
We start observing that the destruction of the object openfpm::multi_array_ref_openfpm

does not destroy the memory. By design openfpm::multi_array_ref_openfpm only
map indices to memory, and does not handle its construction, destruction or
reallocation.

This separation is convenient for modularity and specific scenarios where we
want to shape or reshape memory. On the other hand, many times, we want the
memory to live together with its representation (openfpm::multi_array_ref_openfpm
). For this reason, at this level is introduced the object memory c that encap-
sulates both a representation and a memory object to allocate memory. This
encapsulation guarantees that when memory c is destroyed, both the represen-
tation and the memory object resources are deallocated.

Because there is both, memory object and representation, it is possible to
add additional functionalities to the object memory c that require memory and
representation together. The first functionality involves double buffering, in
such case, there is always a device pointer and an host pointer, but the rep-
presentation can only work on one at a time. For this reason, we create the
possibility to switch the representation pointer to device pointer with switch-
ToDevicePtr() or to host memory with switchToHostPtr(). This operation
does nothing if the memory object does not support double buffering because
the two pointers are equal.

Another functionality is the possibility to have two different representations
openfpm::multi_array_ref_openfpm acting on the same memory. In order to do this,
memory c have a method called bind ref. Consider the case where there are
two memory c objects m1 and m2, and each memory c encapsulates a mem-
ory object (mem) and a representation (mem r). We can use the function
m2.bind ref(m1) to reshape the memory pointed in m1 with the representation
in m2. The advantage of using memory c rather than using directly openfpm

::multi_array_ref_openfpm reside in the automatic memory management. The
method bind ref makes the m2 memory object (m2.mem) point to m1 mem-
ory object (m1.mem) and increment the reference of the m1 memory object to
ensure the memory is released only when both m1 and m2 get deleted. Waiting
for the reference counter reaching zero, ensures the memory is not referenced
by any other memory c, making safe to destroy the memory. As in the method
switchToDevicePtr, bind ref can be implemented because memory c glue
memory allocation with representation.
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In exceptional cases, memory c can accept external memory setting it with
the function setMemory. If the reference counter of the external memory
object is initialized to zero before calling the method setMemory, the object
will be automatically managed and deleted when memory c is destroyed. If
the initial reference counter differs from zero, the memory object will not be
automatically managed, and it must be destroyed explicitly. The mechanism
of using setMemory is essential to force a memory c to shape an already
filled external memory. Consider, for example, the case where we receive data
stored in a memory object. If we know it has a particular layout, we can fit a
representation to it.

The last method is swap. Given m1 and m2 with the same type of memory
and representation, we can swap both the memory and the representation with
swap. Doing so, m1 becomes m2, and m2 becomes m1. Such functionality is
generally helpful to implement a function where the input is changed in-place.
While in principle, the input should be overwritten by the result, it can happen
that the operation requires a separate buffer to be completed. In this case,
internally we have to create another memory c object and use it as an output.
In order to convert the output in input, and mantain the in-place interface, as
final step, we call m1.swap(m2).

2.2.5 Array of struct (AoS) and Struct of Array (SoA)

This section will introduce another abstraction layer to further evolve our con-
cepts about data ordering and data structuring. One limitation of
multi_array_ref_openfpm presented in section 2.2.3, is that there is no automatic
mechanism to switch from ”array of struct” to ”struct of array” (SoA/AoS). If
we want to do it for a structure like the aggregate aggregate<float, double[3],

int[6][7]>, until now we have to create three multi_array_ref_openfpm manually.
Additionally, general or more complex reordering than indices reordering is

not present. The thesis also mentioned that the runtime-index of the structure
multi_array_ref_openfpm hide more complex indexing strategies, but the thesis did
not provide any mechanism to abstract it.

In order to do this, we start introducing a new abstraction layer to control
the layout of the data. Controlling the layout requires analyzing the tuple with
fully compile-time algorithms. We know from the previous section that creating
a compile-time algorithm means creating meta-functions, that in C++ translate
in creating types containing the compile-time algorithm. In openfpm, there is
the memory traits lin metafunction to implement the AoS restructuring and
mamory traits inte to implement the SoA restructuring.

For memory traits lin the meta-algorithm is given in 2, while for mem-
ory traits inte is given in 3. They both process an aggregate and create an
object with respectively AoS or SoA structuring using the object memory c
object.

For example when memory traits lin is chosen, and the aggregate is aggregate
<float,float[3],double[3][4]> the object in listing 2.7 is constructed at compile-
time.
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Algorithm 2 memory traits lin

Input: aggregate as list of types Output: A memory c object

1: create a type a memory c <aggregate>where aggregate is the the input
aggregate

2: return the memory c type

Listing 2.7: AoS object constructed by memory traits lin

1

2 memory_c<aggregate<float,float[3],double[3][4]>>

We know memory_c<object> is a wrapper to multi_array_openfpm_ref<object> and
multi_array_openfpm_ref<object> is, in its simple form, an array. While the ag-
gregate aggregate<float,float[3],double[3][4]> is the equivalent of a struct. Us-
ing this reasoning memory_c<aggregate<float,float[3],double[3][4]>> is an array of
struct (AoS).

In the case of memory traits inte, we construct at compile time a SoA object.
Given the tuple aggregate<float,float[3],double[3][4]> the meta-algorithm con-
struct the object in listing 2.8. Listing 2.8 omit several namespaces for redability
Int is boost::mpl::Int and vector is boost::mpl::vector. In this case, we have
first an aggregate, so a struct, of memory_c, or array, leading to a struct of array.
Because memory_c have control of the array indices, the linearized runtime index
is selected to have step-size 1 using the flexibility of the multi_array_ref_openfpm

reppresentation specified in listing 2.9.

Algorithm 3 memory traits inte

Input: aggregate as list of attributes

1: create an empty tuple A
2: for all attribute in aggregate do
3: if attribute is a scalar then
4: append to A memory c<attribute>
5: else if attribute is an array of rank 1 with dimension N1 then
6: append to A memory c<attribute,int <N1>>
7: else if attribute is an array of rank 2 with dimension N1,N2 then
8: append to A memory c<attribute,int <N1>,int <N2>>
9: else if attribute is an array of rank 3 with dimension N1,N2,N3 then

10: append to A memory c<attribute,int <N1>,int <N2>,int <N3>>
11: ...
12: return the type generated A

1

2 aggregate<
3 memory_c<float>,
4 memory_c<vector<float,Int_<3>>,
5 memory_c<vector<double,Int_<3>,Int_<4>>
6 >

Listing 2.8: SoA object
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Listing 2.9: Internal multi array object for the last attribute

1

2 openfpm::multi_array_ref_openfpm<double,
3 3,
4 boost::mpl::vector<
5 boost::mpl::int\_$<-1>$,
6 boost::mpl::int\_$<3>$,
7 boost::mpl::int\_$<4>$ >

At the time of writing this thesis, in OpenFPM there are implemented the
two meta algorithms presented above. However, because memory_traits_* are free
to contain any compile-time meta-algorithm, we can have different implemen-
tations of meta-algorithms and consequently transformations of the aggregates.

2.2.6 Access homogenization

The thesis explained in the previous section how to construct at compile-time
SoA and AoS objects starting from an aggregate.

Listing 2.10: AoS and SoA

1

2 //AoS
3 memory_c<aggregate<float,float[3],double[3][4]>> object;
4

5 //SoA
6 aggregate<
7 memory_c<float>,
8 memory_c<multi_array<vector<float,Int_<3>>>,
9 memory_c<multi_array<vector<double,Int_<3>,Int_<4>>>

10 > object;

The two constructed objects in listing 2.10 despite containing the same in-
formation, do not expose the same way to access the information. For example,
suppose we want to access the matrix component [1][2] for the last element. In
the AoS case we access such element with at c<2>(object[25][1][2]), while in the
case of SoA we access the element with at c<2>(object)[25][1][2]. In particular,
the order in which at c is acting is different in the two cases. Memory traits inte
and memory traits lin abstraction objects can be used to homogenize the access.

In order to homogenize the access, while any memory traits * objects en-
capsulate the meta code to transform an aggregate into an AoS or SoA object,
they also contain the specialized code for a get function able to access the
compile-time object they construct, with a uniform interface. These functions
are defined for each memory traits * object in Listing 2.11, where they expose
a get function with the same signature but different implementation. The code
in Listing 2.12 shows how from the outside, we can construct generic code valid
for both objects. This code shows accessing the same element ([25][1][2]) inde-
pendently from T being memory_traits_inte or memory_traits_lin.

Listing 2.11: get function

1

2 template<typename T>
3 struct memory_traits_inte
4 {
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5 //! inter_memc is a metafunction encapsulating the
6 //! meta-algorithm to transform the aggregate object T
7 typedef typename inter_memc<typename T::type>::type type;
8

9 // getter function for the object constructed
10 __host__ __device__
11 static inline auto get(data_type & data_,
12 const key_type & v1)
13 -> decltype(boost::fusion::at_c<p>(data_).mem_r.operator[](v1))
14 {
15 return boost::fusion::at_c<p>(data_).mem_r.operator[](v1);
16 }
17 };
18

19

20

21

22 template<typename T>
23 struct memory_traits_lin
24 {
25 //! memory_traits_lin_type is a metafunction encapsulating
26 //! the meta-algorithm to transform the aggregate object T
27 typedef typename memory_traits_lin_type<T>::type type;
28

29 __host__ __device__
30 static inline auto get(data_type & data_,
31 const key_type & v1)
32 -> decltype(boost::fusion::at_c<p>(
33 data_.mem_r.operator[](v1))) &
34 {
35 return boost::fusion::at_c<p>(
36 data_.mem_r.operator[](v1)
37 );
38 }
39 };

Listing 2.12: get function

1

2 T::type data;
3

4 // ... some initialization
5

6 // access
7

8 auto ele = T::get(data,25)[1][2];

The code shown here is still inconvenient, but at least the abstraction con-
structed homogenizes the access. It is worth mentioning that the parenthesis
[1][2] in the code also hides the generic code of the multi_array_ref_openfpm. The
two layer compose vertically giving not only flexibility in AoS and SoA layout
switching, but also in striding reordering for the parenthesis [][]. This again re-
connects on the main OpenFPM design principle of having independent vertical
layers. The top layer inherits natural properties from the down-layer without
creating specialized code. All associative data structures in openfpm are build
on top of this access homogenization pattern.
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2.2.7 Multi-indices ordering

In section 2.2.1 the thesis mentioned how the runtime index of a
multi_array_ref_openfpm is at most one. The reason behind this choice was to
separate compile-time indices with runtime indices. This section of the the-
sis will present the abstraction on the linearization of the runtime indices into
a single number. Like before, this abstraction is again an object, exposing a
common interface to linearize runtime multi-indices.

In listing 2.13 is shown an example of this object.

Listing 2.13: Example of object to linearize multi-indices

1

2 template<unsigned int N, typename T>
3 class grid_sm
4 {
5

6

7 public:
8

9 // info methods
10 inline Box<N,size_t> getBox() const
11 inline const Box<N,size_t> getBoxKey() const
12 inline void setDimensions(const size_t (& dims)[N])
13

14 inline size_t size() const
15 inline size_t size(unsigned int i) const
16 inline const size_t (& getSize() const)[N]
17

18 // multi-index linearization methods
19

20 template<typename check=NoCheck, typename ids_type>
21 inline mem_id LinId(const grid_key_dx<N,ids_type> & gk,
22 const char sum_id[N]) const
23

24 template<typename check=NoCheck,typename ids_type>
25 inline mem_id LinId(const grid_key_dx<N,ids_type> & gk,
26 const char sum_id[N],
27 const size_t (&bc)[N]) const
28

29 inline mem_id LinIdPtr(size_t * k) const
30

31 inline mem_id LinId(const size_t (& k)[N]) const
32

33 template<typename ids_type>
34 inline mem_id LinId(const grid_key_dx<N,ids_type> & gk) const
35

36 template<typename a, typename ...lT,
37 typename enabler =
38 typename std::enable_if
39 <sizeof...(lT) == N-1>::type
40 >
41 inline mem_id Lin(a v,lT...t) const
42

43 template<typename a, typename ...lT, typename enabler = typename std::
enable_if<sizeof...(lT) == N-1>::type >

44 __device__ __host__ inline mem_id Lin(a v,lT...t) const
45

46 inline grid_key_dx<N> InvLinId(mem_id id) const
47

48 inline mem_id LinId(mem_id * id) const
49
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50 // utility functions
51

52 inline void swap(grid_sm<N,T> & g)
53 std::string toString() const
54 };

The object can be decomposed into three sections. The first section contains
methods to get information about each index range on each dimension or set
the range of each index on each dimension. The second section is relative to
the methods to linearize multi-indices into a single number of type mem id
(in 64-bit a long unsigned int). The last section contains utility functions like
the swap method acting similarly to the one shown in section 2.2.4, and the
method toString to converts the information contained in this object into a
human-readable string.

In the linearization section of the object, all the LinId methods are different
overloads of the same function. They are all designed to linearize multi-indices
with different arguments. For the n-number linearizer case, the enabler param-
eter uses SFINAE (Appendix A) to ensure the method is valid only when we
input exactly n-numbers. The method is disabled in all the other cases.

Other linearizers implemented in OpenFPM are grid smb, grid zmb, and
grid zm. Figure 2.1 shows all four space-filling curves. In general, using these
curves can have benefits in more cache hits depending on our access pattern. In
other cases, a different linearization better fits the hardware type like the GPU,
where the computation is organized in blocks. This type of linearization will be
used with SparseGrids later in this thesis.

2.2.8 Combining everything into grids

The thesis introduced memory traits * as a general way to create objects such
that given a tuple, they can create AoS/SoA or an even more complex layout.
Additionally, has been introduced an abstraction to linearize multi indices and
create general reordering of multi indices. The thesis now combines these two
abstractions to create a more convenient multi-dimensional array inheriting all
the features of previous layers. In particular, this new layer or object will inherit
layout switching AoS and SoA, compile-time parenthesis [][] reordering, multi-
indices reordering, and capability to work on device or host memory.

This object is again a templated defined in listing 2.14. The templated pa-
rameters can be explained as follows:

• dimensionality or how many indices you have in your multi-dimensional
grid.

• type Type stored by the multidimensional array. It must be an aggregate
as a wrapper of a tuple. The tuple specifies the properties each point con-
tains. The tuple can contain multi-dimensional static arrays like float[3]
or double[4][5]
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(a) 4× 4 blocks with standard striding (b) 4× 4 blocks with Z-morton

(c) Z-morton space filling curve (d) Striding space filling curve

Figure 2.1: 4 different space filling curves, the color indicate the offset in memory
of the element from the beginning of the buffer. The scale goes from 0 bytes
(blue) to 1024 bytes (dark red)

• layout base The memory layout specifications explained in section 2.2.5.
In particular, it gives the possibility to switch between SoA or AoS and
index striding.

• ordering specify the ordering or linearization of the n-indices into one index
(section 2.2.7).

Listing 2.14: Grid object

1

2 template<unsigned int dim, typename T, typename S,
3 template<typename>class layout base,
4 typename ord type >
5 class grid_base_impl
6 {
7 //! memory layout
8 typedef typename layout_base<T>::type layout;
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9

10 //! Memory layout specification + memory chunk pointer
11 layout data_;
12

13 //! This is a structure that store all information related to the grid
and how indices are linearized

14 ord_type g1;
15

16 ...
17

18 template <unsigned int p, typename r_type=decltype(layout_base<T>::
template get<p>(data_,g1,grid_key_dx<dim>()))>

19 __device__ __host__ inline r_type get(const grid_key_dx<dim> & v1)
20 {
21 return layout_base<T>::template get<p>(data_,g1,v1);
22 }
23 }

Many of the parameters come from the layers already explained before in
the thesis. template<typename>class layout base provides the meta-algorithm
to transform the aggregate into a SoA or AoS object, explained in section 2.2.5.
Possible choices are either memory traits lin or memory traits inte. As ex-
plained in 2.2.7, ordering is instead the function used to linearize the runtime
multi-indices. This parameter can be any of the objects grid_sm grid_zm grid_smb

grid_zmb. While the memory type, select the type of underlying memory the grid
create, as introduced in section 2.1. The grid exposes double buffering function-
ality by providing the function hostToDevice and deviceToHost. At this
level, because aggregate is used, these methods now accept an additional tem-
plate parameter to indicate which indices must be transferred from device to
host or from host to device. The type of the object data_ is constructed at
compile-time from the meta-algorithm explained in section 2.2.5. Operatively
contains the raw data of the grid. The g1 object instead is used for multi-index
linearization and is instantiated once together with grid_base_impl. The code
shown for grid_base_impl does not include full API of the data structure. Un-
fortunately, going exhaustively across the entire set of methods is out of the
scope of this thesis. The thesis only shows the get method coded agonistically
from the parameters of the data structure, thanks to the fact that it is built on
top of the layers already explained. This concept applies to all the other API
functions.

The thesis limit to mention some of the general functionalities of grid_base_impl

• copy to: A function to copy a portion of one grid into another grid.
Require a grid from where the data must be read, a source box, and a
destination box. This function also comes in different flavors, and the
thesis will explain later the reason.

• resize: As the name suggest, it resizes the grid. The data are preserved
when the grid resizes bigger. Data is cropped when the grid resizes smaller.

• duplicate: This function duplicates the grid, creating another grid con-
taining the same data.
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• swap: Given two grids A and B, it swaps the data of the two grids. after
A.swap(B) A will contain the data of B, and B will contain the data of A.
The grid are forced to be the same type

2.2.9 Vector or 1D array of aggregates

The thesis has shown in the previous section that grid base impl implements a
multi-dimensional array of arbitrary dimensions, storing a list of types on each
point with interchangeable layout and ordering. The particular case of a grid
in one dimension can be seen as a vector or contiguous array. The reordering
loses meaning in this case, but layout switching and the selection of memory
types like HeapMemory or CudaMemory remain valid. For this reason, the
construction of a vector data-structure object is on top of grid_base_impl. The
sketch of the implementation can be seen in listing 2.15

Listing 2.15: Vector implementation

1

2 template<typename T,
3 typename Memory,
4 typename layout,
5 template<typename> class layout_base,
6 typename grow_p,
7 unsigned int impl>
8 class vector
9 {

10 size_t v_size;
11

12 //! 1-D grid
13 grid_base_impl<1,T,Memory,typename layout_base<T>::type> base;
14

15 ...
16 }

As we can see the implementation on top is based on the special case of
a one dimensiona grid grid_base_impl<1,T,Memory,typename layout_base<T>::type>.
We have two additional parameters; one is grow_p that select the growing policy,
the other is impl that select the internal implementation. To explain the pa-
rameter grow_p, consider the case of a vector with 100 elements that lead to the
internal structure grid base impl base having 100 1D elements. Once we require
101 elements, we have to resize the one-dimensional grid. We could, in theory,
reallocate a new 1D grid with 101 elements, but in the eventuality of further
subsequent new elements, it would force a reallocation to every addition. It is,
in general, better to pre-allocate more elements. The growing policy defines the
strategy of how many additional elements must be created at each reallocation.
For example, grow double indicates to double the vector’s size every time we
have to grow the internal one-dimensional grid. The grow identity indicates to
increase the size exactly the amount required. The object grow_p is again an
object exposing a well-defined interface.

In listing 2.16 we can see an example for grow_policy_double, in particular the
function accept two-arguments, the first is the actual size of the one-dimensional
grid. Because reallocations always come from the user requesting a certain size,
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the second argument indicates the new number of elements for the vector. The
function in the object tries to increase the previous size of the vector by a factor
of 2 until we have enough elements to store the requested size. Special care
is given when the previous size is zero. In this case, the variable ”grow” is
initialized to 1; otherwise, the variable would remain zero in the multiplication.
The function returns the total number of elements for resizing the internal one-
dimensional grid. Having a growth policy based on some factor n from the
previous size guarantee the average insertion time to be constant.

Listing 2.16: Grow policy

1

2 class grow_policy_double
3 {
4 public:
5

6 static size_t grow(size_t original, size_t requested)
7 {
8 size_t grow = (original == 0)?1:original;
9 while (grow < requested) {grow *= 2;}

10 return grow;
11 }
12 };

The number of elements in grid base impl indicates the number of elements
reserved, or alternatively, how much the vector has to grow before a reallocation
is triggered. v_size gives the actual number of elements in the vector.

1

2 template<typename T>
3 using vector_gpu = openfpm::vector<T,
4 CudaMemory,
5 typename memory_traits_inte<T>::type,
6 memory_traits_inte>;
7

8 template<typename T>
9 using vector_gpu_single = openfpm::vector<T,

10 CudaMemory,
11 typename memory_traits_inte<T

>::type,
12 memory_traits_inte,
13 openfpm::grow_policy_identity>;

The parameter ”impl” is a compile-time condition and selects the imple-
mentation based on input T. In case T is not an aggregate the meta-function
vect_isel<T>::value will return STD VECTOR, while if T is an aggregate the
implementation in listing 2.15 will be chosen. As a grid, a vector exposes simi-
lar functionalities like resizing, duplicate, swap and get functions. Because the
vector is a special case, it also implements additional functionalities more spe-
cific to the dynamic array and list concepts: sorting elements, single element
removal, bulk remove of elements, or merge two lists together.

2.2.10 From nested structures to aggregate

When the thesis introduced aggregates, it was explained the possibility of con-
verting any structure into an aggregate. On the other hand, the thesis never
explained how a nested structure could be converted into an aggregate.
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Let consider a structure like in listing 2.17, a typical way to convert it, would
be to create a nested aggregate like the one in listing 2.18

Listing 2.17: structure

1

2 struct nested
3 {
4 int n_ele1;
5 double n_ele2;
6 }
7

8 struct A
9 {

10 int ele1;
11 double ele2;
12

13 nested ele_n;
14 }

Listing 2.18: structure

1

2 constexpr int ele1=0;
3 constexpr int ele2=1;
4 constexpr int ele_n=2;
5 constexpr int n_ele1=0;
6 constexpr int n_ele2=1;
7

8 aggregate<int,double,aggregate<int,double>>

Nested aggregates work with all openfpm data structures, but the layout
switch is limited to the first-level aggregate. The meta algorithms
memory_traits_* just read the first aggregate list and consider the second level a
single element of the first aggregate.

We could, in theory, create a meta-algorithm considering also the second
level, but it has been decided to approach the problem differently and more
effectively. We start to observe that any nested aggregate can be flattened into a
non-nested aggregate. For example, the nested structure in listing 2.17 following
a depth-first traversal of the tree, generates the following one-level aggregate
aggregate<int double, int, double>. In general, we have a combinatorial number
of ways we can flatten the aggregate. This flexibility can be synthesized with
a map where every field, nested or not, maps to a number. Listing 2.19 show
an example of the definition of such a map. For example A::ele1 map to 0 A

::ele2 map to 1 A::nested::n_ele1 map to 2 A::nested::n_ele2 map to 3 leading
to the standard depth-first traversal algorithm flattening. The possibility of
rearranging the numbers allows us to re-map any field in the nested struct into a
flattened aggregate. The flattening map also ensures that whatever permutation
of numbers we choose to convert names to number, this choice does not interfere
in accessing data. Another interesting feature of having an external numerical
maps is the possibility to have multiple maps and names to numbers for the
same data structure. For example, we can define a second map with a different
tree structure like in listing 2.20. This feature is not available when we use
nested aggregates because defining a nested aggregate fixes how we will access



CHAPTER 2. HARDWARE INDEPENDENT DATA-STRUCTURES 31

the elements. For example having a container of an aggregate defined like in
listing 2.18 accessing the field double in the nested aggregate at position p, it
is forced to be data.get<nested>(p).get<n_ele2>. On the other hand in the case
we use a numerical map on a flatten tree, the elements can be accessed with
get<A::nested::n_ele2>(p) or alternatively with get<A_s::n_ele2>(p).

Listing 2.19: structure

1

2 struct A
3 {
4 typedef std::integral_constant<int, 0> ele1;
5 typedef std::integral_constant<int, 1> ele2;
6

7 struct nested
8 {
9 typedef std::integral_constant<int, 2> n_ele1;

10 typedef std::integral_constant<int, 3> n_ele2;
11 }
12 }
13

14 typedef aggregate<int,double,int,double> A_aggr;

Listing 2.20: structure

1

2 struct A_s
3 {
4 typedef std::integral_constant<int, 0> ele1;
5 typedef std::integral_constant<int, 1> ele2;
6 typedef std::integral_constant<int, 3> n_ele2;
7

8 struct nested
9 {

10 typedef std::integral_constant<int, 2> n_ele1;
11 }
12 }
13

14 typedef aggregate<int,double,int,double>

The possibility to flatten the tree and map fields/names into numbers give
us also the possibility to construct functions to copy fields from one structure
into another that work across the boundaries of the trees and sub-trees.

object creator and functions

An example of such functionality is the possibility to construct from an ag-
gregate another aggregate composed by a subset of properties from the first
aggregate. More in the specific the meta-function object_creator<typename prop::

type,A::ele2,A::nested::n_ele>::type using the positional numbers A::ele2 and A

::nested::n_ele create a tuple object aggregate<double,int> grouping two elements
across different tree levels. This type can be used to construct a completely new
container over a sub-set of the selected properties like shown in listing 2.21.
The function object_si_d<...,A::ele2,A::nested::n_ele> is able to copy elements
from a container openfpm::vector<A_aggr> to the container with a subset of fields
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constructed in listing 2.21. The same goes for the function object_s_di<...,

A::ele2,A::nested::n_ele> is able to copy from the container with a subset of
properties to the original container.

Listing 2.21: create an object from a subset of fields

1

2 typedef object<typename object_creator<typename A_aggr::type, A::ele2,A::nested::
n_ele>::type> prp_object;

3

4 openfpm::vector<prp_object> data;

2.2.11 Gpu and multi hardware

We saw in many code snippets how all the code written is compatible with ac-
celerator compilers like the Nvidia Cuda compiler, because many of the methods
were marked __device__ __host__, in order to generate GPU and CPU code. On
the other hand, in order to work on GPU, the data structures have to work on
device pointers or host unified memory pointers rather than host-only pointers.

CudaMemory contains a device pointer and a host unified pointer. While a
GPU kernel can access both memories, we always prefer to use device memory
in a kernel for performance reasons. The data structure grid_base_impl can be
passed to a GPU kernel using the method toKernel(). This function creates a
proxy object of type grid_base_ker that internally use the device pointer instead
of the host pointer. The proxy object is passed by value to a kernel, and acting
on the proxy object inside a kernel means working with the device memory.
All containers provide this function to write algorithms on GPUs, and all con-
tainers are able to work on nested containers like openfpm::vector_gpu<aggregate<

int,openfpm::vector_gpu<aggregate<int,double[3]>>>. In this case the toKernel()
method parse at compile-time the entire tree and create an equivalent proxy ob-
ject on GPU with nested containers openfpm::vector_gpu_ker<aggregate<int,openfpm
::vector_gpu_ker<aggregate<int,double[3]>>>. There is no limit on how many con-
tainers are nested and which container, as soon as it expose a toKernel() function
returning a proxy, it is possible to nest-it. Although this feature provides flex-
ibility on GPU, it must be used with care. Fragmenting the memory on GPU
creating micro allocation and deallocation are very expensive on GPU. A cud-
aMalloc function used to allocate GPU memory on Nvidia is in general order of
magnitude slower than heap allocation on CPU.

Using a proxy object, rather than the original structure allows us to first
reduce the amount of information to pass to a kernel, hence the usage of the
parameter space, and second restrict the interface to methods that work on
GPU. If we pass the original data structure to the kernel, all fields inside the class
will move to GPU, whenever they are used or not. It is common for classes to
contain information that makes no sense to be transferred on GPU. This problem
mostly does not occur for simple single-node data structures like a vector or a
grid presented until here. However, this problem becomes predominant for more
complex cases like a distributed data structure or sparse grids presented later
in this thesis.
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2.2.12 Performance

The thesis showed how the design of each layer gives modularity, flexibility, and
compact code. It remains to check if the compile-time design using template
meta-programming interferes with the compiler’s optimization stages, avoiding
performance penalization. To check that the assumption holds, the thesis com-
pare the high level data-structure explained until here with plain array.

The benchmark creates two vectors containing 2097152 elements on CPU
and 16777216 on GPU. The two vectors contain scalars types like double, vector
properties like double[2], and tensorial properties like double[2][2]. The code in
listing 2.22 use OpenFPM data-structures to move and shuffle data from one
vector into another involving all properties and every element. The code in
listing 2.22 is clearly memory badwidth limited and is valid for any type of
layout like explained in this chapter. An equivalent code for plain array is also
created in listing 2.23 valid only for array of struct and listing 2.24 valid only
for the structure of array. The performance of the openfpm code listing 2.22 is
than compared against the multiple version of codes needed for different layout
in the case of plain arrays (listing 2.23 and 2.24). In table 2.1 we report
the performance results with different architectures. With the exception of
the GTX1650 in memory traits lin reporting a 1 percent loss in performance;
the table shows no performance impact, within the margin of error, using the
OpenFPM data structure against arrays, neither on Intel or AMD CPUs nor
on Turing or Ampere Nvidia GPUs in accessing time using the get functions
explained before.

memory traits lin memory traits inte
Intel i9 9900 1.02± 0.07 1.02± 0.037

AMD ThreadRipper 3990X 1.01± 0.02 1.01± 0.02
GTX 1650 1.023± 0.01 1.000± 0.003
RTX 3090 1.00± 0.037 1.01± 0.02

Table 2.1: Performance on different CPUs (Intel/AMD) and GPUs (Nvidia
Touring/Ampere) with different layouts. The number indicate the ratio between
the time to complete the data-movements in OpenFPM listings 2.22 against
plain arrays listing 2.23 (left colum) or listing 2.24 (right colum)

Listing 2.22: OpenFPM data structures working for any layout

1

2 template<typename vector_prop_type, typename vector_pos_type>
3 __device__ __host__ void read_write(vector_prop_type & vd_prop, vector_pos_type &

vd_pos, unsigned int p)
4 {
5 vd_prop.template get<0>(p) = vd_pos.template get<0>(p)[0] + vd_pos.template get

<0>(p)[1];
6

7 vd_prop.template get<1>(p)[0] = vd_pos.template get<0>(p)[0];
8 vd_prop.template get<1>(p)[1] = vd_pos.template get<0>(p)[1];
9
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10 vd_prop.template get<2>(p)[0][0] = vd_pos.template get<0>(p)[0];
11 vd_prop.template get<2>(p)[0][1] = vd_pos.template get<0>(p)[1];
12 vd_prop.template get<2>(p)[1][0] = vd_pos.template get<0>(p)[0] +
13 vd_pos.template get<0>(p)[1];
14 vd_prop.template get<2>(p)[1][1] = vd_pos.template get<0>(p)[1] -
15 vd_pos.template get<0>(p)[0];
16

17 vd_pos.template get<0>(p)[0] += 0.01f;
18 vd_pos.template get<0>(p)[1] += 0.01f;
19 }

Listing 2.23: Plain array AoS

1

2 struct ele
3 {
4 double s;
5 double v[2];
6 double t[2][2];
7 };
8

9 __device__ __host__ void read_write_lin(double * pos, ele * prp,
10 unsigned int p)
11 {
12 prp[p].s = pos[2*p] + pos[2*p+1];
13

14 prp[p].v[0] = pos[2*p];
15 prp[p].v[1] = pos[2*p+1];
16

17 prp[p].t[0][0] = pos[2*p];
18 prp[p].t[0][1] = pos[2*p+1];
19 prp[p].t[1][0] = pos[2*p] +
20 pos[2*p+1];
21 prp[p].t[1][1] = pos[2*p+1] -
22 pos[2*p];
23

24 pos[2*p] += 0.01f;
25 pos[2*p+1] += 0.01f;
26 }

Listing 2.24: Plain array SoA

1

2 __device__ __host__ void read_write_inte(double * pos,
3 double * prp0,
4 double * prp1,
5 double * prp2,
6 unsigned int p,
7 unsigned int n_pos)
8 {
9 prp0[0*n_pos + p] = pos[0*n_pos + p] + pos[1*n_pos+p];

10

11 prp1[0*n_pos + p] = pos[0*n_pos + p];
12 prp1[1*n_pos + p] = pos[1*n_pos + p];
13

14 prp2[0*n_pos*2+0*n_pos + p] = pos[0*n_pos + p];
15 prp2[0*n_pos*2+1*n_pos + p] = pos[1*n_pos + p];
16 prp2[1*n_pos*2+0*n_pos + p] = pos[0*n_pos + p] +
17 pos[1*n_pos + p];
18 prp2[1*n_pos*2+1*n_pos + p] = pos[1*n_pos + p] -
19 pos[0*n_pos + p];
20

21 pos[0*n_pos + p] += 0.01f;
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22 pos[1*n_pos + p] += 0.01f;
23 }

2.2.13 Graphs

Starting from basic data structures like a multi-dimensional array and vector
able of reordering elements, changing layout, working on host, and device mem-
ory, it is possible to construct more complex data structures like graphs with
the same features.

In OpenFPM, graphs store information about the decomposition but have
been designed to have a more general interface. Its definition follow listing 2.25

Listing 2.25: Graph definition

1

2 template<typename V, typename E = no_edge,
3 typename Memory = HeapMemory,
4 template<typename> class layout_v_base = memory_traits_lin,
5 template<typename> class layout_e_base = memory_traits_lin,
6 typename grow_p = openfpm::grow_policy_double>
7 class Graph_CSR
8 {
9

10 //! Structure that store the vertex properties
11 openfpm::vector<V, Memory, layout_v_base,grow_p> v;
12

13 //! Store the number of edges for each vertex
14 openfpm::vector<size_t, Memory, layout_v_base,grow_p> v_l;
15

16 //! Edge properties information
17 openfpm::vector<E, Memory, layout_e_base, grow_p> e;
18

19 //! For each vertex store the adjacent vertex and
20 //! the edge id
21 openfpm::vector<e_map, Memory, layout_e_base , grow_p> e_l;
22

23 ...
24

25 }

• V Is an aggregate and indicate what is stored as information on the ver-
tices.

• E Is an aggregate and indicate what is stored as information on the edges

• layout v base layout to use for the vector storing information about ver-
tices

• layout e base layout to use for the vector storing information about edges

• grow p Grow policy to be used for the vector to store vertices and edge
information

The graph defined in listing 2.25 can store an aggregate on the vertices and
the edges. At the same time, because the graph is shaped using the OpenFPM
vectors, inherit the properties to switch layout and use GPU memory.
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2.2.14 sparse grids on shared memory

Sparse grids are data structure useful for level-set problems and complex geom-
etry, we will see examples of these type of problems later in this thesis. Sparse
grids are grid data structures where points/nodes can be dynamically inserted
and removed at runtime. A simplified view is to see a sparse grid as a hash map,
where the key is the grid index (i.e., discrete position in the grid) and the value
is the data stored at that point. An empty sparse grid does not allocate any
memory for the grid data, only for the access and bookkeeping data structures.
The sparse grid is then populated using an insert function. This method is in
contrast to a dense grid, where all the memory is allocated at instantiation. The
usual get function is present in sparse and dense grids to read or write the value
at an allocated grid point. Another critical difference between dense and sparse
grids is how they are traversed or iterated over. In dense grids, iterators usually
proceed to neighboring points until all points have been visited. In sparse grids,
iterators can visit all existing points or any subset. Apart from the specific
limitations of a numerical method, this interface allows for easy conversion of
dense-grid codes to spare-grid codes, valid for comparative benchmarking.

The changes required to convert a code from sparse to dense are: (1) inserting
all existing points at the beginning and (2) changing the iterator to an all-node
sparse-grid iterator. In most applications, the inserted points are not randomly
scattered in a sparse grid but concentrate in dense sub-regions. Sparse block
grids exploit this to reduce random and neighborhood access time. Instead of
storing each inserted point individually, they store a list of blocks of points. A
common approach is to divide the grid into regular blocks of equal size (size set
at compile-time) and allocate a whole block as soon as one point is inserted.
These blocks are called chunks, and a globally unique chunk ID identifies each
chunk of a sparse block grid. Maintaining this information for a sparse-grid
requires a few bookkeeping data structures, as illustrated in figure 2.2. From
the characteristics of the sparse grid, it is observable that this structure lies
in between particles and standard dense grids. This chapter will see how to
implement a sparse grid based on the abstractions presented before.

A standard dense grid allocates all the elements at construction. In the case
of a 5× 5 grid of integers, the memory is allocated at once ideally as 25 integers
array. A sparse grid 5x5 of integers does not allocate memory other than the
bookkeeping data structures. The sparse grid is populated incrementally using
the insert function sparse_grid.insert<0>(point) = 5.0. The instruction inserts a
point in the position indicated by the index point and assigns to the property
zero the value 5.0. A subsequent sparse_grid.insert<0>(point) = 6.0 will just
overwrite the value of the previous insert. The old get function present in the
dense grid is still valid but now it return a read-only value so sparse_grid.get

<0>(point) = 7.0 would end up in a compile-time error. Doing a get in an empty
grid is valid and will return a background value. Every property can set a
predefined background value. Background values for the sparse grids come in
handy in case we want to set some boundary value outside the existing points
or some out-of-bound value.
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Another difference for the sparse grid compared to dense lies in the iterators.
In the standard grid, iterators are constructed to run across the grid points
using the method getIterator(start, stop) where the start and stop indicate the
section of the grid in which we want to iterate. In the sparse grids there are
two methods, getGridIterator(start, stop) , and getDomainIterator(start, stop)

. The first iterate across all grid points between the start and stop points,
independently from their existence. The second method iterates across the
existing points between the start and stop.

This type of interface allows smoothly converting a code that does a calcu-
lation on a dense grid to a sparse, simply replacing the get method into the
insert method, and changing the first iterator that initializes the grid from
getDomainIterator to getGridIterator.

Implementation

As mentioned before, sparse grid memory is not allocated immediately but in-
crementally while the data is inserted. Additionally, data is organized in blocks.
Blocks are called chunks and divide the grid into pieces that contain at least
one or more points. Figure 2.2 show the implementation of a 2D sparse grid
that stores a scalar and a two-dimensional vector. This design choice comes
from two observations: the first is that most applications do not have a truly
random scattered set of points but regions with points, so it is better to ag-
gregate points into blocks. The second is that blocks have a natural way to
map data into computation blocks, a common paradigm for massively parallel
accelerators.

The blocks in the following will be called chunks, and a globally unique chunk
ID identifies each chunk of a sparse block grid. In order for this data structure
to works, only a few bookkeeping data structures are needed, as illustrated in
figure 2.2 and explained in the following.

• chunks: An openfpm vector that contains the data stored by a chunk.
In the case of figure 2.2 4 × 4 chunks are used. This case requires 16
scalar elements and 16 double[2] elements to store a chunk. The size of
the chunks is set and known at compile-time. Because openfpm::vector is
used, there is the freedom to choose the internal layout of the data and
memory type.

• headers: The header array in figure 2.2 contains for each chunk informa-
tion of the position of the chunks and a bitmask that indicates if a point
is filled or not. In the case of a 4× 4 chunks the mask need 16 bit equiv-
alent to a shortint in C++. In the figure, red points in the chunks mean
they exist and are indicated with 1 in the mask, while black points are
indicated with 0. Note that chunks and header arrays contain the same
amount of elements.

• linearization. It is indicated in figure 2.2 as an arrow from positional
information into a number. It linearizes the position in coordinates of a
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chunks
vector<aggregate<double[16],

0

1

2

headers

0

1

2

pos:

(1,6) 49

map

49

50

42

0

(2,6) 50

(2,5) 42

1

2

mask:

0111001100010000

1100110010000000

0000110011101100

Striding

double[16][2]>>

Z-morton

Figure 2.2: Implementation of a Sparse-grid 25x25 in 2D with chunks 4x4

point into a chunk number. The code is injected into the structure using a
template parameter. For example, in the case of a chunk at position (1, 6).
The linearization formula for normal striding is (1, 6)− > 6 × 8 + 1 = 49
while for Z-Morton curve the bits of the x,y coordinates are interleaved
1 = 001, 6 = 110− > 010110 = 22.

• map: The map converts from a chunk id to its position in the vector of
chunks. This map has been implemented either using a sorted array or
a hash-map

The data-structure is defined in the code listing 2.26

Listing 2.26: Definition of a sparse grid

1

2 template<unsigned int dim,
3 typename T,
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4 typename S,
5 typename grid lin,
6 template<typename> class layout base,
7 typename chunking>
8 class sgrid_cpu

Only the first two parameters are mandatory, and the others have default
values for CPUs (S=HeapMemory,layout base=memory traits lin) and acceler-
ators (S=CudaMemory,layout base=memory traits inte)

• dim is the dimensionality of the grid.

• T Type stored by the multidimensional array. It must be an aggregate.

• S Type of memory used to store data CudaMemory or HeapMemory.

• chunking Dimensions of the chunk in each dimension, because is given as
template parameter its dimensionality is known at compile-time.

• grid lin This is the parameter containing the code to linearize a multi-
index into two numbers: chunk id and offset within the chunk.

• layout base is the specifier for the internal layout of the internal array/vec-
tors like SoA or AoS.

Performance tuning with physical chunk tiling

Most of the operations employed on a grid are local convolutions like second-
order 7 points finite-difference Laplacian stencil. Physical tiling of the grid into
chunks allows us to allocate only one part of the grid. However, this layout
complicates operations like stencil computation. This section analyzes the per-
formance achieved using this layout, the challenges, and how it has been solved.
The performance tests use a 7-point second-order Laplacian stencil with finite
differences, a SoA layout, and a Z-Morton linearization. The Vc library is used
to have explicit vectorization, and the computation is performed in a block-wise
way.

The Z-Morton curve increase cache hit in the L3 cache level of the CPU.
The profiler measured that this linearization improves L3 cache hit by 30%
and the performance by 15%. Calculating the stencil on a block requires the
surrounding points depending on how wide the stencil is. A possible solution
would be to create a temporary block with borders and load the data on the
temporary block before calculating the stencil on the inside points. Assuming
that the temporary block is small enough to live in the L1 cache, the data would
travel (Memory - Register - L1) to load the block (L1 - Register - L1) for the
computation and (L1 - Register - Memory) to store the data. This approach
does not lead to the best performance. Despite having a low latency L1 cache,
the CPU has to fetch and execute a lot of operation/movement that involves
the L1 cache. It turns out that avoiding the temporary block and land on the
register, leading to (Memory - Register - Memory) is a factor two faster.
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In order to reach the (Memory - Register - Memory) path, the addresses to
load are initially computed and subsequently used to do an aligned vectorized
load. Special care is required to load data shifted on direction x because loading
the four numbers in the purple rectangle of figure 2.3 is split across two chunks.
Figure 2.3 shows an example, where an AVX load is able to load four number
(double type) on the register (blue rectangle). Loading the four number in the
purple rectangle requires splitting the single AVX load instruction into multiple
operations. The first operation loads the four doubles in the blue rectangle,
followed by a right shift on the register by 64 bits, and finally a load of a single
double in the last 64 bits of the register. Figure 2.3 shows how the chunk layout
does require additional operations to calculate addresses of points across chunks.

An overhead from sparse grids compared to dense ones comes from the neces-
sity to check the existence of each point. Fortunately, because the information
about the existence resides in a structure with the same layout and order of the
point-data, calculating the address in memory follows the same rule explained
in figure 2.3. The mask is loaded in the same way. In the case of 4 doubles,
loading the mask mean loading 4 bytes for a total of one integer. A simple check
of the integer to zero checks in one hit if one of the four points is filled.

Checking the mask for filled points is not enough. In many cases, it is nec-
essary to restrict the stencil calculation to a subset of grid points. In order to
restrict the computation, the chunk is intersected with the area where to calcu-
late the stencil. The intersection is used to calculate the iteration limits on y and
z within the chunk. On x or along the contiguous dimension, the iteration al-
ways starts from zero to guarantee aligned vectorized load. A mask is calculated
on x to indicate which points are part of the iteration. For example, in case it is
needed to calculate the stencil only on the first five elements in the x direction of
the chunk, the mask will be true, true, true, true, true, false, false, false. The
mask is used to perform an optimized masked store to guarantee that only the
points within the valid range are written.

Manually performing all the optimizations explained above is complex and
error-prone and requires machine code analysis. The sparse grid provides a
lambda-based interface where the lambda contains the stencil core computation.

results

The first performance test compares the performance of a sparse grid with the
standard dense grid. The benchmark uses a simple second-order finite differ-
ence Gray-Scott simulation on sparse grid and dense grid. In the sparse case,
all points are filled. Analysis of the machine code shows that the compiler pro-
duces vectorized instruction in both cases. Performance tests are conducted on
an Intel CPU i7-8700. In table 2.2 the dense grid is faster than the sparse grid.
As explained in section 2.2.14 a sparse grid has to handle the mask to check if a
point exists or not. In the column SparseGrid-NM (No Mask), the instructions
relative to the mask handling are commented to check its impact on this test.
It is possible to ignore the mask, in this case, because all points in the grid are
filled. A closer look at the machine code shows that if the user-supplied function
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Figure 2.3: Two 8×8 adjacent chunks on direction x. The figure shows how it is
possible to calculate the addresses of every point for two near chunks, given the
address of the first point of each chunk (blue and red point). Considering the
position in memory for the point in red addressred and the address of the blue
point addressblue. The double is 8 bytes in size, and the address of the violet
point is addressred +32 ∗ 8. The green dot is calculated as addressblue +32 ∗ 8,
while the yellow is calculated as addressblue + (32 + 7) ∗ 8. From the yellow
address, it is possible to calculate the violet point address summing to the
yellow address the offset addressred − addressblue − 7 ∗ 8

does not contain instructions involving the mask, many of the mask loading in-
structions and processing are eliminated by the compiler because of dead code
elimination. The compiler performs this type of optimization because, as ex-
plained in section 2.2.14 a memory - register - memory gives the compiler the
possibility to see such optimization. The 0.005 seconds improvement comes from
disabling the few remaining mask load and processing instructions. The signif-
icant overhead comes from the additional complexity produced by the chunks
layout to calculate the memory addresses before loading the operands on the
register.

Dense-Grid Sparse-Grid Sparse-Grid (NM)
0.063 s 0.083 0.077

Table 2.2: Time required to compute the right-hand side of the equation and
update the fields U, V for the case of the standard grid and Sparse-Grid where
has been commented out all the instructions relative to the mask handling (NM)

Extension to GPU or massively parallel hardware

In order to extend the sparse-grid to GPU or massively parallel architectures, it
is necessary to address the problem of inserting points in parallel. This operation
is challenging in parallel for mainly two reasons: an insertion can generate
memory relocation, two threads can try to write the same point generating a
race condition. Consider the case where two threads try to add 2 and 3 into
the same accumulator variable. If we do not perform an atomic operation, the
accumulator can result in different results depending on how the threads access
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the accumulator. In order to avoid such conflicts, the operation is spitted into
two phases. In the first phase, collect all the changes while the second merge
the changes into our structure.

In order to explain how the resolution of the conflicts is performed, it is nec-
essary to introduce basic parallel operations for massively parallel architecture.

Basic operation for massively parallel architecture

• scan/exclusive prefix sum: Given an array [1,6,9,10] the exclusive
scan operation produce on each entry the sum of all the previous entries
[0,1,7,16,26]

• merge: Given two sorted array [1,6,7,10,26] and [0,3,7] this operation
produce a single sorted array with merged entries [0,1,3,6,7,7,10,26]

• sort: for an array [1,10,2,6,26] an ordered buffer is produced [1,2,6,10,26]

It has been shown and proven that these operations can be parallelized on
massively parallel architectures [58] [59] [60]. For our purpose, we limit to
observe that when we are able to decompose our algorithm into a combination
of parallel kernels and a set of basic operations listed above, the algorithm scale
to massively parallel architecture.

The following two sections will show how to add data with potential conflicts
in the case of a massively parallel architecture. This operation is split into two
phases.

First phase

In the first phase, two buffers collect all changes requests. One buffer stores
the added chunk ids, and the other buffer stores the data. Rather than keep a
reserved space for each thread, a block of thread has a reserved space to add ids
and data. The reason is to reduce the allocated memory for the two buffers. If
we consider the typical case where the full block of thread fills only one chunk,
having the granularity to specify the number of reserved chunks for one block
of thread gives the possibility of having one chunk entry for the entire block of
thread. If we choose the granularity of the threads, if the block has 256 threads,
we would be forced to have at least 256 entries. The adding buffer is allocated
before running the kernel that makes the insertions.

Second phase

The second phase runs the function flush. This function requires choosing an
operation for each property. The operation indicates how to merge and solve
conflicts. Suppose there are two insertions with values 3 and 4 on an existing
point containing the value 5. In order to have consistent results, one parameter
specifies how the data will be merged. For example, choosing maximum as
operation will produce 5, minimum will produce 3, and summation will produce
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12. Our final goal is to obtain the buffer of updated chunks ids and updated data
chunks from the list of added chunks. Algorithm 4 perform this task resolving
conflicts.

Algorithm 4 FlushMethod

Input: Ids of added chunks and Data of added chunk

1: Make the add chunks ids contiguous
2: Sort the added chunks ids
3: Merge the list of the old indices with the list of the added unique indices

into a merged list
4: From the merged list construct the set of unique indexes (This is our list of

sorted indices for the updated structure)
5: Merge the add data buffer using the merged list and list of segments to

construct the final list of merged data (The result is the list of updated data
chunks)

figure 2.4 illustrates the algorithm 4 . Is good to notice that the data re-
duction and copy are made at the very end. Moving chunks is very expensive
in terms of memory movement, for each chunk id (4/8 bytes), there is a data
chunk. For example, in the case of a scalar field in 2D containing doubles with
chunks 16×16, the data chunk has 2048 bytes attached and an additional 16×16
bytes for storing the mask for a total of 2304 bytes. It is fundamental to move
the least amount of chunks data. For this reason, the flush algorithm work on
chunk ids for most of the time constructing maps to retrieve the chunks data
during the final reduction and data merge.

Generalizing data-structure to a sparse vector on GPU

The algorithm 4 presented above is encapsulated into a more general structure
called sparse vector data structure working on GPU. The concept is the same
as a standard vector or a resizable array with only a few elements filled. Such
structure can be seen as a hash map where the key is either a 32-bit or 64-bit
integer. The aggregate does not necessarily contain chunks but can also contain
simple scalars, and the ids are not necessarly connected to the position of the
data in an N-dimensional space.

Listing 2.27: Map on gpu

1

2 template<typename T,
3 typename Ti = long int,
4 typename Memory=HeapMemory,
5 template<typename> class layout base=memory_traits_lin,
6 typename grow p=grow_policy_double,
7 unsigned int impl=vect_isel<T>::value,
8 unsigned int impl2=VECTOR_SPARSE_STANDARD,
9 typename block_functor = stub_block_functor>

10 class vector_sparse
11 {
12 ...
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Figure 2.4: Step-by-step example of the flush operation from Algorithm 4.
Yellow boxes show positions of the chunks in the original array. Red boxes
are the corresponding chunk IDs with “X” marking nonexistent chunks. Curly
braces indicate how chunks are grouped in GPU thread blocks (five chunks per
thread block) for parallel execution. Green boxes are the positions of existing
data in the pre-existing chunks. Purple boxes indicate chunk IDs that require
data merging. Boxes labeled Di represent the data contained in the chunk with
ID i. The example in the penultimate row shows how D5 is merged using the
reduction operation sum, creating a new chunk DSUM containing the element-
wise sums of the data from the two input chunks. Black numbers indicate unused
grid points containing invalid data, while magenta numbers indicate valid data.
The green and yellow boxes are used to track how to merge the data in the final
step. These maps avoid moving data chunks when determining correspondence
groups.
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13 }

• T Type stored by the sparse vector. It must be an aggregate

• Ti precision of the index used for the chunk ID. By default the parameter
select 64 bit integers. This means the map can store indices up to 264− 1,
while in case of int it can store up to 232 − 1.

• Memory: type of memory used to allocate arrays to store data.

• layout base Layout to use to store data AoS or SoA 2.2.5

• grow p is an object exposing a well defined interface to control the policy
to allocate memory of the internal arrays. It is explained in section 2.2.9

• impl implementation of the internal arrays explained in section 2.2.9

• impl2 indicate the type of implementation of the sparse vector VEC-
TOR SPARSE STANDARD is the standard implementation where the
value is an aggregate, VECTOR SPARSE BLOCK is the block imple-
mentation required when the value are chunks and the implementation
has been explained in section 2.2.14

• block functor in case of VECTOR SPARSE BLOCK is a function to han-
dle the merging of chunks for the last step of the flush. This function is
provided as a functor

The sparse grid specialized on GPU depends on the sparse vector presented
here. In particular, values are the chunks, while the keys are 64/32 bit integers
of linearized chunks indices.

Performance on GPU

When running the sparse block grid code on a single Nvidia GTX 1080 GPU,
the runtime reduces by a factor of about 35 compared to the single-thread
CPU implementation on the 3.2 GHz Intel i7-8700 (see Table 2.3). Since the
grid in this benchmark is dense, all chunks of the sparse block grid are fully
occupied, leading to the best thread efficiency on the GPU. The density of a
sparse block grid is defined as the average (overall allocated chunks) occupancy
of the chunks, i.e., the average fraction of grid points in each existing chunk that
are allocated/inserted. The lower the density, the lower is the thread efficiency
of our GPU implementation. This is confirmed in the measurements reported
in Table 2.4 for a 5123 grid of float valued on a single GTX 1080. The thread
efficiency is normalized at density 1.00 and from there reduces approximately
linearly with the grid density. This is expected because, in our implementation,
the density of a chunk directly determines the fraction of busy versus idle threads
in each GPU threads block (cf. figure 2.4).

CPU and GPU implementations are compared with the widely used Open-
VDB [61] library for sparse volumetric data structures. In this comparison, the
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plain array CPU sparse grid CPU sparse grid NM sparse grid GPU
0.063 0.083 0.077 0.0024

Table 2.3: The table gives the runtime in seconds required to compute one time
step of the Gray-Scott simulation on a dense regular Cartesian 2563 grid. The
table compare plain-array and sparse block grid implementations on the CPU.
Commenting out the mask handling functions in the sparse block grid code
(“NM”) quantifies their overhead. When run on the GPU, the sparse block grid
code is about 35-times faster than on the CPU (last column).

density insert stencil

0.10 15% 24%
0.25 36% 45%
0.50 59% 62%
1.00 100% 100%

Table 2.4: Thread efficiency on one GTX 1080 GPU for inserting new grid points
and for evaluating the 3D finite-difference stencil at different grid densities.
The grid density is the average fraction of grid points that are allocated/used.
Efficiencies are computed relative to the dense case where all chunks are fully
occupied. The measurements were done on a 5123 grid of float values using
the present OpenFPM implementation.

time to insert and fill all 5123 grid points of an initially empty sparse block grid
of size 5123 is measured. The points are inserted sequentially from (0, 0, 0) to
(512, 512, 512). On the GPU, the entire procedure described in algorithm 4 is
measured, consisting of (1) resetting and creating the insert queue, (2) collect-
ing the insertions, and (3) flushing them. The performance test, runs multiple
cycles of inserting all points, removing all points again, and inserting them again
to control the retention of the internal data structures and memory allocation
overhead. The results are given in Table 2.5 for the first insertion cycle, the
second cycle, and all subsequent cycles.

As expected, the first insertion cycle is always the slowest because all queues
and buffers are initially allocated. This overhead is independent of the speed
of the GPU used, as can be seen by comparing the times on the Nvidia GTX
1080 with those on the lower-tier GTX 1650 Ti. The higher speed of the GTX
1080 only shows after three or more cycles of insertions. The table also shows
that two cycles are required to retain all buffers, whereas, on the CPU, they
are retained after the first cycle. Once all buffers are allocated, the OpenFPM
implementation of the present sparse block grid design is about a factor of two
faster than OpenVDB on the same CPU.
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Insertion cycle: 1 2 3 or more

OpenFPM CPU 0.803 0.295 0.295
OpenFPM GPU (GTX 1080) 0.34 0.17 0.012
OpenFPM GPU (GTX 1650) 0.30 0.19 0.037
OpenVDB (setValue) 0.86 0.68 0.68

Table 2.5: Runtime in seconds for inserting 5123 points of a sparse block grid
in sequential order. We compare the current OpenFPM implementation on the
CPU and two different GPUs with the CPU implementation in OpenVDB [61].
over three complete cycles of insertions. Inserting points in OpenVDB is done
using the function setValue.

2.2.15 GPU code running on CPU

This section shows, how given the abstractions presented before and a few ad-
ditional ones, the GPU code can run on many-core CPUs.

Cuda’s calls for memory management are all hidden in the allocators, as
seen in section 2.1. While data structures allocate and destruct memory on
the device (GPU) and host (CPU) transparently. It remains to abstract kernel
launch. In order to do this, there is the macro CUDA LAUNCH. Listing 2.28
shows how a regular CUDA kernel launch is transformed using this macro.
The first argument is the kernel’s name, and the second is the GPU iterator
indicating the number and size of the workgroups. The subsequent arguments
are the arguments of the kernel. The macro gives the possibility to hide the
CUDA-specific syntax. Additionally, the macro allows us to switch from an
asynchronous CUDA kernel launch to a synchronous one with error checking in
case of debugging.

Listing 2.28: CUDA LAUNCH

1

2 auto part = vd.getDomainIteratorGPU(32);
3

4 // Normal CUDA kernel launch
5 kernel<<<part.wthr,part.thr>>>(vd.toKernel());
6

7 // The same using the macro
8 CUDA_LAUNCH(kernel,part,vd.toKernel())

The macro executes the kernel function for every workgroup and thread in-
side each workgroup. We emulate on CPU two functionalities: one is __syncthreads
the other are atomic operations. __syncthreads function is emulated using a fast
context switching without explicit threads. A fast context switch is a way to
stop the normal execution of a function or a piece of code, save the status of the
current context and resume it later. While saving the status of one context, we
also switch to another context resuming its execution. While this can be done
with standard threads, the context switches of such types are costly because
they involve the operating system. A faster way is to use assembly instruction
to code a function that operates a switch directly. A non-inlinable function call
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generates at assembly level the instruction call that saves on stack the address
of the assembly instruction line after the instruction call. In order to operate a
switch directly, this function must first save the address of the next assembly in-
struction after the assembly instruction call This indicates where the execution
has been stopped and should resume once we want to go back to this context.

In order to have the possibility to jump back to a context we are leaving, it
is necessary to save the registers and stack pointer. To switch back or move to
another context, we restore the registers and stack pointer previously saved, as
final step the CPU executes a direct jump with the assembly jmp to the saved
address in which the execution has been previously stopped. This functionality
must be implemented for every architecture and ABI in assembly. Fortunately,
the boost library provides such functionality with boost::context for many ar-
chitectures. We use such a library to implement fast context switching and
construct on top a fully functional CUDA syncthreads() function.

Also, atomic operation in the kernel are emulated. When there is only one
thread, atomic operations like summation minimum and maximum are equiv-
alent to standard non-atomic operations. Primitive operations explained in
section 2.2.14 are implemented on a single-core CPU or wrapped around an
already existing implementation from some library.

The actual implementation has two backend: one sequential where one
thread sequentially execute every block, and one OpenMP based where one
thread execute one block at a time and blocks are assigned to CPU threads.



Chapter 3

Space decomposition and
distribution

Until here, the data structures presented were single-node or shared memory.
This section extends them to distributed data structures figure 3.1. Because
this section focus on N-dimensional simulation distributed data structures, it
is necessary to introduce the concept of the N-dimensional simulation domain
needed to develop domain-specific data structures. As an example consider a two
dimensional grid 100×100, when defined in a simulation domain from (0.0, 0.0)
to (1.0, 1.0) it leads to a spacing of (0.01, 0.01). The second important point to
address is data distribution. In order to have extensible code, it is necessary to
create a generic framework code able to convert a shared memory data structure
into a distributed one. In order to do so, two components are introduced,
one is the space decomposition module, and the second is a serialization and
communication module.

3.1 Space Decomposition

The space decomposition module divides the space into sub-domains and as-
signs them to processors. In particular, given a simulation box, this module has
to create a set of boxes that define the computational domain for a particular
process, GPU, or computational device. In figure 3.2 there is an example of
a two-dimensional box decomposed in 3 processors. A processor domain indi-
cated with one color is composed by a union of boxes with edges parallel to
the principal axis. Boxes are not forced to create a connected domain, but
they are forced to be parallel to the principal axes at the present writing. The
motivation behind this constrain lies in specific structures like distributed grid
containers not working very well with non-axis parallel decomposition. Non-
parallel axis decomposition makes the shape of every patch very complex. Each
row requires a different starting and end point and the ghost shape also be-
comes non-trivial and potentially variable on each row. OpenFPM internally

49
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Figure 3.1: Distribution abstraction and toward distributed data-structures

Figure 3.2: Domain decomposition in OpenFPM. The computational domain
is decomposed into Cartesian sub-sub-domains (small squares) assigned to pro-
cessors (colors). After the assignment, cuboidal blocks of sub-sub-domains are
merged to form the larger sub-domains (bold lines). One processor may have
more than one subdomain. Sub-domain borders at processor boundaries are ex-
tended by a ghost layer (shaded area, shown exemplarily for the red processor)
to provide all data required for computations locally.
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reserves the possibility of having non-axis parallel decomposition specialized for
particular distributed containers like particles, but all domain decompositions
implemented at the time of writing use parallel axis.

The domain decomposition process in OpenFPM is divided into three phases:
decomposition, distribution, and sub-domain creation as summarized in algo-
rithm 5. The decomposition stage divides the physical domain into sub-sub-
domains (small squares in figure 3.2). In figure 3.2, the sub-sub-domains are
arranged in a cartesian way, but generally, this is not necessarily the case. The
number of sub-sub-domains generated is as large as the number of processors,
but this number can be larger for certain decomposition algorithms like graph-
based. For others like orthogonal recursive bisection, the number is generally
kept equal to the number of processors. The number of sub-sub-domains is
either specified by the user program or chosen automatically by OpenFPM. In
the latter case, OpenFPM queries the distribution algorithm to get a default
number. The number of sub-sub-domains determines the granularity of the
distribution algorithm in which to search for an optimal configuration.

Algorithm 5 Domain decomposition

1: procedure DomainDec
2: Decomposition:

3: Divide the bounding box of the computational domain into sub-
sub-domains, in figure 3.2 show a regular cartesian decomposition in sub-
sub-domains. Create a graph where each sub-sub-domain is a vertex and
edges indicate potential communication if the two sub-sub-domains are as-
signed to different processors

4: Distribution:

5: Distribute the sub-sub-domains across processors. By sing a
graph the natural way is to use a graph partitioning algorithm like Metis or
ParMetis [62]. The assignment naturally define processors boundaries

6: Sub-domain creation:

7: this stage operates decomposition optimizations like merging the
sub-sub-domains in the same processor to form larger sub-domains with less
intra-processor mesh ghost layers

The main structure that handles phase 1 is called CartDecomposition defined
in listing 3.1

Listing 3.1: Cartesian Decomposition

1

2 template<unsigned int dim,
3 typename T,
4 typename Memory,
5 template <typename> class layout_base,
6 typename Distribution>
7 class CartDecomposition

• dim indicates the dimensionality of the space to decompose
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• T Precision of the space to decompose float or double.

• Memory This parameter is the memory type used to store information, this
parameter is passed to the multiple internal openfpm::vector that requires
to run on multi-hardware.

• layout base The layout used by this structure to store information. This
parameter is passed to the multiple internal openfpm::vector used to store
information and for which it is required to run computation on different
hardware.

• Distribution The distribution algorithm used to distribute sub-sub-domains

The distribution object handles the second phase of the space decomposition
and must implement a well-defined interface to interact with CartDecomposi-
tion. Fixing the interaction between CartDecomposition and the distribution
object requires encapsulating the algorithm in our distribution class. Doing
this gives the possibility to extend CartDecomposition with an arbitrary num-
ber of distribution algorithms. OpenFPM contains a wrappers for Parmetis
graph-based algorithms, Metis graph-based algorithms, space-filling curve, and
trivial assignment if the number of sub-sub-domains is equal to the number of
processors. A random distribution algorithm is also implemented to check the
robustness of CartDecomposition to work on any decomposition.

3.2 Distribution algorithm selection and balanc-
ing

The class that encapsulates the distribution algorithm must be assignable and
implements a pre-established API defined in listing 3.2

Listing 3.2: Distribution

1

2 void createCartGraph(grid_sm<dim, void> & grid, Box<dim, T> & dom)
3 void decompose()
4 void refine()
5 void redecompose()
6 float getUnbalance()
7 void getSubSubDomainPosition(size_t id, T (&pos)[dim])
8 void getSubSubDomainBox(size_t id, T (&pos)[dim])
9 inline void setComputationCost(size_t id, size_t weight)

10 size_t getSubSubDomainComputationCost(size_t id)
11 void setMigrationCost(size_t id, size_t migration)
12 void setCommunicationCost(size_t v_id, size_t e, size_t communication)
13 bool weightsAreUsed()
14 size_t getProcessorLoad()
15 size_t getNSubSubDomains() const
16 size_t getNOwnerSubSubDomains() const
17 size_t getOwnerSubSubDomain(size_t id) const
18 size_t getNSubSubDomainNeighbors(size_t id)
19 void write(const std::string & file)
20 void setDistTol(double tol)



CHAPTER 3. SPACE DECOMPOSITION AND DISTRIBUTION 53

Without going into the details of every single methods, the API is composed
by: createCartGraph creates a set of unassigned sub-sub-domains with a
suggested granularity given by grid. decompose creates the sub-sub-domains.
refine does a local redistribution, of the sub-sub-domains. redecompose cre-
ates another assignment where non local movements are allowed, but at the same
time tries to keep the new distribution overlapping as much as possible with the
old one. The methods, setComputationCost, getSubSubDomainCompu-
tationCost are functions to get/set the computational load of each sub-sub-
domain. The method setMigrationCost sets the cost in migration for each
sub-sub-domain in case a sub-sub-domain is reassigned, and setCommunica-
tionCost set the cost in communication in case two adjacent sub-sub-domain
are assigned to two different processors. getProcessorLoad() gives the total
load for the calling processor once decomposition/distribution/optimization is
completed. The method getNSubSubDomains() gives the number of sub-
sub-domain in the full simulation domain. getNOwnerSubSubDomains()
gives the number of sub-sub domains owned by the calling processor. getOwn-
erSubSubDomain gives the list of the sub-sub domains owned by the calling
processor, getNSubSubDomainNeighbors gives the neighborhood sub-sub
domains for a given sub-sub-domain. setDistTol sets the maximum tolerated
unbalance for which the algorithm is considered converged. This API is general
enough to handle different geometrical decompositions like orthogonal recursive
bisection or space-filling curve and graph-based decompositions.

There is no trivial assignment in graph-based decompositions because the
number of sub-sub-domain (small-squares in 3.2) is larger than the number
of processors (colors in figure 3.2). Instead, the additional degree of freedom
is used to improve load balance and to reduce communication overhead. An
optimal mapping must ensure that each processor receives the same amount of
computational work (in terms of wall-clock time), and at the same time, the
total amount of inter-processor communication is minimized.

Graph-partitioning models this problem very well. Each sub-sub-domain is
a vertex of the graph and an undirected edge between two vertices represents a
communication payload between the respective sub-sub-domains through their
overlapping ghost areas. In order to account for varying particle density, each
vertex has a computational cost ci, proportional to the total amount of com-
puting time contained in the sub-sub-domain i. The edges ei,j between sub-
sub-domains i and j have a weight proportional to the time used in exchanging
information between sub-sub-domains.

In an optimal assignment, two conditions must be satisfied at the same time.
The sum of the vertex weights in a partition assigned to processor p much be
equal to the sum of the vertex weights in a partition assigned to processor
q. The sum of the weights of all edges connecting two different processors sub-
sub-domains is minimal. Finding the global optimum solution to this problem is
NP-hard and cannot be efficiently computed. Several publicly available libraries
compute approximate sub-optimal solutions to this problem in a reasonable
time.
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3.2.1 Sub-domain creation and decomposition optimiza-
tion

The last step of the domain decomposition tries to perform optimizations on
the decomposition whenever possible. In the case of cartesian sub-sub-domain
decomposition, once the distribution assigns them to processors, it tries to merge
sub-sub-domains assigned to the same processor into larger sub-domains (bold
lines in figure 3.2). Merge of sub-sub-domains reduces the total ghost-layer
volume since sub-sub-domains on the same processor do not require a ghost
layer between them. While this step is not so crucial for particles, for meshes
is an important step. Ghost layers are required on all sub-domain boundaries
for fast, structured neighborhood access. Therefore, the goal of sub-domain
creation is to merge sub-sub-domains such that the minimum number of sub-
domains with the smallest surface-to-volume ratio is created on each processor.

For example, if we have a grid of sub-sub-domain assigned to processors,
the sub-domain optimization and creation algorithm runs in parallel on each
processor. It starts from the first (by indexing order) sub-sub-domain on that
processor and uses it as a seed. It then extends its boundaries uniformly in
all directions. For example, the box is enlarged in two dimensions by shifting
the border by one sub-sub-domain in direction +X, +Y, -X, -Y. This proce-
dure is iterated until the sub-domain border reaches an inter-processor bound-
ary or the end of the simulation domain. When it is not possible to merge
any more sub-sub-domains in any direction, a sub-domain is created from all
merged sub-sub-domains. The process continues choosing the next (by indexing
order) unassigned sub-sub-domain at the border of the just-created sub-domain
and repeats until all sub-sub-domains have been assigned to some sub-domain.
Despite not finding the optimal solution, i.e., the one with the smallest number
of minimum-surface sub-domains, this greedy heuristic is perfectly parallel and
finds a sub-solution in linear time in the number of sub-sub-domains.

3.2.2 Internal/External ghost boxes, local internal/exter-
nal ghost boxes

Once the sub-domains are created, like in figure 3.2, each processor has a list of
boxes that compose the processor domain. In general, most types of computa-
tion require reading information from the neighborhood processors. Figure 3.2
show a processor domain in red with its ghost area in red. The ghost area is
again composed of a list of boxes called external ghost boxes. In the following,
we will formalize the terminology about internal/external ghost boxes and local
internal/external ghost boxes.

Internal/External ghost box We consider two sub-domains A and B iden-
tified by two boxes axis parallel in two different processors called respectively i
and j. A is the sub-domain for processor i, and B is the sub-domain for proces-
sor j. If we extend A by a ghost area, intersect A with B, and the intersection
is different from zero, the intersection is again a box with axis-parallel. We call
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that box external ghost box from the perspective of i and internal ghost
box from the perspective of j. This means that there is always a correspondent
internal ghost box in a different processor for each external ghost box.

We can also do the same procedure for the sub-domain B extending it by
a ghost area. In that case if we have a non-zero intersection, we call the re-
sulting intersection box internal ghost box from the perspective of i and
external ghost box from the perspective of j. The extension procedure is
non-symmetric. Extending A to B generates different boxes than extending B
to A figure 3.3.

local internal/external ghost box From figure 3.2, we see how the pro-
cessor in red has three subdomains. This means that intersection between sub-
domains can happen within the same processor, in this case these boxes are
called local internal/external ghost boxes.

Boundary conditions and particular cases Boundary conditions affect
the construction of the internal and external ghost boxes. A particular case
is periodic boundary conditions. In this case, a sub-domain can intersect with
itself. The terminology still applies, with the difference that sub-domain A and
B are now the same. We also notice that intersection by periodicity generates
an internal ghost box with margins different from the external ghost box like
shown in figure 3.3.

Limits on the ghost boxes The only limitation imposed by the ghost boxes
is that the ghost boxes must be all axis parallel. There is no limitation on
numbers, or in extension like shown in figure 3.4.

performance

The decomposition distribution and optimization algorithm must be reasonably
fast in finding a solution that balances the processor’s computational load. We
have to consider that the time spent finding such a solution is not used to run
the simulation. For this reason, the decomposition distribution and optimiza-
tion must be seen as a secondary problem. If the simulation is going to balance
frequently, the time spent in balancing must be justified by a speedup of the
simulation. An exception can be made for all problems where we have a sim-
ulation with static geometry. In this case, the decomposition is balanced only
at the beginning and remains static over time. In this case, because the bal-
ancing algorithm runs only once at the beginning of the simulation, a better
model providing balance and reduced communications at the same time could
be essential for the total runtime of the simulation.

In our experiments, using graph-based decomposition, out of the total time
taken for domain decomposition, 94% to 99% is consumed by ParMetis in the
distribution step. This fraction was stable across all of our benchmarks. The de-
composition step always took less than 1% of the total time, and the sub-domain
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Figure 3.3: TOP In red, we see the domain A in green, the domain B. The red
line indicates domain A with the ghost, while the green line indicates domain
B with the ghost area. The orange box is the intersection of A + ghost with
B, while the yellow box is the intersection of B + ghost with A. The orange
box is the internal ghost box from the perspective of B and external from the
perspective of A, while the yellow is external from the perspective of B and
internal from the perspective of A. BOTTOM An example where periodicity
produce a sub-domain to intersect with itself and creating self internal/external
ghost boxes
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Figure 3.4: Ghost limits
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creation step less than 5% of the total time. The time required by ParMetis,
therefore, dominates the overall runtime performance of the OpenFPM domain
decomposition.

3.2.3 Serialization

Before introducing the communication layer in OpenFPM, the thesis must in-
troduce the concept of serialization. Serialization is the capability to convert
a data structure into a stream of bytes, while deserialization is the inverse op-
eration of taking a stream of bytes and convert it back into a data structure.
OpenFPM can serialize and deserialize general classes as soon as, given a class
A, it exposes three member functions shown in listing 3.3.

Listing 3.3: Serialization interface

1

2 template<int ... prp> inline void packRequest(size_t & req) const
3

4 template<int ... prp> inline void pack(ExtPreAlloc<S> & mem,
5 Pack_stat & sts) const
6

7 template<int ... prp> inline void unpack(ExtPreAlloc<S> & mem,
8 Unpack_stat & ps)

The first function is used to query the amount of memory required to serialize
the data structure. It takes a long unsigned integer as an argument where the
function sum the number of bytes required to serialize the data structure. The
second function pack is used to load the data structure into a contiguous chunk
of memory. The first argument of the method is a memory object, as seen
in section 2.1. In this memory object, we save the raw data coming from the
serialization process. The second argument sts contains a counter of the filled
byte in the memory. The mem object can be re-used to serialize multiple
objects contiguously. The function unpack does the inverse operation of the
function pack; it takes the memory object where previously was saved the data
and constructs the original data structure. Like sts, ps contain a counter of
the bytes used to deserialize the original data structure. We mention that the
template parameter S can be CudaMemory or HeapMemory depending if the
pack/unpack method contain CPU or GPU serialization/deserialization code.

The variadic template prp is a list of properties to serialize. Thanks to the
use of tuples, we can restrict the serialization to a set of properties. In partial
serialization, we can decide to serialize only part of the information contained
by the structure, selecting a list of properties.

Serialization of containers

Containers like vectors, grids, and sparse grids accept template parameters
where the template aggregate parameter can contain in theory everything, in-
cluding any nested containers like the one expressed in listing 3.4. Such structure
is visualized in a tree-based way like in figure 3.5.
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vector

vector

grid

int double

unsigned int

vectorint double[4]

grid

gridunsigned int

int

int

Figure 3.5: Tree structure of nested containers in listing 3.4

Listing 3.4: vector type with nested structure

1

2 vector<aggregate<int,
3 double,
4 vector<aggregate<
5 unsigned int,
6 grid<aggregate<
7 int,
8 double[4],
9 openfpm::vector<aggregate<int>>

10 >
11 >
12 >
13 >,
14 grid<aggregate<unsigned int,
15 grid<aggregate<int>>
16 >
17 >

In the case each node of the tree either implement the interface in listing 3.3
either can be serialized with a swallow memory copy (like a POD object that
does not contain any pointers), we do not need to construct any serialization
code. The serialization code is automatically generated without user inter-
vention. The generation is possible because the aggregate can be analyzed at
compile-time with meta-code and traversed to discover if one or more types in
the tuple list implement the interface 3.3 or can be safely copied with a swal-
low memory copy. During the analysis the code is generated at compile-time
accordingly to the feature of the tree node.

In figure 3.5 every red node implements the serialization interface, while blue
nodes do not. Every red node in the tree, inside the functions packRequest,
contains a meta-code to analyze if one of their children is a red node. If none of



CHAPTER 3. SPACE DECOMPOSITION AND DISTRIBUTION 60

the children is a red node, the memory required to serialize is calculated from
the number of elements the structure contains, multiplied by each type’s size.
This size in this special case is equivalent to the size in bytes of the aggregate.
If a red node is instead present, a for loop over its elements is generated. Inside
the loop, for every blue node, the counter is incremented by the size of the type
(unsigned int = 4 bytes, double = 8 bytes), and for every red node, a call to
packRequest is generated passing the counter. The method packRequest
triggers the analysis of its children for the nested container again. The process
ends when a container does not have red children or, more practically, once
a container does not have other nested containers. The pack follows the same
concept as packRequest, differing only in the operation performed inside. While
packRequest count the size of the buffer to serialize, pack fills the buffer with
raw data. The generation of the code to serialize the structure in figure 3.5
leads to the automatically generated algorithm in listing 6. Equivalently, the
generation of the packing code lead to listing 7.

Algorithm 6 Serialization code generation for packRequest

1: for all elements in vector(1) do
2: increment the counter by 4 (blue node int)
3: increment the counter by 8 (blue node double)
4: for all elements in vector(2) do
5: increment by 4
6: for all elements in grid(2) do
7: increment the counter by 4 (blue node int)
8: increment the counter by 4*8 (blue node double[4])
9: increment the counter by N*4 (red node vector(3)) where N is the

number of elements in the vector
10: for all elements in grid(1) do
11: increment the counter by 4 (blue node unsigned int)
12: increment the counter by N*4 where N is the number of elements in

the grid

The variadic template prp selects which properties we want to serialize. An
empty list indicates to serialize all properties. At present, in the case of nested
containers, we can select only the properties in the immediate level below. We
are not able to select properties in the deeper levels. In the case of the multiple
levels, all properties from the second level and below are selected.

The meta-code to analyze the type and select between generating the code to
pack a primitive or static array versus calling the pack and packRequest function
is modularized in an external object called packer exposing static methods. An
example of how it can be used is given in listing 3.5

Listing 3.5: Packer usage

1 Packer<float,HeapMemory>::pack(mem,9.0f,sts);
2 Packer<Point_test<float>,HeapMemory>::pack(mem,p,sts);
3 Packer<openfpm::vector<Point_test<float>>,HeapMemory>
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Algorithm 7 Serialization code generation for pack

1: for all elements in vector(1): i do
2: pack the integer i (blue node int)
3: pack the double i (blue node double)
4: for all elements in vector(2): j do
5: pack the unsigned int
6: for all elements in grid(2): k do
7: pack integer k (blue node int)
8: pack the 4 doubles (blue node double[4])
9: memory copy all the N integers of the vector (red node vector(3))

10: for all elements in grid(1) do
11: increment the counter by 4 (blue node unsigned int)
12: increment the counter by N*4 where N is the number of elements in

the grid

4 ::pack<pt::x,pt::v>(mem,v,sts);
5 Packer<grid_cpu<3,Point_test<float>>,HeapMemory>
6 ::pack<pt::x,pt::v>(mem,g,sts);

For completeness, we write the entire logic of source code generation with a
flow chart diagram in figure 3.6

Communication

Communications are fundamental in the context of distributed data structures.
Most of the time, we have to exchange data with neighborhood processors and in
certain situations with non-neighborhood processors. At the base of OpenFPM,
there is the Message Passing Interface API and a library implementation con-
formant to such API. Although OpenFPM makes use of MPI, the API is not ex-
posed directly. An object calledVCluster provides its functionality. VCluster
represents a group of processes. Either all processes like MPI COMM WORLD
or a subset. Because the distributed data structures operate communications
storing or using a reference to this object, tuning the VCluster, it is possible
to restrict the distributed data structure to work on a sub-set of processes. An-
other important reason not to expose MPI and hide it behind VCluster is the
possibility to replace an MPI library with other communication libraries like
Unified Communication X (UCX) or NVIDIA communication collective library
(NCCL).

VCluster provides both type-unaware API and type aware API for com-
munication. Type unaware communication API is a set of methods to send and
receive plain data as a stream of bytes. Type-aware communication API is a
set of methods to communicate high-level structures/containers like a sparse
grid, a vector, or a nested container like a vector of grids. We have to consider
how to deal with the transmission of complex structures with nested point-
ers like in a vector of grid or a sparse grid. Type-aware communication API
contains templated functions that accept any type. They rely on the concept
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Figure 3.6: Logic to serialize nested containers
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of serialization and deserialization of complex data structure explained in sec-
tion 3.2.3. In a nutshell, type aware communications serialize the structure into
a byte stream, and the byte stream is then transported to the destination and
deserialized there. The actual communication primitives implemented in type
aware and type unaware are: the point-to-point send and receive, allGather,
and scatter. Broadcast and reductions like summation, maximum, and mini-
mum are supported in a type aware way only for primitives types like integers
or floating-point numbers of any size. All of them are asynchronous by default
and can be queued and synchronized before executing code that depends on it.
An example of type aware reductions is given in listing 3.7.

VCluster also implements communication patterns like dynamic sparse
data exchange, where the senders do not have to know the communication pat-
tern a priory or the size of the message a priory. Standard point-to-point com-
munication primitives require a priory knowledge of the communication pattern
for all processors. In standard MPI programming, if process A sends a message
to process B, process B must be aware of such communication and explicitly
call a receive. In situations where the information of the data structures must
be redistributed accordingly to a new decomposition with an unknown global
pattern, such knowledge is not available a priory. Dynamic sparse data ex-
change methods work on type aware and type unaware objects. All the sends
are queued in this type of pattern, and the method continuously probes for
receiving messages. To detect all communications have been completed across
processors, the methods use an asynchronous MPI barrier internally.

There are several variants of the default implementation for dynamic sparse
data exchange, synchronous and asynchronous implementation. Additionally,
depending on whether there is partial information or complete information
about the size and pattern of the receiving messages, the implementation is
changed internally dynamically. In case of type unaware communications, a
user-supplied callback is given to the method. This function is called in order
to allocate the memory necessary to receive every message. In the case of type-
aware communications, this is not required. The only requirement is that the
receiving object is resizable or can merge or fuse two structures.

The next section presents each implementation of synchronous Dynamic
Sparse Data Exchange (DSDE) in OpenFPM.

Dynamic sparse data exchange (DSDE)

As mentioned in the previous section, VCluster implements DSDE for type
aware and type unaware communication. This section goes into the implemen-
tation details regarding synchronous, type aware/unaware, and no partial/com-
plete/information of the receiving messages. All such variations have the same
API. Later, we will see how these specializations have different optimized com-
munication patterns implemented on top of a standard MPI API. We start to
look at the standard implementation of DSDE synchronous and type unaware
in algorithm 8

DSDE in algorithm 8 use MPI Issend to send data. MPI Issend differs from
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Algorithm 8 Dynamic sparse data exchange

Input: send arrays

1: for all sends arrays do
2: Send the data using MPI Issend

3: repeat
4: perform an MPI Probe to check for incoming messages
5: if We have an incoming message then
6: Call the user-defined callback to allocate memory and get a pointer

to the allocated memory
7: receive the message with MPI recv

8: use MPI Testall to check that all the sent messages with MPI Issend
have been received

9: if All messages has been received then
10: call MPI Ibarrier to notify all the messages have been sent

11: until MPI Ibarrier is not reached/called by all processors

MPI Isend. In the case of MPI Isend, the operation is considered completed
when the sending buffer is ready to be reused. The function returns indepen-
dently that the message has been already received or not by the destination
process. MPI Issend instead is considered completed only when the other side
has received the message. This behavior, results in the asynchronous barrier be-
ing hit if all messages have been received. Despite its dynamism, MPI Ibarrier
is a global synchronization point. If we know the communication is between
neighborhood processors in the form of a single message, we can identify the
processors from which to receive a priori. However, when the size of the message
remains unknown, we can proceed as follow: We first send a message specify-
ing the size of the incoming message, allocate the buffer, and finally queue the
receive function, like shown in algorithm 9. In case we also know the message
size, the algorithm reduces even more into algorithm 10

All the algorithm variations rely on the same API call shown in listing 3.6.
The selection of the patterns presented before is based on the information given
for the argument n_recv,prc_recv,sz_recv. If n_recv is set to zero, the receiving
processors remain unknown even in number. In such case, no assumptions is
made, and the first variation is chosen. In case n_recv is non-zero, prc_recv must
be also filled. If sz_recv is filled with zeros the second variation is chosen. If
sz_recv is filled with non-zero, then the third variation is used. Having only
one call for all variations simplifies the logic of the code that uses these func-
tions. The best communication algorithm is selected transparently based on the
information we have at the moment. The methods in listing 3.6 is the lowest
level call to dynamic data-sparse exchange. To complete the explanation of the
parameters needed for DSDE: n_send is the numbers of messages to send, sz con-
tain the size of each message to send and prc contains the destination process
for each message. ptr contains a pointer to the message data n_recv prc_recv

and sz_recv, as explained before, contain or does not contain information about
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Algorithm 9 Dynamic sparse data exchange

Input: send arrays

1: for all Messages to send do
2: Queue an MPI Isend with the size of the message to the destination

process

3: for all processors we have to receive do
4: queue an MPI Irecv

5: Wait to receive all messages
6: for all Received messages do
7: Call user defined function to allocate a buffer big enough to receive the

message

8: for all Messages to send do
9: Send the message using MPI Isend

10: for all Receiving processors do
11: Receive the messages using MPI Irecv and the previous received message

size

Algorithm 10 Dynamic sparse data exchange

Input: send arrays

1: for all Processes from which we have to receive do
2: Call the user-defined function to allocate a buffer big enough to receive

the message

3: for all Messages to send do
4: Queue an MPI Isend

5: for all Messages to receive do
6: Queue an MPI Irecv

7: Wait for all messages to be received
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the receiving messages and select the communication algorithm. msg_alloc is the
callback used to allocate the receiving buffers, while the last argument ptr_arg

is a general pointer passed to msg_alloc in case we want to pass arguments or
data to the callback.

Listing 3.6: NBX call

1

2 void sendrecvMultipleMessagesNBX(size_t n_send , size_t sz[],
3 size_t prc[] , void * ptr[],
4 size_t n_recv,
5 size_t prc_recv[],
6 size_t sz_recv[] ,
7 void * (* msg_alloc)(...),
8 void * ptr_arg,
9 long int opt=NONE)

The equivalent type aware function for the DSDE sendrecvMultipleMes-
sagesNBX is given by SSendRecv. In listing 3.8, it is possible to note that there
are several simplifications compared to sendrecvMultipleMessagesNBX.
send is a list (openfpm::vector) of objects T to be sent for each processor. The
vector prc_send, store the destination processor number, prc_recv and sz_recv, if
left empty, will be internally filled with the ids of the processors from which we
have received, and the number of objects T received from each processor. recv

is the receiving object, it can be again an openfpm::vector<T> or any objects of
type S implementing the functionality S.add(T).

Thanks to this generalization, we can call the function in very different ways.
Consider the case where the class A respects the interface of serialization, we can
call SSendRecv with [T = A S = vector<A>] or [T = vector<vector<A>>and
S = vector<A>] or [T = vector<vector<A>>and S = vector<vector<A>>].
The first case means that we are sending one object A for each processor listed
in prc_send. We collect all received objects in recv merging them into one list. In
the second case, instead of sending one object A for each process, we are sending
a set of objects A to each process. Each processor receives a set of objects A
and collects them in recv merging them in one list. In the third case, we are
sending a set of objects A for each processor and receiving a set of objects A
from each processor. Every set in this case will not be merged in one list but
it remains separated and stored into a vector of vectors of A. The last case can
be considered equivalent to the first if we transform A → vector < A >.

Type aware functions work on the capability of object A to be serialized and
deserialized. An object A automatically generates serialization and deserializa-
tion functions if it respects the conditions in section 3.2.3. The approach works
in general independently from the layout and the number of properties or nested
structures. On the other hand, serializing structures is expensive and generates
an extra copy from the data-structure into the sending buffer. In cases where
the layout fits one or few messages to send, VCluster skip the serialization and
send the data with zero-copy. Because the tree is known at compile-time, these
optimizations are applied at compile-time.

The graph in figure 3.7 shows the compile-time optimizations in terms of
code generation for each case in SSendRecv.
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3.2.4 reductions

For the case of type-aware communication, instead, VCluster implements reduc-
tions likemax() min() sum() that calculate the maximum, minimum, and sum
across processors asynchronously. An example is given in listing 3.7. The code
creates an object VCluster, two variables f and i, for which we want to calculate
the maximum and the sum across processors. Calling max() and sum(), we
pipe the operations asynchronously. The type is automatically inferred from the
type of the variables. Once all the operations are queued a call to the method
execute() calculate the max() and sum() consistently across all processors.
After execute() f and i contain respectively the maximum and the summation
across processors.

1

2 auto & v_cl = create_vcluster()
3

4 double f;
5 int i;
6

7 // f and i filled by each processor
8

9 v_cl.max(f);
10 v_cl.sum(i);
11 v_cl.execute();

Listing 3.7: Maximum and summations across processors

Listing 3.8: SSendRecv

1

2 template<typename T,
3 typename S,
4 template <typename> class layout_base = memory_traits_lin>
5 bool SSendRecv(openfpm::vector<T> & send,
6 S & recv,
7 openfpm::vector<size_t> & prc_send,
8 openfpm::vector<size_t> & prc_recv,
9 openfpm::vector<size_t> & sz_recv,

10 size_t opt = NONE)
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Figure 3.7: Optimizations done internally by SSendRecv



Chapter 4

Distributed data structures

4.1 Distributed grids and grid dist id as frame-
work for distributed grid

The previous sections presented the shared memory data-structures module,
space decomposition module, and communication module. This section presents
how to construct space-based distributed data structures on top of these mod-
ules. The first structure the thesis presents is the distributed dense/sparse grids
defined in listing 4.1

Listing 4.1: grid dist id definition

1

2 template<unsigned int dim,
3 typename St,
4 typename T,
5 typename Decomposition = CartDecomposition<dim,St>,
6 typename Memory=HeapMemory,
7 typename device grid=grid cpu<dim,T> >
8 class grid_dist_id

• dimensionality the dimensionality of the distributed grid.

• St precision used to store or perform calculations in case of position and
position informations: like grid spacing and domain in which the grid is
defined.

• T the aggregate or tuple of properties the data-structure contain

• Decomposition which space decomposition module to use, modules are
explained in section 3.1

• Memory Type of memory used, either HeapMemory or CudaMemory ex-
plained in section 2.1

69
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• device grid Type of grid used at single node level. This parameter selects a
dense grid cpu explained in section 2.2.8 or the sparse grid cpu explained
in section 2.2.14 or sparse grid on gpu explained in section 2.2.14. In
general, a new completely different implementation is possible as soon as
it respects a grid-like interface as explained in section 2.2.8, and exposes a
serialization interface. This opens the possibility of wrapping an external
data-structure coming from an external library and making it distributed,
thereby importing its functionality.

The first key point of the grid dist id structure is handling both sparse and
dense grids. The second key point is to keep this code transparent from hard-
ware. In order to achieve this goal, we start noticing that the sparse grid
interface is a superset of the dense grid interface. While in the dense, there is
a get function to obtain a reference to a particular data point, in the sparse
grids, there are three methods: insert get, and remove. This means that
if grid dist id must drive both it has to expose a super-set API with insert
get, and remove functions. As a consequence, this requires the dense grid to
be extended to expose insert get, and remove functions. The easiest way
to extend the dense grid is map get and insert function to the standard get
and the remove to a no-operation. The sparse grid has the additional restric-
tion that the get function works only on reading, while the dense case works
for read and write. While is possible to use the most restrictive convention,
this would force the dense grids to be used with two functions insert and get
rather than a single get. In order to keep only one function for the dense case,
we declare the get function of the distributed grid with listing 4.2. Observ-
ing that the loc grid in listing 4.1 contains a list of single node data-structures
explained in the section 2.2. Declaring the return type as decltype(loc_grid.get

(v1.getSub()).template get<p>(v1.getKey())) means to infer the type (decltype())
from the underlying single core grid (loc grid.get(...)). Such approach delegates
the duty to determine the type, and consequently its constness or non constness,
to the underlying single node data-structure. Because the return type of the
get method in grid dist adaptively inherits the constness from the underlying
single node data structure, the method can be adapted to be used as read only
or read /write method.

The definition of the function get in listing 4.2, is also general in regard
to the key used to access a point (generic template parameter bg key). We
have to consider that the type used to access an element in a dense grid is
different from one in the sparse grid or sparse grid on GPU. Distributed types
use the type grid dist key dx to access an element. This type contains two
elements. The first is an integer indicating the patch created in a sub-domain
(figure 3.2), returned by v1.getSub(), the second is the information to access an
element within that patch number, returned by v1.getKey(). The type of the
key is different between a dense grid and a sparse grid. The dense grid in 2/3
dimensions contains 2/3 integer numbers to access an element within the patch,
while the sparse grid contains a chunk id and an integer as a linearized offset
within the chunk, independent of dimension (figure 2.2). For this reason, the
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type of the key to access an element within the patch must be templated with
a generic place holder (bg key)

Listing 4.2: get function in grid dist id

1

2 template <unsigned int p, typename bg_key>
3 inline auto get(const grid_dist_key_dx<dim,bg_key> & v1)
4 -> decltype(loc_grid.get(v1.getSub()).template get<p>(v1.getKey()))

Similar generalizations done for the method get apply also to the iterator
methods. For the single-core data-structures, the dense expose only one method
to get an iterator across the points getIterator(start,stop) explained in sec-
tion 2.2.14, while the sparse provides two getIterator(start,stop) and get-
GridIterator(start,stop) explained in section 2.2.14. To create a distributed
version able to drive both APIs we must choose a superset, so the iterators for
the distributed data structure must include two versions the getDomainIt-
erator(start,stop) and getDomainGridIterator(start,stop). Both meth-
ods return an iterator that moves transparently across all the patches, trans-
forms the start and stop point into relative coordinates for the local patches
excluding the ghost parts and calls the getIterator or getGridIterator on
the patch to get a sub-patch iterator. As soon as the sub-patch iterator is
complete, it moves to the next patch. Again, the sub-patch iterator return
type is templatized to have an adaptive code that works on both dense and
sparse grids. The standard shared memory dense grid is extended to have
a getGridIterator that maps to getIterator. We previously introduced also
the concept of ghost, consequently there are two additional iterators that in-
clude ghost areas: getDomainAndGhostIterator(start,stop) and getDo-
mainAndGhostGridIterator(start,stop).

It remains to generate a generic ghost get that works on dense and sparse
versions. The next section is dedicated to writing such functions in a generic
way, given the previous abstractions introduced.

4.1.1 ghost get as generic code

In section 3.2.2 the thesis introduced the concept of ghost areas and the concept
of internal and external ghost boxes. This section explains how to construct a
general ghost get on top of these concepts.

Suppose we have an array containing all the internal ghost boxes for each
sub-domain like explained in the decomposition section 3.2.2. Suppose also
that all these boxes have been converted into grid-based units by dividing them
with spacing. From these elements, algorithm 11 contain the pseudo-code for a
generic ghost get.

Algorithm 11 only requires an implementation for pack and unpack func-
tion for each of the single node data-structures, sparse or dense, CPU or GPU.
These functions are the serialization functions explained in section 3.2.3 that
abstract hadrware implementation. Because of these abstractions, the ghost get
function remains independent from dense, sparse, or a particular hardware.
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Algorithm 11 ghost get

1: for all internal ghost box do
2: Count how much information to serialize
3: Allocate the necessary buffer to serialize the information
4: for all internal ghost box do
5: Serialize the information as indicated by the internal ghost with function

pack 3.2.3

6: Transport the serialized information to the destination process
7: for all Received packages do
8: Identify the destination patch and the corresponding external ghost-box

(for each internal ghost box there is an external ghost box 3.2.2)
9: Remove the points in the section indicated by the external ghost

box.(Necessary for sparse, for dense is an empty function)
10: Merge back the information using the unpack function in the destination

grid.

4.1.2 Multi-hardware optimizations

The function in ghost get written in algorithm 11 is general enough to be multi-
hardware, sparse, and dense. However, it is necessary to write some steps asyn-
chronously to achieve good performance to reduce latencies coming from syn-
chronization between device and host. We have to consider that every time a
kernel depends on some checking performed on the host, latencies are intro-
duced because the next kernel has to wait for a signal from the host to run.
For example, in an algorithm that has to converge with some tolerance, the
calculated residual error must be transferred from GPU to CPU at the end of
the iteration loop. The CPU still has to check the convergence of the algorithm
and restarts the loop. Although this check requires a small amount of transfer,
it results in additional latency for the next iteration. In order to make this
operations more friendly for massively parallel architecture we will introduce
several optimization only tailored for GPUs and not CPUs. At the end of the
GPU optimization in section 4.1.6 the thesis will show how the CPU API easily
adapt to the GPU.

4.1.3 Queue operations for massively parallel architecture

Line 1-2 and 4-5 of algorithm 11 requires to respectively count and serialize for
each internal ghost-box the information the grid contains. Launching a kernel
for every internal ghost box is inefficient because it would result in small kernels.
It is better to launch one kernel that handles all the internal ghost boxes for
each patch. This operation requires queueing all internal ghost boxes for each
patch and running one kernel for counting and serializing the ghost on each
patch. This transformation requires changing the algorithm 11, in particular
lines 1-2 are transformed into algorithm 12 and lines 4-5 are transformed into
algorithm 13.
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Algorithm 12 Internal ghost box queued asynchronously for calculation

1: for all internal ghost box do
2: Queue the internal ghost box to the corresponding patch/sub-domain

3: for all sub-domains do
4: call packCalculate to launch a kernel to calculate the amount of infor-

mation we have to serialize given all the queued internal ghost boxes

Algorithm 13 Internal ghost box queued asynchronously for serialization

1: for all internal ghost box do
2: Queue the internal ghost box to the corresponding patch/sub-domain

3: for all sub-domains do
4: call packFinalize to launch a kernel to serialize the information contained

by the internal ghost boxes in the sending buffer

The same observation goes for deserialization. All receiving packages are
queued on the respective patches as multiple requests to merge the receiving
data. Once all the requests are queued, a kernel is launched on each patch to
merge the data. These two phases are split in unpack and removeAddUn-
packFinalize leading to the transformation of line 8-9-10-11 of algorithm 11
into algorithm 14.

Algorithm 14 Internal ghost box queued asynchronously for deserialization

1: for all Received packages do
2: Identify the destination patch and the corresponding external ghost-box

corresponding to the internal ghost-boxes (for each internal ghost box there
is an external ghost box as explained in section 3.2.2)

3: Queue the external ghost boxes with the request to remove the points
inside these areas.(Necessary for sparse, for dense is an empty function)

4: Queue the external ghost box with the request to merge the received
information using the unpack function in the destination grid.

5: for all sub-domains do
6: call the function removeAddUnpackFinalize to execute all the requests

queued in the previous loop

The transformations explained for serialization and deserialization make the
algorithm 11 fit better for massively parallel hardware. Additionally, we will see
in the next section how the transformed algorithm continues to work also with
synchronously implemented pack and unpack, for the CPU case. Because the
implementation of the methods of calculating the size, serializing, and deserial-
izing the data-strcutures, or removing points, are implemented at the level of
shared memory data-structures, the best case scenario is always selected based
on case (CPU/GPU or dense/sparse). Such functions are going to be explained
in the next section for the most challenging case, the sparse grid on GPU that
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fully use the asynchronous pack/unpack for the serialization stage.

4.1.4 Asynchronous pack/unpack for sparse grid on GPU

Asynchronous pack and unpack has been implemented for the sparse grid on
GPU mainly for its specialization on massively parallel architecture. This sec-
tion is going to explain more in details how algorithms [12,13,14] work and their
optimizations.

As we have seen before, serialization is composed of two phases. In the first
phase, we calculate the size of the buffer needed to pack the information. In the
second phase, the information is packed into the sending buffer.

In the first phase, to queue the serialization requests, there are three main
functions in listing 4.3.

Listing 4.3: Function to calculate the sending buffer

1

2 void packReset()
3

4 template<int ... prp> inline
5 void packRequest(SparseGridGpu_iterator_sub<dim,self> & sub_it,
6 size_t & req) const
7

8 template<int ... prp> inline
9 void packCalculate(size_t & req, mgpu::ofp_context_t &context)

The first member function packReset resets the pack counters, the second
member function packRequest queues a request to pack, the final function
packCalculate calculates the size of the buffer required to store the informa-
tion. The variadic template argument indicates which properties to pack in
order to serialize only one or more subtrees of the nested structure. The func-
tion packRequest accepts an iterator as a delimiter of the section of the grid
we want to serialize. The entire calculation of the size is done in packCalculate
on GPU. The packCalculate member function is implemented in algorithm 15.

Algorithm 15 calculates how many points each of the requests has to pack.
We then group the counters to determine the size of each sending buffer. Ad-
ditionally, the prefix sum calculated from the number of points each block con-
tains, indicates the offset at which each chunk must be packed in the sending
buffer. In particular, the package is structured like in figure 4.1 and will contain
the following elements.

• 1 The number of chunks to pack

• 2 The offset of where in the grid the internal ghost box has been packed,
and the size of the internal ghost box

• 3 An array containing for each chunk to be packed its chunk ID

• 4 An array containing for each chunk the number of points to be packed

• 5 An array containing for each point to pack the data of the selected
properties. The layout of this array is a SoA as explained in section 2.2.5
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Figure 4.1: On the left, there is with a red rectangle the two internal ghost boxes
we want to pack, the dotted blue rectangle indicates the limit of the patch. In
particular, the size of the patch does not have to be a multiple of the chunk
size. On the right column, we see how the information is packed. The arrow
indicates the increasing memory offset in the stream created, the number on
the right indicates the number stored in that offset, more on the right there is
a small description on the number packed
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Algorithm 15 packCalculate

1: Move the K queued internal ghost boxes to GPU, create K buffers of the
size of N number of chunks

2: Create an array of the size of number of boxes multiplied the number of
blocks

3: kernel:N=(chunks) workblocks, M=(points in chunk) threads
4: b=block, t=thread
5: K integers bcount initialized to zero.
6: flag set to false
7: syncthreads
8: Calculate the point p in coordinate
9: for all j in the K request/internal ghost box do

10: if p is inside the box j then
11: increment atomically the counter bcount[j]

12: syncthreads
13: Store the K counters in the K buffers at position b

14: Perform a exclusive prefix sum operation on all K buffers

• 6 An array of short int containing for each packed point its position relative
to the chunk

• 7 An array of char containing the mask value of each packed point

The mask is, in general, used to indicate additional flag properties. Each
point has 8 bits of mask. In the actual implementation, the bit 0 indicates if a
point in the chunk is filled or not. The bit 1 is used to indicate if a point is a
border point or not.

After calculating the package size and allocating a buffer for each processor,
the ghost get function starts phase two, where the information must be packed
in the allocated buffer. This is done with the pack functions pack and packFi-
nalize, specified in listing 4.4. The pack call fills the information in point 1 and
2 in the item list. The filling of the data happens in packFinalize, the offsets
for each chunk have been calculated by algorithm 15. The implementation of
phase one and phase two is specific to each single node data structure. In figure
4.1 there is the implementation for the sparse grid GPU case. In the example,
there are two internal ghost boxes packing information from a sparse-grid patch
on GPU.

Listing 4.4: Function to pack information in the sending buffer

1

2 template<int ... prp>
3 void pack(ExtPreAlloc<S> & mem,
4 SparseGridGpu_iterator_sub<dim,self> & sub_it,
5 Pack_stat & sts)
6

7 template<int ... prp>
8 void packFinalize(ExtPreAlloc<S> & mem,
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9 Pack_stat & sts,
10 int opt,
11 bool is_pack_remote)

The asynchronous unpack works in a similar way; it adds multiple requests
to a queue before performing them. We will see in the next section how the
unpacking procedure has several new challenges.

4.1.5 Unpack

Unpacking follows algorithm 14. Steps 3, 4, and 6 require to implement op-
erations like initializing the queue with unpack operations and executing them
in one kernel. Unpacking the information received from another processor im-
poses new challenges for specific data structures like the sparse grid on GPU.
Figure 4.4 shows a typical example in two-dimensions where the chunks are
miss-aligned. The miss-alignment introduces a map one-to-many between the
chunks packed and the destination chunks. One packed chunk can map into four
chunks in the destination grid in 2D and up to eight in 3D. The one-to-many
map requires applying a map between the packed chunks and the destination
grid. The map is constructed on the CPU and is uniquely determined for every
patch pair exchanging information. It is the same size as one single chunk and
contains for each point the index of the destination chunk (zero bottom-left, one
bottom-right, two top-left, three top-right figure 4.3). This map quickly con-
verts from the packed information’s data layout to the destination grid’s data
layout.

Consider in figure 4.4 the yellow box, as explained in section 3.2.2, this is an
internal ghost box from the perspective of the blue patch, while it is an external
ghost box from the perspective of the yellow patch. In figure 4.4, in order to
unpack the information in the yellow patch, we have first to convert the chunk-
ids 56, 72 and 88 into the new chunk ids. If we look at chunk 56, this chunk
intersects in general 4 chunks in the destination in particular using the nota-
tion (bottom-left,bottom-right,top-left,top-right) it intersects (X,X,X,0) where
X means invalid chunk. The 72 intersects (X,0,X,30) and 88 (X,30,X,60).

This conversion is done in parallel for each chunk ID received, each thread
in the kernel converts one chunk ID into the four destination chunk ids. Since
the chunks with X will not be touched, they can remain uninitialized. After
the conversion, the unpack operation performs a flush operation explained in
section 2.4 with the converted indices, where the final data merging step is
skipped. This constructs the array ”merged index buffer” in figure 2.4. The
last step is explicitly skipped because the data is compressed in the received
buffer, and has a different format from the one required by the flush operation.

Once the second from last step in the flush operation produces a merge
index buffer, it is possible to construct an additional map indicated in violet
in figure 4.2. This buffer contain the index in which the chunks [X,X,X,0],
[X,0,X,30], [X,30,X,60] are positioned in the merge index. This will result in
[12,13,14,0], [15,1,16,8], [17,9,18,11]. Given also the unique merged sorted list in
figure 2.4, it is possible finally to run a kernel that for each point in the received
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Figure 4.2: In the green box, there are the packed chunks, while under with
small grey boxes, the offset packed for each chunk. The color indicates in
which section of the map 4.4 the offset fall-off. Each chunk has four sec-
tions and four destination boxes. The merge index buffer is constructed us-
ing the flush function in figure 2.4, the violet array contain for each split
chunk id [X,X,X,0][X,0,X,30][X,30,X,60], the position in the merge index ar-
ray [12,13,14,0][15,1,16,8][17,9,18,11], and is constructed running a kernel on
the merge index buffer

buffer places the data in the destination chunk and offset. The operations the
kernel does are shown in figure 4.3

If there is an update of the ghost area where no data is added or could trig-
ger the creation of new chunks, it is possible to recycle the maps calculated to
unpack a packet more quickly. For this reason, each sparse internal grid on GPU
keeps track of these maps and stores them until an external flush is called. Inval-
idating these maps with a flush will force at the next asynchronous pack/unpack
operation the recalculation of the internal maps. This means in general that the
first ghost get is expected to be slower than the next subsequent ghost get.

4.1.6 CPU homogenization to the GPU

As the thesis mentioned before, it is not needed in the case of CPU to create
all the queue infrastructure and use asynchronous pack/unpack. However the
ghost get has been adapted to use asynchronous pack/unpack. Observing that
mapping the method packReset, packCalculate, and packFinalize into a no
operation, it is possible to re-map an asynchronous packing into a synchronous
one. Since packRequest, and pack are implemented at the level of shared
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Figure 4.3: This figure shows how it is possible to use the constructed maps to
recover the destination of the received points. The received chunk 56 is split
into four parts as also explained in figure 4.2 [X,X,X,0]. The map also quickly
converts the Received offsets (62 to 18 and 54 to 10). The converted offsets can
be used directly as offsets in the destination chunk (yellow arrow). These four
parts have a position in the merge index numbers 12,13,14,0 in violet as shown
also in figure 4.2. The merge index reported from figure 4.2 has at the bottom
a map (bottom white boxes) that indicate where each merged chunk id lives in
the unique merge index of figure 2.4. The bottom white box index is finally the
chunk position for the received point

Figure 4.4: In this figure, there are two patches, blue and yellow, dotted with
a ghost area of one. The patches do not include the ghost, as we can see the
blue and yellow rectangles do not overlap. The starting point of the blue patch
is (1,1), and the yellow area is the ghost part of the yellow patch intersecting
the blue patch, the blue area is the ghost area of the blue patch intersecting the
yellow patch.
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Figure 4.5: Convertion maps between two miss-aligned grids, on the left, There
are the chunks of the original grid from where chunks are packed. The empty
boxes indicate the chunk alignment of a destination grid, where we see a miss-
alignment of the chunks. Each point of the map 8x8 contain two pieces of
information a color index 0=red, 1=green, 3=blue, 4=yellow and the offset in
the destination chunk

memory data-structures, it is possible to switch to the most suited implementa-
tion on a case-by-case basis, leaving the code in the distributed data-structure
transparent from hardware (CPU/GPU) or sparsity (sparse/dense).

4.1.7 Performance

Benchmarks are performed in a distributed memory setting to check parallel
scalability of the current OpenFPM sparse grid implementation on a cluster with
multiple GPUs. All benchmarks are performed on the furiosa computer cluster
of the MPI-CBG, which has 20 nodes, each containing two Nvidia GTX 1080
GPUs and two CPU sockets with Intel Xeon(R) E5-2698 v4 at 2.20 GHz. Nodes
are connected by a Mellanox Infiniband 40 Gb/s interconnect. Unfortunately,
the GTX series of Nvidia GPUs do not support GPU-direct RDMA for MPI.
OpenMPI 4.0.4 has been used with CUDA support and measured the bandwidth
between a GPU and a CPU in the same node and across nodes to both be around
5.5 GB/s (measured with osu bibw from MVAPICH OSU Micro-Benchmarks).

The first benchmark measures the performance of the sparse grid with a
Gray-Scott simulation with different numbers of GPUs on a dense Cartesian
grid, with periodic boundary conditions in X, Y, Z. Each simulation performs
5000 time steps with ghost layer communication at each time-step as explained
in the previous section. The simulation result is visualized in figure 4.6A. The
results on 1 to 16 GPUs (strong scaling) are given in table 4.1. In all bench-
marks, both GPUs in one node are used. The benchmarks run using both
single-precision float and double-precision double floating-point numbers with
different overall grid sizes. When using single-precision arithmetics on 16 GPUs
for a 5123 grid, the network communication result in 72% of the total runtime.
This is confirmed by profiling the time spent in the different communication
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number of GPUs: 1 2 4 8 16

float, 5123 dense 99.14 60.2 41.4 27.16 33.44
double, 3843 dense 78.92 50.02 35.7 25.5 31.85
float, 10243 dense - - - 147.6 90.42

Table 4.1: Runtime in seconds for 5000 time steps of the sparse block grid Gray-
Scott simulation on dense Cartesian grids of different sizes and floating-point
precisions as indicated, run on different numbers of GPUs (strong scaling). The
largest case is only possible on 8 and 16 GPUs because of memory limitation.
For the same reason, double-precision is only possible on 3843 or smaller grids.

number of GPUs: 1 2 4 8 16

Packing 0.01 1.93 1.38 0.90 0.73
Send-Receive 0.03 8.05 13.3 13.1 24.8
Unpacking 0.007 2.31 1.68 1.26 1.16

Table 4.2: Time in seconds spent in the different communication operations
for performing 5000 time steps of the Gray-Scott simulation on a dense 5123

Cartesian grid of float values.

operations of our sparse block grid implementation. The results in Table 4.2
confirm the increasing communication overhead for the present strong scaling.
We also measure the bandwidth on the interconnect achieved by the simulation
in the communication phase. Using 2 GPUs in the same node, we measure 7.2
GB/s. This reduces to 4.4GB/s when using 4 GPUs in two nodes, 3.38GB/s
on 8 GPUs, and 1.2GB/s on 16 GPUs. This significant bandwidth degradation
is due to the number of MPI messages increasing while the size of each message
decreases.

In the second benchmark, OpenFPM runs the Gray-Scott system in a complex-
shaped domain represented by a sparse grid with an average chunk density of
0.854. A visualization is shown in Fig 4.6B. On the boundary of the complex-
shaped domain, we impose no-flux Neumann boundary conditions using the
method of images. The overall size of the sparse grid is 9683. Communication is
significantly reduced because there are no periodic boundaries, and the domain
decomposition cuts perpendicular to the narrow cylindric channels connecting
the spheres. On 8 GPUs, the communication overhead is now 30%, whereas it
was 48% in the dense case. This results in improved scalability, as shown in
Table 4.3.

Weak scaling has been also tested on more modern architecture like Nvidia
Ampere A100 with 8 GPU interconnected with NVLink in the same node, and
400 Gbps across nodes. The problem is again a 3D Gray-Scott simulation in
complex geometry like in figure 4.6. Calculations are done in single precision,
and the grid goes from 10243 on one GPU to 40963 on 64 GPUs. The result are
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number of GPUs: 1 2 4 8

double, 9683, sparse 200.2 105.303 59.2075 36.8114

Table 4.3: Runtime in seconds for 5000 time steps of the Gray-Scott simula-
tion in a complex-shaped domain represented on a 9683 sparse block grid with
double-precision arithmetics on different numbers of GPUs (strong scaling).

number of GPUs: 1 2 4 8

float, 5123, sparse 2.8 4.0 3.9 3.8

Table 4.4: Runtime in seconds for all 100 simulation steps of the expanding
spherical shell simulation on a 5123 sparse block grid on different numbers of
GPUs (strong scaling).

given in table 4.5. Until we remain on the same node efficiency remains at 95
percent, with NVLink (measured bandwidth of 986 GB/s). As soon as we move
to multiple node the communication starts to bound the simulation, dropping
the efficiency to around 30 percent.

The third benchmark uses a dynamic, time-varying geometry. The simula-
tion considers a spherical shell in a cubic domain of edge length 2.5. As time
progresses, the shell expands from initially an internal radius of 0.2 and an
external radius of 0.4 to a final internal radius of 0.82 and an external radius
of 1.02. In each of the 100 simulation time steps, i.e., after each expansion
of the shell, the sparse grid is re-adapted followed by a flush operation. The
measured runtimes for the complete simulation are given in table 4.4 for dif-
ferent numbers of GPUs. The benchmark (unnecessarily) performs two ghost
layer communications in each simulation step in order to show the performance
difference between the first one that computes all maps as explained in sec-
tion 4.1.1 and the second one that reuses them (see Table 4.6). Since there is
no computation on the grid, performance is limited entirely by communication.
While the flush operation scales well, the first ghost get is the bottleneck, as
expected. The second ghost get has a much smaller runtime than the first one

number of GPUs: Time(efficency)
1 75.20(1.00)
8 76.60(0.95)
16 196.0(0.37)
32 238.6(0.30)
64 240.0(0.30)

Table 4.5: Runtime in seconds for 5000 time steps of the Gray-Scott simulation
in a complex-shaped domain represented on sparse block grids of different sizes
on different numbers and types of GPUs(Weak scaling). Parallel efficiencies are
in parentheses
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because it reuses the maps (see Section 4.1.1). As expected, the communication
overhead increases when distributing the constant grid size over an increasing
number of GPUs.

number of GPUs: 1 2 4 8

ghost get 1 0.0 11.7 13.8 13.4
ghost get 2 0.0 1.2 3.0 3.4
flush 14 7.5 4.2 2.7

Table 4.6: Time in milliseconds to complete each sparse block grid function for
a dynamic, time-varying grid on different numbers of GPUs. Times are given
for the last step, when the spherical shell is largest, as this has the maximum
communication overhead.

A B C

Figure 4.6: Visualizations of the simulations used in the three benchmarks. A:
Gray-Scott reaction-diffusion simulation at time t = 3000 on a dense Cartesian
grid computed with second-order central finite differences in space and explicit
Euler time-stepping. B: The same simulation in complex-shaped domain at
time t = 10 000. The simulation domain consists of eight spheres connected
by thinner tubes. C: Growing spherical shell with final inner and outer radius
shown. For better visualization, the sphere is culled by its mid-plane.

4.1.8 Sparse-grid and level-set problems

Distributed sparse grid has an interesting application in the case of level-set
problems. Level-set is a convenient way to represent surfaces without explicitly
tracking the interface. For example, Bergdorf et al. [63] use level-set to simulate
reaction-diffusion equations on moving surfaces. In the case of 2D surfaces
embedded in a 3D space, the level set is a function φ(x, y, z) defined in the
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3D space such that if we indicate with Γ the embedded closed surface, φ(x, y, z)
satisfies 4.1. Because we are interested in solving the equation on the surface, we
do not need to define φ(x, y, z) on the entire domain but only in the narrow band
around φ(x, y, z) = 0. It is convenient, for this reason, to construct a sparse grid
instead of a grid and explicitly insert the point in the narrow band. From the
discretization of the Laplacian on surfaces, we obtain the Gray-Scott reaction-
diffusion equations 4.2. The only change is the replacement of the Laplace

symbol ∇2 with the equivalent operator on surface ∇ ·

[

(I − ~n⊗ ~n)~∇u
]

. The

operator (I − ~n⊗ ~n) project the gradient into the plane normal to ~n











φ(x, y, z) > 0 outside the volume enclosed by Γ

φ(x, y, z) = 0 on Γ

φ(x, y, z) < 0 in the volume enclosed by Γ

(4.1)

∂u

∂t
= Du∇ ·

[

(I − ~n⊗ ~n)~∇u
]

− uv2 + F (1− u)

∂v

∂t
= Dv∇ ·

[

(I − ~n⊗ ~n)~∇v
]

+ uv2 − (F + k)v ,

(4.2)

In this simplified problem, the shape is known analytically, and it is possible
to calculate both the normal and the distance from the surface of each point.
This characteristic allows us to construct the narrow band with the normal to
the surface and the sign distance function. The surface is at radius 0.3 the
band is wide 5δx where δx is the grid spacing. The initialization is done by
creating a grid iterator on the grid 5123 and inserting only the points falling in
the narrow band. A small perturbation in U and V concentration is created at
0.6 < θ < 0.8 and 0.0 < φ < 0.2 where θ is the angle between the z axis and the
vector connecting the center of the sphere and the point in the narrow band.
Figure 4.7 show the problem initialization.

Once initialized, the time stepping follows the algorithm 16. The Level-set
extension is based on [64] and is based on solving the equation 4.3

∂u

∂t
= sign(φ)

~∇φ
∥

∥

∥

~∇φ
∥

∥

∥

· ~∇u

sign(φ) =
φ

√

φ2 + ε2

(4.3)

The extension is not performed every time-step but every five time-steps,
because despite extending the solution in the normal direction ( ∂c

∂~n = 0), it
also slightly affects the tangential direction. It is possible to see that one of
the solutions of equation 4.3 is the configuration u = const. Numerically, the
extension iteration has the effect of slowly homogenizing the configuration. The
simulation ran for 100, 000 time steps with dt = 0.1 using euler integration.
Figure 4.7 shows the simulation results.
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Algorithm 16 Time-stepping level-set

1: for all Time-steps do
2: for all Internal points in the band do
3: Calculate the right hand side of the equation and update with the

new value
4: if Time-step is divisible by 5 then
5: for all All points do
6: Extend the solution normally

7: Flip the old values to the new values and vice-versa

Figure 4.7: On the left initialization evolved after 100 time-steps, on the right
gray scott simulation with level-set after 66000 time steps with dt = 0.1

4.2 Distributed particles

The thesis has shown until here the distributed grid grid dist id data structure
as a generic code to distribute shared memory data structures. It also showed
how to parallelize different variations like sparse-grids on CPUs and GPUs.
In general grid dist id works as a distributed container of shared memory
containers, if the single node container expose a particular interface of get
functions, iterators and serializations as explained in section 4.1. This section
will explain how to apply the same concepts to a particle-based distributed
container. Such container has a very similar definition to a distributed grid-
based container shown in section 4.5. However, these containers work differently
from grid-based. The main external difference between particles and grids is that
each point now has a position that can be read and written with getPos, while
on grids, the points are fixed, and the position cannot be modified.

Listing 4.5: Distributed particles

1

2 template<unsigned int dim,
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3 typename St,
4 typename prop,
5 typename Decomposition = CartDecomposition<dim,St>,
6 typename Memory = HeapMemory,
7 template<typename> class layout_base = memory_traits_lin>
8 typename vector_dist_pos =
9 openfpm::vector<Point<dim, St>,Memory,layout_base>,

10 typename vector_dist_prop =
11 openfpm::vector<prop,Memory,layout_base>
12 >
13 class vector_dist
14 {
15 vector_dist_pos v_pos;
16 vector_dist_prop v_prop;
17

18 ...
19 };

In listing 4.5, there is the definition of a distributed particle set. This struc-
ture expose the following parameters:

• dim: is the space dimensionality in which the particles lives.

• St: precision used to store position information

• prop is the aggregate or tuple of properties the particle contain

• Decomposition: is the space decomposition module used, as explained
in section 3.1

• Memory: is the type of memory used, which can either be HeapMemory
or CudaMemory, see section 2.1

• device vector pos: is the structure used at single node level to store the
particle position information explained in section 2.2.9.

• device vector prop: is the type of vector used to store the properties of
the particles, analogous to device vector pos

Distributed particle-based containers construct one shared memory data
structure for each process, unlike grid-based containers that create one for each
decomposition patch. The communication function ghost get read particles in
ghost areas from the neighborhood processors while ghost put remotely send
information written in the ghost area to the original particles. In the case of
a particle set, the map function assumes a more important role. On a grid,
map is generally used when the decomposition change to re-synchronize the
information across processors. On particles, the function map is also used to
redistribute the information when the particles move, their position is initial-
ized, or the decomposition change. In the following, is going to be explained
the main differences in implementation between the ghost get, ghost put on
particles compared to distributed grids.
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Figure 4.8: Layout of a local particles vector v pos or v prop. First come the
local domain particles, marked by g m= 1726 than come local ghost particles
from g m to lg m= 2167. Finally come the non-local ghost particles from lg m
to size()

4.2.1 ghost get, ghost put, map

Like was done for grid dist id, this section discuss the skeleton of the function
ghost get shown in algorithm 17. We first observe ghost particles are always
added at the end of the internal vector, as shown in figure 4.8. The marker
g m indicates the transition between domain particles and ghost particles. The
ghost particles are subsequently split into local and remote ghost particles, in-
dicated by the marker lg m. An additional buffer called o part contains the
indices of particles falling in the internal ghost boxes, equivalent to store the
ghost particles sent by this processor to the neighborhood processors. This
buffer becomes important when a ghost put is performed. From the skeleton
in algorithm 17, the shared memory particle container requires mainly three
functionalities. From (steps 1-5-6), the vector container must have the possi-
bility to resize. This function is already implemented for the openfpm::vector
as explained in section 2.2.9. The second functionality is serializing informa-
tion (step 3) and deserializing information from the received buffers (step 6).
Like for grids, hardware-dependent operations like resizing, serialization and
merging, are operated internally in the shared memory data structures like ex-
plained in section 3.2.3. The operation of labeling is instead a geometrical
operation meaningful only in a particle set. This operation is implemented in
the particle set and has two specializations, one for CPU and one for GPU.
After labeling, the sending buffers are constructed, and sent using type aware
communication as explained in section 3.2.3. Type aware communications are
hardware-independent and enable the possibility to send across the network
complex properties like dynamic nested structures in a particle property.

ghost put works like the inverse operation of ghost get. The informa-
tion on the ghost is merged back to the original particles. Because a particle
can be replicated in the ghost area of multiple processors, merging information
back result in conflicts. In order to solve conflicts, an operation is selected to
merge data. Typical operations are summation minimum and maximum for
simple properties like we have seen for the flush operation in the sparse grid on
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Algorithm 17 ghost get

1: Delete all particles outside the processor domain. This is done by resizing
the position vector v pos and the property vector v prop down to g m

2: Run across all the particles and label them if they fall in one internal ghost
box. A cell list is used to speed up this process. Each particle can have
multiple destination processes. During the labeling process, each process
saves the indices of the particles sent. This information is saved in a vector
of vectors (o part). In each vector, the indices are unique.

3: Create the communication buffers and serialize position and selected prop-
erties information.

4: Send the buffers to their corresponding destination process.
5: Replicate local particles in the ghost area like in figure 4.8 if some direction

has periodic boundary conditions.
6: Append/merge the data received at the end of the position and the prop-

erty vector. Every appended particle is tracked by each processor using
markers like in figure 4.7. While the size of each buffer received is saved in
recv sz get prp

GPU in section 2.2.14. The skeleton algorithm for the ghost put is given in
algorithm 18

Algorithm 18 ghost put

1: Read recv sz get prp from the previous ghost get and construct a send-
ing buffer for each process, reading from the ghost areas

2: Send the buffers to their corresponding destination
3: Merge the data received using o part with the existing data using the se-

lected operation (sum, max, min).

The hardware specialization on CPU and GPU for the algorithm 18 is hidden
internally in the openfpm::vector, while the merging operation is defined with
a functor structure shown in listing 4.6.

Listing 4.6: ghost put functoor for sum reduction”

1 template<typename Tdst, typename Tsrc>
2 struct add_
3 {
4 __device__ __host__ static inline void operation(Tdst & dst,
5 const Tsrc & src)
6 {
7 dst += src;
8 }
9 };

The functor structure for the ghost put function is a meta-function with
two arguments. The two arguments define the type of the operands. The
method called operation defines how to merge two elements. For example, in
the listing 4.6 the functor sum all the data together, with the line dst += src.
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Figure 4.9: Particle in cell buffer contains the indices of the particles in each
cell of the cell-list. It also has a second buffer containing the exclusive prefix
sum of the number of particles in each cell.

In the case of many-core architectures or GPUs, we try to avoid ghost put
operations because of race conditions. It is possible to use ghost put if hard-
ware provides some type atomic operation, like is done for the GPU functor 4.7.
Because ghost put use ghost areas and need the buffer o part to works, it can
be performed only after the first ghost get

Listing 4.7: GPU ghost put functor

1 template<typename Tdst, typename Tsrc>
2 struct add_atomic_
3 {
4 __device__ __host__ static inline void operation(Tdst & dst,
5 const Tsrc & src)
6 {
7 atomicAdd(&dst,src);
8 }
9 };

The map procedure, or the procedure to redistribute particles once they
move or the decomposition change, works in a very similar way to the ghost get.
The main difference is that the labeling process is performed using the sub-
domains rather than internal ghost boxes.

4.2.2 Cell-List CPUs and GPUs

Cell lists constitute the basis for finding neighborhood particles. Their construc-
tion in OpenFPM follows the standard general algorithms used in computing
them on CPUs and GPU. OpenFPM provides several variations for the GPUs
and the case of symmetric interactions. In this section, we are going to see
these variations and their internal design. This section shows how it is possible
to implement such variations in a modular and agnostic way for the user. The
cell-list construction on GPU or many-core architecture is very different from
the single-core case. The skeleton algorithm on CPU is in algorithm 21 and for
GPUs is in algorithm 19.

In the case of GPUs, the first step is to count the particles in each cell. An
essential feature of atomicAdd is to increment the counter of a cell and at
the same time return the old value of the counter before incrementing it. The
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index returned by atomicAdd can be considered a unique in-cell index (a id)
for the particle in the cell. If we now want to create a buffer that contains
the particle indices for each cell (particle-in-cell buffer), the most common way
is to calculate the exclusive prefix sum of the array containing the number of
particles in each cell. The calculated prefix sum indicates the starting point of
each cell in the particle-in-cell buffer as shown in figure 4.9. The kernel to fill
the particle-in-cell buffer with particles indices runs on each particle and reads
the id of the cell in which it resides and its in-cell index (a id). From the prefix
sum, we retrieve the starting point of the cell (s id), to finally calculate the
position of the particle index in the particle-in-cell given by a id + s id. The
details are given in algorithm 19

The cell list construction just described is not deterministic. If we look at
the in-cell indices, we realize that while they are unique for each particle in the
cell, the atomicAdd does not have deterministic behavior. Several runs can
produce a different ordering of the particles within the cell. While this is not a
problem, when we want to debug our program, this could make the task more
complicated. For this reason, the option MAKE CELLLIST DETERMINISTIC
slightly changes the cell-list construction to be deterministic at the cost of per-
formance. Here, the construction of the particle-in-cell buffer using the in-cell
index from atomicAdd is substituted by doing a stable merge-sort on GPU
of the cell-index of the particles. The buffer constructed can be considered a
particle-in-cell buffer. While, in general, the merge-sort version result to be
slower than the variation with atomicAdd, it makes all the calculations de-
terministic across different runs. All the constructions described until here are
referred as dense cell lists.

In addition to dense cell lists, the GPU also has sparse cell list variants to
reduce memory overstress. In the standard cell-list, every cell has a non-zero
cost in memory. For each cell of a standard cell-list, there is a counter counting
the number of particles in the cell. While this does not produce problems in
most cases, consider now the case where there is a significant portion of space
without any particles. In this case, one of the GPUs takes most of the space with
no computational cost. Despite having no computational cost, they have a non-
zero memory cost. Most typical load balancers balance based on computational
cost, and this raises a potential situation where the vast majority of space is
given to only one GPU. If this is the case, all the empty cells, despite not
having a cost in computation, can potentially overflow the memory of the GPU.
Sparse cell-list is a variant that avoids constructing the buffer containing the
scan of the number of particles for each cell. In particular, the offset buffer is
constructed only for the filled cells, leaving out the empty ones. In order to do
this, a hash map or sorted map is required. In section 2.2.14 a GPU version of a
sorted array map was shown, where it was possible to search and add elements in
parallel, keeping the memory footprint of order O(N), where N is the number of
elements/cells added. Doing a search unfortunately has complexity O(log(N)).
In order to avoid this search, the cell-list constructs an array (nn cell array)
containing for each non-empty cell the index-position of the neighborhood non-
empty cells. While the construction still requires O(Nlog(N)) in complexity
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after construction, the complexity to search the neighborhood of a cell is reduced
to O(1). The construction of the nn cell array buffer is advantageous if we have
to explore the neighborhood of the particles multiple times before reconstructing
the cell list on GPU.

GPU cell list implementation presented until here fit also many-core imple-
mentation, on a single-core CPU, the implementation follows the algorithm in
21. The base structure for the particle-in-cell buffer is now an array of arrays
or, more practically, a vector of vectors. Each cell contains a vector with the
indices of the particles inside that cell. As for the GPU case, it is possible to
create multiple implementation variances, it has been done also for the CPU. In
the CPU case the variances are based on multiple implementations of the array
of arrays concept.

The array of arrays interface is common to each implementation and hides
internally the implementation details. Every implementation can have different
complexity in memory and computation for the API. The common interface
requires a get function with two indices (i,j). One to retrieve the cell and the
other to retrieve the element inside the cell. We remark that it is not a simple 2D
array because every cell can have a variable number of elements. To complete
the API, we need in addition a function size() to return the number of cells and
a function getNelements(i) to return the number of elements in one cell, and
a function to add an element to a particular cell. The structure also provides
convenient operators like swap, assignment, duplication, and move semantics.
These operations in the array of arrays API are required in order to support
them at the cell-lists structure level.

At the moment of writing, three implementations are given of this API.
One uses a standard ”array of arrays” as an internal structure. In this case,
mapping get(i,j) is trivial. The first index i is used to access the first vector the
second index is used to access the nested vector. The second implementation
is a single array implementation. The ”array of arrays” is replaced by a single
array where each cell can store a maximum number of particles Nmax. In case
one of the cells overshoots this threshold, the array is resized to store Nmax × c
particles for each cell where c is some growing factor bigger than one. The third
implementation instead substitutes the first array with an unordered map. The
effect is very similar to the sparse cell-list to reduce the memory complexity when
many empty cells can flood the memory of one process. Table 4.7 specifies the
memory and computational complexity for the function get(i,j) where M is the
number of cells, N is the number of particles, and k is the number of buckets
in the unordered map.

Despite the ”single array” and ”array of array” having the best worst and
average complexity equal to O(1) for the function get(i,j), the constant is dif-
ferent. In the case of ”array of arrays” we have to follow a pointer, so we need
to access the memory two times instead of one.
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Impl. Memory : Computation Best Worst Average
Array of Array O(M)+O(N) O(1) O(1) O(1)
single array O(M*Nmax) O(1) O(1) O(1)
map of array O(N) O(1) O(N) O(N/k)

Table 4.7: Complexity on memory for the particle-in-cell-buffer, and compu-
tation complexity for the function get(i,j) for each implementation. M is the
number of cells,N is the number of particles and k is the number of buckets in
the unordered map

Algorithm 19 Cell-List GPUs

Input: Processor domain box, divisions on each directions

1: kernel:threads = M, workblocks = ceil(N/M), N = number of particles
2: Read the position of the particles
3: calculate in which cell-index the particle reside (cell-index is linearized)
4: increment the cell counter using atomicAdd
5: save the number returned (a id) into a buffer pic index for each particle.

6: Scan (exclusive prefix sum) the array with the number of particles on each
cell (scan cell)

7: create a buffer as big as the number of particles and call it particle-in-cell-
buffer

8: kernel:threads = M, workblocks = ceil(N/M), N = number of particles
9: Read the pic index of the particle i (pi)

10: calculate in which cell-index the particle reside cid (linearized)
11: fill the particle in cell buffer[scan cell[cid]+pi] = i
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Algorithm 20 Sparse cell-list GPUs

Input: Processor domain box, divisions on each directions

1: kernel:threads = M, workblocks = ceil(N/M), N = number of particles
2: Read the position of the particles
3: calculate in which cell-index the particle reside (cell-index is linearized)
4: Save the index into a buffer cell index buffer for each particle

5: Create a sparse vector on GPU 2.2.14 and use the cell index buffer as set
of keys to add, the values are set to one.

6: flush the map with add operation. This create a unique list of sorted cells
indices with the number of particles in each cell.

7: kernel:threads = M, workblocks = ceil(N/M), N = number of cells filled
8: while neighborhood cells: cid do
9: use binary search to find the position of the neighborhood cell p nn.

10: if neighborhood is found then
11: increment nn buffer[cid] with atomicAdd

12: Scan the buffer that count the neighborhood cells for each cell (nn buffer)
and save this buffer into nn buffer scan. The last element of the scan contain
the size of the buffer needed to create the buffer of neighborhood cells index.

13: reset nn buffer to zero
14: Create a buffer big enough to store the neighborhood cells index
15: kernel:threads = M, workblocks = ceil(N/M), N = number of cells filled
16: while neighborhood cells: cid do
17: use binary search to find the position of the neighborhood cell p nn.
18: if neighborhood is found then
19: increment nn buffer[cid] with atomicAdd, ca id is the integer re-

turned.
20: Fill nn cells buffer[nn buffer scan[cid] + ca id] = p nn

Algorithm 21 Cell-List CPUs

Input: Processor domain box, divisions on each directions

1: create an array of arrays (abstract concept as explained for CPU) as big as
the number of cells covering the domain of the processor

2: for all Particles do
3: Calculate the cell index of the particle
4: Add to the the particle index in the particle in cell buffer add(cid,p id)



Chapter 5

Numerics

5.0.1 Expression Parsing to solve equations

Until here, we have shown every layer that leads to the distributed data struc-
tures. The following layers of OpenFPM introduce concepts used in numerical
simulations. Such concepts aim to ease the coding of numerical simulation in
continuous particle methods.

Listing 5.1: Expression Based System

1 auto P=getV<Pressure>(particles);
2 auto Pd=getV<Pressure>(particles);
3

4 Derivative_x D_x;
5 Derivarive_y D_y;
6

7 auto equation = D_x(P) + D_y(P) + 5.0;
8 Pd = equation;

We start by introducing a system to solve continuous models described by
partial derivative equations. In particular, we separate the mathematical rep-
resentation of the equations from its discretization.

+

P P

+

5.0

vector_dist_expression_op<
vector_dist_expression_op<

vector_dist_expression_op<
vector_dist_expression<0u, 

... >,
Dcpse<2u, ... >,
VECT_DCPSE>, 
vector_dist_expression_op<

vector_dist_expression<0u, 
... >, 

Dcpse<2u, ... >, 
VECT_DCPSE>, 

VECT_SUM>, 
vector_dist_expression<0u, double>, 

VECT_SUM>

Figure 5.1: The equation ∂P
∂x + ∂P

∂x + 5.0

94



CHAPTER 5. NUMERICS 95

expressing equations in C++

OpenFPM is written in C++, and it uses template expression parsing techniques
to implement an interface to write generic differential equations. In order to
understand how template expression parsing can be used to express equations,
we have first to understand how a partial differential equation can be represented
with a tree. In this tree, the leaves are fields or constant numbers, in the
following will indicate them as terminal nodes. Any non-leaf node is a unary or
binary operator and, in the following, will be indicated as a non-terminal node.
An example is given for the equation ∂P

∂x + ∂P
∂x +5.0 in figure 5.1. To construct a

tree from an equation in C++, we use template expression parsing re-adapted
for our case.

From figure 5.1 we see how every tree expression has an equivalent represen-
tation as a type. In particular, we use the possibility to nest template parameter
types to represent an entire tree as a type. Every node is a templated class repre-
senting the basic binary operators like + − ∗ / or unary operators like an n-order
derivative. An example of how they are defined is given in the listing 5.2.

Listing 5.2: Expression Based System

1 // Example of definition for operator+ non terminal node
2 template <typename exp1, typename exp2>
3 class vector_dist_expression_op<exp1,exp2,VECT_SUM>
4 {
5 ...
6 }
7

8 // Example of definition of field terminal node
9 template<unsigned int prp, typename vector>

10 class vector_dist_expression
11 {
12 ...
13 }

The non-terminal nodes have three templated parameters. In the case of
binary operators like + − ∗ /, the first template parameter indicates the ex-
pression on the operator’s left-hand side. The second parameter indicates the
right-hand side of the operator. The third argument indicates the type of op-
eration. Any operation is a non-terminal node that can operate on a terminal
node like fields and number nodes or another non-terminal node. We restrict
non-terminal operators in the tree to binary operators like + − ∗ / and unary
operators like partial derivatives. In the case of derivative, the second argu-
ment is the class encapsulating the method used to discretize the derivatives
like DCPSE. Terminal nodes instead represent a field linked to a particular
property in the particle set or a number. Given such nodes an expression like
∂f(x,y)

∂x + ∂f(x,y)
∂x + 5.0 has a templated type representation given in figure 5.1.

In order to construct such C++ expression type, we have to create produc-
tions rules using operator overload. For example to express the production of

the node + in the expression ∂f(x,y)
∂x + ∂f(x,y)

∂y we overload the operator +. The
binary function in listing 5.3 has two parameters accepting two non terminal
nodes. The first parameter is a non-terminal node indicating the left-hand side
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of the ”+” expression, the second parameter indicate the right hand side of ”+”
the expression. In figure 5.1 the left parameter is equivalent to the violet type-
/node (and nested), and the second parameter indicates the right-hand side of
the expression and is equivalent to the blue type/node and nested. Inside the
function, we create the node plus in figure 5.1 equivalent to the green node and
return this new node representing the summation of the two derivatives.

In the case of derivatives, it possible to introduce a class Derivative. The
production rule, in this case, is expressed as overload of the operator() of the
class, in which it is possible to produce production rules from the expression
D(f) or D(f + g). Like for the operator +, the derivative the code in the
operator() produces the nodes in violet and blue in figure 5.1. In the case of
unary operators, the second parameter contains the algorithm used to discretize
the derivative. In the example, is shown the class DCPSE that contains the
DCPSE discretization algorithm.

Listing 5.3: Prodiction rule for the operator+

1

2 template<typename exp1 ,
3 typename exp2,
4 unsigned int op1,
5 typename exp3 ,
6 typename exp4,
7 unsigned int op2>
8 inline vector_dist_expression_op<
9 vector_dist_expression_op<exp1,exp2,op1>,

10 vector_dist_expression_op<exp3,exp4,op2>,
11 VECT_SUM>
12 operator+(const vector_dist_expression_op<exp1,exp2,op1> & va,
13 const vector_dist_expression_op<exp3,exp4,op2> & vb)
14 {
15 vector_dist_expression_op<
16 vector_dist_expression_op<exp1,exp2,op1>,
17 vector_dist_expression_op<exp3,exp4,op2>,
18 VECT_SUM> exp_sum(va,vb);
19

20 return exp_sum;
21 }

Once defined the nodes for the expression tree and the production rules, an
expression like in listing 5.1 produces a templated type that contains the equa-
tion as a tree. Computation can now be constructed creating a function value in
each tree node, and having each node calling the value function of its children.
Because the type is known at compile-time, the call sequence defining the tree
traversal is also known at compile. In this case, function inlining and context
optimization will generate the code of the expression. Thanks to expression
parsing, it is possible to compose computation constructing expressions.

While the value function accomplish the task to compute expressions, it is
possible to use expression to accomplish other tasks like generating a matrix
representing the Laplacian operator or a matrix representing a system of equa-
tions. The second task is performed by the function value nz. In this case,
the nested call of value nz generates instead the code needed to construct the
non-zero columns of a matrix representing the equation for one particle.
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For the case of value, The instruction triggering the computation is the line
Pd=equation in listing 5.1. This line relies on the fact that terminal nodes have
defined an operator equal. Such operator contain the code in listing 5.4. As we
can see, it contain a loop for every particle key orig in which the expression
v exp, containing the entire expression graph, is evaluated and stored in the
particle set v at position key. When v is a standard particle set the transfor-
mation v.getOriginKey(key) is the identity, and key orig is equivalent to key.
It starts to have a role when we use subsets. Consider the case where we have in
v ten particles with indices from 0 to 9. We now construct a subset of particles
with ids 1, 3, 7. A particle subset is a restriction of the particle set to a subset.
The type contains all the methods that the particles have with the difference
that the iterators function like getDomainIterator() return iterators running
only on the subset particles. If now we pass instead of v the subset, then the
loop will run for three iterations with key orig assuming value 1, 3, 7 and key
0, 1, 2. In particular the particle id 0 in the subset map to 1, id 1 to 3, 2 to
7. The key, key orig split design, allows us to introduce a map between a set
of contiguous indices (0,1,2) with a set of scattered indices (1,3,7). In our case,
the map is used to implements operation acting only on a subset of particles.

Listing 5.4: Expression computation

1

2 template<typename vector, typename expr>
3 static void compute_expr(vector & v,expr & v_exp)
4 {
5 v_exp.init();
6

7 auto it = v.getDomainIterator();
8

9 while (it.isNext())
10 {
11 auto key = it.get();
12 auto key_orig = v.getOriginKey(key);
13

14 pos_or_propL<vector,prp>::value(v,key) = v_exp.value(key_orig);
15

16 ++it;
17 }
18 }

if the type of v exp is the type presented in figure 5.1 v exp.value() will
trigger the tree-traversal at compile time and the generation of the instruction
to evaluate the equation in the point key orig.

Tensorial expressions: scalars and vectors and use on GPUs

Expressions are transparent from the discretization used for derivatives, as seen
in the previous section. They are also transparent from the type on which the
operator acts like a scalar or a vector. This feature relies on the method value
to partially redefine what does internally. Let consider the code in the value
method of the node +. The code is reported in listing 5.5. The result type
of the expression o1.value(key)+o2.value(key) indicating the summation of the
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left expression with the right expression is left on purpose generic with decltype

(o1.value(0)+o2.value(0)). This lead to different options depending of what the
underlying left (o1.value(0)) and right (o2.value(0)) sub-tree generate as type.
For example, in a scalar like double or float, the summation is the sum of two
floating-point numbers, and the decltype of double + double is a double. In the
case of a complex number, the meaning lives in the overload of the operator+
for a complex number. In the case of an openfpm point with three components
Point<3, double> the plus drive a secondary nested template expression parsing.
The summation of two points does not generate the code to sum the three
components of the two points but generates a type representing the code to
sum two points. The generation of the code calculating the expression is not
done inside the function value of the operator. The generation is delayed to
when the expression is assigned to the destination particle property. We can
use this method to make generic the operator +, and we can use it to drive a
secondary nested template expression parsing defined for the Point<3, double>

data structure.
The specification device make possible to use these type of expressions

to generate code on GPU. In the case of GPU, the loop in listing 5.4 is replaced
by an equivalent kernel code for GPU that handles one particle for each thread.
Each thread execute one iteration of the code inside the loop in listing 5.4. The
compiler (nvcc for CUDA) generates the GPU to evaluate the expression.

Listing 5.5: Prodiction rule for the operator+

1

2 __device__ __host__
3 inline auto value(const unsigned int & key)
4 -> std::remove_reference<decltype(o1.value(0) +
5 o2.value(0))>::type > const
6 {
7 return o1.value(key) + o2.value(key);
8 }

Attributes on the expression graph

In order to discover the type of particle set this expression is acting on, we have
to search at least one leaf or terminal node working on a field of a particle set,
take the type and return it to the root node.

In order to do this for each node terminal and non-terminal, an attribute
called vtype is introduced. The attribute is calculated or synthesized from
its children. In the listing 5.6 we see the definition of this attribute for the
operator plus. has_vtype is a meta function that check if the sub-tree contain
a field terminal node. More explanations are given in figure 5.2. If the answer
is true the meta-function first_or_second<...>::vtype map to exp1::vtype. If the
answer is false, it maps to exp2::vtype. In figure 5.2 we see how the attribute
computes in two different cases.
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Figure 5.2: Attribute computation. In the first case UP the field (blue node
P) is on the left part of the root node, in the second case DOWN the field
(blue node P) is on the right part of the root. UP The root ”+” node query
the left children with has_vtype<exp1>::value to see if vtype is defined on exp1.
exp1 is again a non-root ”+” node, this trigger again the same meta-code that
check with has_vtype<exp1>::value if the left children (6.0) in yellow has vtype

defined. The query will result in failure because the node 6.0 does not have
vtype defined. This will make has_vtype<exp1>::value in the non-root ”+” return
false. Returning false will make the non-root + node to define vtype from
the right children (P). P is a field and has a vtype defined. The vtype of the
non-root ”+” node will be assigned to type defined by P. This will also make
to secceed has_vtype<exp1>::value of the root node that will assign the vtype of
the root + node to exp1::vtype equivalent to vtype in P. DOWN The root +
node again query the left children with has_vtype<exp1>::value to see if vtype is
defined. exp1 is a non-root + node, this trigger again the same meta-code that
check with has_vtype<exp1>::value the left children (6.0) in yellow. The query
will result in failure because the node 6.0 does not have vtype defined. This will
make has_vtype<exp1>::value in the non-root ”+” return false. Returning false
will make the nested + node to define vtype from the right children 5.0. This
will also fail and make has_vtype<exp1>::value in the root + to return false. This
will make the root node + to define its vtype from the right node P. This will
succeed and will define vtype in the root node to exp2::vtype
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Listing 5.6: Attribute calculation for operator+

1

2 typedef typename first_or_second<
3 has_vtype<exp1>::value,
4 exp1,exp2>::vtype vtype;

5.0.2 Iterators

Distribution across processors or loops optimizations can make the code less
readable or, even worse, make it error-prone. To see how iterators can simplify
the code to write a loop, we consider a loop across the points of a grid. Looking
at section 4.1 we know that the distributed grid creates one or more patches for
each processor. Multiple patches require creating a double loop, one over the
patches and one nested over the points of one patch. The loop over the patch
is split in each dimension. Overall, if we want to loop over a distributed grid
in three dimensions, we end with four nested loops. This complexity can be
hidden with an iterator hiding patch and dimension loops. In the listing 5.7 we
show the typical loop with iterators for the grid.

Listing 5.7: Iterator

1

2

3 auto dom = grid.getDomainIterator();
4

5 while (dom.isNext())
6 {
7 auto key = it.get();
8

9 // ... computation
10

11 ++dom;
12 }

The loop in listing 5.7 has the same form of a loop over particles and abstract
dimensionality and patch iteration. The code in 5.7 is the most generic loop
existing in OpenFPM and homogenizes particles and grid iterations.

Iterators can also be used to create cache friendliness iterations for certain
structures. For example, using iterators like in listing 5.8 we can create an iter-
ation over particles according to a space-filling curve. Using getCellList hilb
we obtain a Cell-list and get an iterator from the cell-list to generate an iterator
that moves across the particles cell-by-cell following a Hilbert curve as a space-
filling curve. If instead we use getCellList the space-filling curve is normal
striding.
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Listing 5.8: Iterator for hilbert

1

2 auto NN = part.getCellList_hilb(r_cut); // Hilbert
3 // auto NN = part.getCellList(r_cut); // Non-hilbert
4

5 auto dom = NN.getIterator();
6

7

8 while (dom.isNext())
9 {

10 auto key = dom.get();
11

12 // ... computation
13

14 ++dom;
15 }

Iterators also help to run across very complex iterations, like symmetric
interactions with diagonal interactions for particle sets. These types of interac-
tions are explained in PPM’s original paper [44]. Without details, these types of
interaction require iterate across ghost particles depending on their geometrical
position and the domain decomposition. Iterators hide such complex iteration
enabling diagonal-based interaction implicitly, as we can see from the code in
listing 5.9.

Listing 5.9: Iterator for symmetric diagonal interactions

1

2 auto dom = vd.getParticleIteratorCRS(NN);
3

4 while (dom.isNext())
5 {
6 auto key = dom.get();
7

8 // ... computation
9

10 ++dom;
11 }

Safetiness and differences from standard C++ iterators

OpenFPM uses index-based iterators, a conceptually different type of iterator
compared to the standard. Index based iterators return keys or indices that
can be used with the data structure. Standard C++ iterators instead act like
pointers by design. This means the C++ standard iterators inherit all the
problems relative to pointers. In particular, once we have an iterator/pointer, we
do not know its validity. The primary data structure could have died, changed
in range, or reallocated its internal memory, invalidating the iterators. Many
operations can invalidate iterators in the same way pointers can be invalidated,
or worst, arithmetic with iterators lead to the same dangers as pointers, leading
to memory corruptions hard to find.

Range iterators force to access the main data structure for data read/write.
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This gives the possibility to control every access for validity based on the mem-
ory’s range or existence. In addition, iterators cannot be invalidated. They
return only numbers and do not access memory, so they are valid by definition.
If an index overflow the structure, the range will be checked once we use it on a
data structure. Because all data-structure derives from grid_base_impl explained
in section 2.14, adding these validity/range check to grid_base_impl will guar-
antee that all the top-level data structure explained until here are safe from
memory corruption and overflow from accesses.

Range/validity checks at every access are costly. For this reason, such checks
can be activated and deactivated at compile-time using the macro SE CLASS1.
Using a raw pointer, new and delete, and standard functions of C++ language
is unsafe. Because of this, the development of OpenFPM above the layer of
grid_base_impl explained in section 2.2.8 , has been conducted avoiding pointers
and with index based iterators. High-level languages have already shown how
pointers are avoidable for coding, the result in section 6 will show how not only
are avoidable, but it is possible to retain performance with high levels constructs.

5.0.3 File I/O, check-point restart

All the distributed data structures presented can be saved to file. All of them,
have the method save(). This function can be used to save to file a data
structure. Every data structure also has a method load() able, irrespective
of how data were distributed across processors during save, to reload the data
into the distributed data structure. OpenFPM files can be used to restart a
simulation from a previously saved state (check-point restart).

Each processor internally serializes the local memory of the data structure
using the serialization system explained in 3.2.3. This operation reduces any
data structure containing nested containers like a grid of vectors or vector of
vectors into a contiguous stream of bytes. The N streams with N equal to the
number of processors must be written on a single file. This last operation is
done using HDF5 [65] or ADIOS2 [66]. Meta-data are added automatically to
allow de-serialization on another numbers of processors and other domain de-
compositions. During load, the saved streams are read in parallel by individual
processors, and after distributed de-serialization, mapped into the new domain
decomposition. This map-after-read strategy is preferred, as it causes data to be
read/written in large contiguous blocks rather than in multiple smaller random
reads, producing less load in the I/O subsystem.

In addition to HDF5 output, distributed data can also be saved to files in
VTK format [67] using the OpenFPM method write(). This enables direct
visualization of the particle and mesh data, e.g., in Paravew [68], an open-
source scientific data visualization software that natively reads VTK files. While
OpenFPM HDF5 files cannot directly be visualized in Paraview, they can easily
be converted to VTK files using load() to reload the HDF5 filed into dis-
tributed data-structures followed by write() to export to VTK. VTK output
and Paraview were used to generate all visualizations in Section 6 of this paper.
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OpenFPM also supports OpenPMD files creation on HDF5 and ADIOS2 for-
mat. With this format, we can save large data-set from parallel simulations into
a format directly visualizable from data analysis and visualization applications
without conversion.



Chapter 6

Results

This section demonstrate the usability, performance, and scalability of OpenFPM
in various test scenarios and application domains. Each application is examined
with the domain’s state-of-the-art code, demonstrating that a generic framework
like OpenFPM can match, and in some cases even outperform, application-
specific codes that have grown over many years. All tests are run on the TU
Dresden Center for Information Services and High-Performance Computing’s
computer cluster. The cluster’s nodes each include two 2.5GHz 12-core Intel
Xeon E5-2680v3 CPUs (for a total of 24 cores per node) sharing 64GB of RAM.
The memory bus’s max bandwidth is 60GB/s per socket. The memory bus
has a peak bandwidth of 60GB/s per socket. The cluster connection is a 40-
gigabit-per-second Infiniband network. The operating system on the machine
is RedHat Enterprise Linux (RHEL) Server release 6.9 (Santiago). OpenFPM
was compiled with GCC g++ 7.1.0 and linked against the OpenMPI 3.0.0 [12]
implementation of the MPI standard version 3 [11] for all tests.

On the benchmark machine, each processor (socket) has its own independent
memory bus. The cores within each processor, however, share the memory
bandwidth. The results of a concurrent memory-read benchmark are shown in
Table 6.1. The memory bandwidth reduces from 14.7 GB/s when using only 1
core to 3.65 GB/s when using all 12 cores of a processor in parallel. Running on
16 cores with rank-affinity binding will, e.g., result in the first 12 cores running
at 3.65 GB/s and the remaining 4 cores at 9.7 GB/s. Unless otherwise noted, all
benchmarks reported here use rank-affinity binding. This synthetic benchmark
reveals that OpenFPM can saturate the machine’s memory bus when using 6
or more cores per socket.

#cores/socket: 1 2 4 8 12
bandwidth GB/s: 14.7 13.7 9.7 5.4 3.65

Table 6.1: Memory bandwidth per core on the benchmark machine when using
different numbers of cores all on the same processor socket.

104
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Figure 6.1: Particle configurations at the start of the simulation (left) and after
5000 time steps (right) for the Lennard-Jones molecular dynamics test case.
The system was thermally equilibrated after 1000 time steps. In this example,
a decomposition into four sub-domains is used, indicated by different colors.
Each particle is plotted as a dot with the color of the respective sub-domain.

6.0.1 Molecular dynamics

First, let us look at a classic Molecular Dynamics (MD) simulation of atoms
interacting with the Lennard-Jones potential. Particles represent atoms in this
simulation, and they interact according to the pairwise potential:

VLJ(r) = 4ε

[

(σ

r

)12

−
(σ

r

)6
]

(6.1)

as a function of the interaction distance r between the two particles. The
parameters σ and ε define the potential’s zero-crossing and well depth, respec-
tively. To efficiently discover the interaction partners of the particles, we use
OpenFPM’s implementation of Verlet lists [48] to build the simulation. Due to
the small time steps commonly employed in molecular dynamics simulations,
implementing a Verlet-list becomes necessary. In doing so, we take advantage
of the fact that the interactions are symmetric and therefore the forces between
any given pair of interactions need be computed only once. This also involve
the creation of ghost particles, which are copies of particles owned by nearby
processors appended to the list of particles owned by a processor of interest, for
the calculation of partial forces. These calculated partial forces are then merged
using the OpenFPM’s ghost put (see Section 4.2.1).

We compare the OpenFPM-based solution to LAMMPS, a well-known and
highly efficient parallel MD code [23]. 216, 000 particles are placed on a regular
Cartesian grid of size 603 and spacing one as shown in in figure 6.1. The domain
is decomposed into four sub-domains which are demarcated by different colors
in figure 6.1. A symplectic velocity Verlet time-stepping strategy is employed
with step size δt = 0.01 to initially equilibrate the system before simulating its
dynamics. We choose σ = 0.1 and ε = 1 for the Lennard-Jones potential, and
periodic boundary conditions in all three coordinate directions.The simulation
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Potential and kinetic energy
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Figure 6.2: Kinetic and potential energy profile for OpenFPM and LAMMPS
with different number of processors. Initially the particles are on a grid in an
unstable equilibrium, due to numerical error the particles start to move. On
the x axis we have number of iteration and on y axis we have dimensionless
kinetic energy Ekin for the positive curve and dimensioneless potential energy
Epot for the negative curve. Particles initially does not move, Ekin = 0, and
energy potential is around −8.6e5 after 100 iterations for LAMMPS and 150
for OpenFPM steps particles start to move and part of the potential energy is
transformed into kinetic until particles stabilize at around Ekin = 3.7e5 and
Epot = −12.041e5

runs for 5000 time steps and the final particle configuration is in the right panel
of figure 6.1.

The temporal evolution of the kinetic, potential, and total energies calculated
by LAMMPS and OpenFPM were the same as shown in the figure 6.2. The
total energy is conserved , showing that the simulation was consistent with the
principle of conservation of energy. Equilibration is reached after approximately
1000 time steps.
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#cores OpenFPM (seconds) LAMMPS (seconds) OpenFPM (Efficiency) LAMMPS (Efficiency)
1 1010.69 ± 1.58 976.10 ± 3.30 100% 100%
4 262.55 ± 0.80 257.00 ± 6.48 96.2% 94.9%
8 143.81 ± 0.26 137.10 ± 0.31 87.8% 89.0%
16 77.10 ± 0.40 73.00 ± 0.46 81.9% 83.6%
24 52.70 ± 0.27 49.89 ± 0.17 79.9% 81.5%
48 29.70 ± 0.12 28.98 ± 0.22 70.9% 70.2%
96 15.16 ± 0.11 15.64 ± 0.60 69.4% 65.0%
192 8.07 ± 0.16 8.22 ± 0.32 65.2% 61.8%
384 4.73 ± 0.16 4.66 ± 0.17 55.6% 54.5%
768 3.15 ± 0.09 3.37 ± 1.10 41.8% 37.7%
1536 2.20 ± 0.24 1.93 ± 0.77 29.9% 32.9%

Table 6.2: Molecular dynamics benchmark results. We report wall-clock execu-
tion times (mean ± standard deviation over 10 independent runs) and parallel
efficiencies of the OpenFPM client compared with LAMMPS [23] for a strong
scaling from 1 to 1536 processor cores simulating 216,000 Lennard-Jones parti-
cles in the unit cube over 5000 time steps (see figure 6.1).

#cores per socket × #sockets OpenFPM (seconds)
8× 1 147.4
4× 2 143.6
2× 4 133.5
1× 8 128.0

Table 6.3: Average runtime of the OpenFPM molecular dynamic code using
different numbers of cores for the same total of 8 cores for the problem from
Table 6.2

We identified the case of the drop in efficiency on a single node. We took the
case of 8 cores in table 6.2 this is the case where we have 4 cores on 2 sockets,
equivalent to the case 4× 2 in the table 6.3. Increasing memory/L3 bandwidth,
equivalent to shift down in the table 6.3 we can see how this brings efficiency
from 87.9

As illustrated in Listing 6.0.1, the OpenFPM-based molecular dynamic simu-
lation can be implemented in less than 40 lines of C++ code without comments.
Lines 10–15 define the pairwise Lennard-Jones interaction between the particles
in the example listing. Lines 19–30 define the size of the simulation domain,
in this case, a cube of unit size, the boundary conditions, periodic in all three
dimensions, and the size of the ghost layers, determined by the interaction cut-
off radius r cut. Line 33 creates the particle interaction object based on the
definition of the interaction in lines 10–15. It is important to consider that the
macro DEFINE ITERATION 3D is syntactic sugar for defining a functor named
ln force. Line 36 creates a particle set on the domain and ghost area defined in
the previous lines. The particle properties are defined as a tuple or aggregate
described in section 2.2.2. For this simulation, we need two 3D points/vectors of
doubles to store the velocity and the force. The particle position comprises three
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doubles defined by the dimensionality (first template parameter) and precision
used for the space (second template parameter). In line 37, we initialize the
particles on a cartesian lattice, with the number of grid points defined in each
direction by sz defined in line 27. Lines 41–43 provide aliases for particle posi-
tion, velocity, and force explained in section 5.0.1 that can be used to generate
computation on particles with statements like the one on line 58. Line 50 gener-
ates symmetric particle cell lists for quick neighbor access, which are then used
in line 51 to compute the initial forces using symmetric particle interactions.
applyKernel_in_sym uses lennard jones to calculate forces in a symmetric manner.
In particular we calculate the force of a pair interaction lennard jones(A,B) once
avoiding the calculation of lennard jones(B,A) = -lennard jones(A,B). Omitting
sym the computation would use non-symmetric interaction computation. The
simulation time loop uses the two-step velocity Verlet symplectic time integra-
tor on lines 54-73. (lines 58, 59, 72). Communication procedures explained
in section 4.2.1 are in lines 63 and 64. Line 63 ghost-get synchronize particle
coordinates for only the particle coordinates. Line 64 does mapping to migrat-
ing particles that have moved across processor boundaries. At the end of the
program, line 76 closes the OpenFPM library.

We compared the performance of the OpenFPM with LAMMPS for strong
scaling using Verlet lists, distributing the 216,000 particles across an increasing
number of processors. The result are given in Table 6.2. On a single-core, the
absolute wall-clock time each time step is less than one second. A simulation
time step takes 0.5 milliseconds on 1536 cores. Even though OpenFPM is a
general-purpose particle-mesh library not limited to MD, its performance is
nearly identical to that of LAMMPS.

[Listing 4.1: C++ code for Lennard-Jones molecular dynamics using OpenFPM]

1 ///// define parameters
2 double sigma12, sigma6, epsilon = 1.0, sigma = 0.1; // parameters of the

potential
3 double dt = 0.0005, r_cut = 3.0*sigma; // parameters of the

simulation
4 double r_cut2;
5

6 constexpr int velocity_prop = 0; // velocity is the first particle property
7 constexpr int force_prop = 1; // force is the second particle property
8

9 ///// Define Lennard-Jones interaction to be used in applyKernel_in_sym
10 DEFINE_INTERACTION_3D(ln_force)
11 Point<3,double> r = xp - xq;
12 double rn = norm2(r);
13 if (rn > r_cut2) return 0.0;
14 return 24.0*epsilon*(2.0*sigma12/(rn*rn*rn*rn*rn*rn*rn)-sigma6/(rn*rn*rn*rn))

*r;
15 END_INTERACTION
16

17 int main(int argc, char* argv[]) {
18 ///// Initialize OpenFPM
19 openfpm_init(&argc,&argv);
20

21 ///// Initialize constants
22 sigma6 = pow(sigma,6), sigma12 = pow(sigma,12);
23 r_cut2 = r_cut*r_cut;
24

25 ///// Define initialization grid, simulation box, periodicity
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26 ///// and ghost layer
27 size_t sz[3] = {60,60,60};
28 Box<3,float> box({0.0,0.0,0.0},{1.0,1.0,1.0});
29 size_t bc[3]={PERIODIC,PERIODIC,PERIODIC};
30 Ghost<3,float> ghost(r_cut);
31

32 ///// Lennard-Jones potential object used in applyKernel_in
33 ln_force lennard_jones;
34

35 ////// Define particles and initialize them on a grid
36 vector_dist<3,double,aggregate<Point<3,double>,Point<3,double>>> particles(0,

box,bc,ghost);
37 Init_grid(sz,particles);
38

39 ///// Define aliases for the particle force, velocity, and position
40 ///// to simplify notation
41 auto force = getV<force_prop>(particles);
42 auto velocity = getV<velocity_prop>(particles);
43 auto position = getV<PROP_POS>(particles);
44

45 ///// initialize all particle velocities to zero
46 velocity = 0;
47

48 ///// Generate the cell lists and compute the initial forces using the
Lennard-Jones

49 ///// potential evaluated with exploiting symmetry
50 auto NN = particles.getCellListSym(r_cut);
51 force = applyKernel_in_sym(particles,NN,lennard_jones);
52

53 ///// Time loop
54 for (size_t i = 0; i < 10000 ; i++) {
55 ///// 1st step of velocity Verlet time integration
56 ///// v(t + 1/2*dt) = v(t) + 1/2*force(t)*dt
57 ///// x(t + dt) = x(t) + v(t + 1/2*dt)
58 velocity = velocity + 0.5*dt*force;
59 position = position + velocity*dt;
60

61 ///// communicate particles that have crossed processor boundaries and
62 ///// update the ghost layers for all properties (empty props list)
63 particles.map();
64 particles.ghost_get<>();
65

66 // Calculate the forces at t + dt
67 particles.updateCellListSym(NN);
68 force = applyKernel_in_sym(particles,NN,lennard_jones);
69

70 ///// 2nd step of velocity Verlet time integration
71 ///// v(t+dt) = v(t + 1/2*dt) + 1/2*force(t+dt)*dt
72 velocity = velocity + 0.5*dt*force;
73 }
74

75 ///// Finalize OpenFPM and deallocate all memory
76 openfpm_finalize();
77 }

6.0.2 Smoothed-particle hydrodynamics

SPH (Smoothed-Particle Hydrodynamics) is a popular approach for simulating
continuous fluid dynamics models. It is the preferred method to represent multi-
phase flows and fluid-structure interaction [69],[70] due to its simplicity and
flexibility in simulating complicated fluid properties and free fluid surfaces.
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(a) t = 0 s

(b) t = 0.43 s

(c) t = 0.95 s

Figure 6.3: Visualization of the SPH dam-break simulation. We show the fluid
particles at times 0, 0.43, and 0.95 s of simulated time, starting from a column
of fluid in the left corner of the domain as shown. We use the OpenFPM SPH
to solve the weakly compressible Navier-Stokes equations with the equation of
state for pressure as given in Eqs. 6.2–6.4. The figure shows a density iso-surface
indicating the fluid surface with color indicating the fluid velocity magnitude.
The small insets show the distribution of the domain onto 4 processors with
different processors shown by different colors. The dynamic load balancing of
OpenFPM automatically adjusts the domain decomposition to the evolution of
the simulation in order to maintain scalability.
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We use OpenFPM to develop a weakly compressible SPH Navier-Stokes
solver, where each particle p has a velocity vp, a pressure Pp, and a density ρp.
[71]: The evolution of these particle attributes is determined by

dvp
dt

= −
∑

q∈N (p)

mq

(

Pp + Pq

ρpρq
+Πpq

)

∇W (xq − xp) + g (6.2)

dρp
dt

=
∑

q∈N (p)

mqvpq · ∇W (xq − xp) (6.3)

Pp = b

[(

ρp
ρ0

)γ

− 1

]

(6.4)

b =
1

γ
c2sound|g|hswlρ0 , (6.5)

where hswl is the fluid’s maximum height, γ = 7, and csound = 20 [71]. The set
of all particles within a cutoff radius of 2

√
3h from p is called N (p), and h is the

distance between nearest neighbors at initialization stage. The standard cubic
SPH kernel [71] is W (x), and the gravitational acceleration is g. The relative
velocity between particles p and q is vpq = vp − vq, where ∇W (xq − xp) is the
analytical gradient of the kernel W centered at particle p with the neighborhood
particle q. The equation of state 6.4 connects the pressure Pp to the density ρp,
where ρ0 is the density of the fluid at P = 0. The viscosity term Πpq is defined
as:

Πpq =

{

−α ¯cpqµpq

¯ρpq
vpq · rpq > 0

0 vpq · rpq < 0
(6.6)

with constants defined as: µpq =
hvpq·rpq
r2pq+η2 and ¯cpq =

√
g · hswl.

In the simulation a column of water collides with a fixed obstacle using
OpenFPM. The ’dam break’ simulation is a standard SPH test case. Figure 6.3
shows a depiction of the OpenFPM result at three different time points. The
performance are compared to those achieved with DualSPHysics [28], a famous
open-source SPH code. We show comparisons in the non-distributed case since
the publicly available version of DualSPHysics only supports shared-memory
multi-core systems and GPGPUs.

The current OpenFPM SPH implementation employs the same techniques
as DualSPHysics[28], including the same initialization, boundary conditions,
viscosity term treatment, and Verlet time-stepping [48] with a dynamic step
size. For this reason, the outcomes between OpenFPM and DualSPHysics are
directly comparable. In the ’dam break’ case, particles are not evenly distributed
around the domain, and they move around during the simulation. As a result,
we need to use dynamic load balancing explained in section 3.2.

The simulation is validated by calculating and comparing the velocity and
pressure profiles at multiple points between OpenFPM and DualSPHysics [28].
Pressure and velocity profiles show similar behaviour between OpenFPM and
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Figure 6.4: UP Pressure profile on one point in front of the obstacles OpenFPM
and DualSPH. DOWN Velocity profile in the same point OpenFPM and Du-
alSPH
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DualSPHysic in figure 6.4. The simulation do all the calculations in float preci-
sion because the option for DualSPH only increases the precision of the particle
position. However, most calculations are still performed in single precision. In
OpenFPM, it is also possible to hybrid the computation choosing the precision
for the space to be double and the precision for the property to be float. Un-
fortunately, to ensure every operation is done with the same precision on both
platform, we should track every single operation. For the sake of simplicity in
the comparison, all the computations are homogeneous in single precision.

We compare the performance of the OpenFPM-based solution to the Du-
alSPHysics code operating on a single cluster node’s 24 cores. With 171,496
particles. We simulate the dam-break case till a physical time of 1.5 seconds.
The OpenFPM code takes about 500 seconds to complete the simulation, while
DualSPHysics takes around 950 seconds. OpenFPM improved performance can
be attributed to the use of symmetry when analyzing interactions and the usage
of optimized Verlet lists, both of which are not apparent in DualSPHysics[28].

We also profiled this test scenario regarding how much time is spent com-
puting, communicating, and load-balancing. The results for various numbers
of particles on 1536 processors are shown in Table 6.4, illustrating the code’s
scalability to large numbers of particles. The little insets in figure 6.3 all demon-
strate how OpenFPM’s domain decomposition dynamically adapts to shifting
particle distributions via dynamic load balancing, as detailed in 3.2. The load
distribution, in this case, varies substantially due to the velocity distribution
of the particles. The dynamic load-balancing mechanisms used by OpenFPM
consume between 5% and 25% of overall execution time. The ParMETIS [62]
performance is restricting the overall performance. As a result, OpenFPM re-
duces the impact of communication and load imbalance on parallel performance.

The primary overhead is the graph partitioning stage required by the load
balancing, which is done in a distributed fashion but unfortunately does not
scale with the number of processors. As a result, the relative amount of com-
munication and load-balancing decreases as the number of particles rises, while
the average imbalance remains practically constant due to dynamic load bal-
ancing. Load balancing and communication are not required when running on
a single core. We can then consider the percentage of time spent calculating
(second column in Table 6.4) as the parallel efficiency on 1536 cores.

We also compare the OpenFPM-based implementation in a distributed-
memory model with DualSPHysics operating on a GPGPU. DualSPHysics is
primarily tuned for use on GPGPUs. We are running on an Nvidia GeForce
GTX1080 GPU, the benchmark run with 15 million SPH particles. When the
OpenFPM code runs on the benchmark machine’s 270 CPU cores, it reaches
the same speed.

We also ported the code from CPU code to multi-architecture GPU/CPU
in OpenFPM. The port is based mainly on the following changes:

• copy-pasting the CPU inner code loop into kernel functions.

• Convert CPU Cell lists into GPU versions, that mainly provides the same
API as the CPU.
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• We ask to OpenFPM to run functionalities like ghost get directly on GPU
with the option RUN ON DEVICE

• We make use of GPU aware primitives to remove particles in parallel on
GPU

The code is around 531 C++ lines of code and uses around 17 million par-
ticles. Compared to DualSPHysics, the code is distributed, and on 1 GPU
OpenFPM is only 27% slower, efficiency with different numbers of GPUs are
given in figure 6.5.

Figure 6.5: Efficiency of SPH gpu on multiple GPUs 16 gpus are 8 nodes with
2 gpus each

N particles Computation (%) Imbalance (%) DLB (%) Communication (%) Time (s)
0.46M 19.1963% 15.1259% 25.6729% 40.005% 148.397
1.20M 32.3121% 30.3677% 10.4985% 26.8217% 346.83
4.0M 49.9799% 22.3809% 10.6147% 17.0246% 1424.64
10.78M 63.9155% 21.1935% 6.805% 8.08599% 4666.78
14.63M 65.4522% 21.4576% 5.37555% 7.71468% 7035.01

Table 6.4: OpenFPM’s percentage of total runtime spent on various jobs for the
SPH dam-break simulation on 1536 cores with various quantities of particles (1st
column). The computation time is the average wall-clock time spent on local
computations across processors, whereas the load imbalance is the difference
between the maximum and average wall-clock time across processors. DLB
(dynamic load balancing) is the time it takes to breakdown the problem and
allocate sub-domains to processors, and communication is the time it takes for
ghost get and map combined. The last column shows the simulation’s overall
runtime up to a simulated time of 1.5,s.
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6.0.3 Finite-difference reaction-diffusion code

As a third showcase, we explore a mesh-only-based application, namely a finite-
difference code, to solve a reaction-diffusion system numerically. Because of
their potential to create concentration patterns, such as Turing patterns (Tur-
ing:1952), reaction-diffusion systems are intensively investigated. A well-known
example is the Gray-Scott system ([72],[73],[74],[75]), which produces a wide
range of patterns under different parameter regimes. The partial differential
equations that describe it are as follows:

∂u

∂t
= Du∇u− uv2 + F (1− u)

∂v

∂t
= Dv∇v + uv2 − (F + k)v ,

(6.7)

The diffusion constants of the two species u and v, respectively, are Du and
Dv. The type of pattern created is determined by the parameters F and k.
We use second-order centered finite-differences on a regular Cartesian mesh in
3D of size 2563 with periodic boundary conditions in all directions to develop
an OpenFPM-based numerical solver for these equations. The performance of
the OpenFPM-based implementation is compared to that of [35], an efficient
AMReX-based solution.

Even though AMReX is capable of multi-resolution adaptive mesh refine-
ment, which would make a straight comparison unfair, it uses a patch-based
technique, which is incredibly fast even in the isotropic scenario when con-
strained to one level. Indeed, the implementation of one-level patches in AM-
ReX is extremely similar to that of OpenFPM meshes.

AMReX, on the other hand, requires that the user adjusts the maximum
grid size for data distribution [35]. AMReX does not have enough granularity
to parallelize if the maximum grid size is set too high. If it is set too low,
scalability suffers as a result of increased ghost-layer communication overhead.
This AMReX value was carefully determined to ensure that sub-grids are always
greater than the number of processor cores. Tables 6.5 and 6.6 show the actual
values used in the last columns. The domain decomposition in OpenFPM is de-
termined automatically. Therefore the user does not need to set this parameter.
In order to compare the results of AMReX with OpenFPM, we use MPI-only
parallelism.

The following parameter values are used in the benchmark simulations:Du = 2 · 10−5,
Dv = 10−5, with k and F as indicated in the legends of figure 6.6. We repeat
the nine patterns described by Pearson [76] using visualizations shown in Fig 6.6
to validate the simulation.

Listing 6.0.3 shows an OpenFPM source-code example of applying a simple
5-point finite-difference stencil to a standard Cartesian mesh. In line 2, an
OpenFPM grid key array with relative grid coordinates is defined as the stencil.
The stencil object, in this case, is called tstar stencil 2D and has 5 points. Line
5 creates a mesh iterator for this stencil, which is applied to the mesh object
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(a) α pattern (F=0.010,
k=0.047)

(b) β pattern (F=0.026,
k=0.051)

(c) δ pattern (F=0.030,
k=0.055)

(d) ε pattern (F=0.018,
k=0.055)

(e) η pattern (F=0.022,
k=0.061)

(f) γ pattern (F=0.026,
k=0.055)

(g) ι pattern (F=0.046,
k=0.059)

(h) κ pattern (F=0.050,
k=0.063)

(i) θ pattern (F=0.030,
k=0.057)

Figure 6.6: Visualizations of the OpenFPM-simulations of nine steady-state
patterns produced by the Gray-Scott reaction-system in 3D [76] for different
values of the parameters F and k.

Old. Lines 7–24 define the loop over all mesh nodes, and the stencil is applied.
The stencil expression (lines 18–20) is made easier by declaring aliases for the
shifted nodes in lines 10–14.

[Listing: 4.3: OpenFPM code example for stencil operations on a regular
Cartesian mesh]

1 ///// finite-difference stencil definition
2 static grid_key_dx<2> star_stencil_2D[5] = {{0,0},{-1,0},{+1,0},{0,-1},{0,+1}};
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3

4 ///// create an iterator for the stencil on the mesh "Old"
5 auto it = Old.getDomainIteratorStencil(star_stencil_2D);
6

7 while (it.isNext()) {
8 ///// define aliases for center, minus-x, plus-x, minus-y, plus-y.
9 ///// The template parameter is the stencil element.

10 auto Cp = it.getStencilGrid<0>();
11 auto mx = it.getStencilGrid<1>();
12 auto px = it.getStencilGrid<2>();
13 auto my = it.getStencilGrid<3>();
14 auto py = it.getStencilGrid<4>();
15

16 ///// apply the stencil to field U on mesh "Old" and store
17 ///// the result in the field U on mesh "New"
18 New.get<U>(Cp) = Old.get<U>(Cp) +
19 (Old.get<U>(my)+Old.get<U>(py)+Old.get<U>(mx)+Old.get<U>(px) -
20 4.0*Old.get<U>(Cp));
21

22 ///// Move to the next mesh node
23 ++it;
24 }

Table 6.5 6.6 and figure 6.7 show the performance of OpenFPM compared
to AMReX for two distinct sizes. With wall-clock times in the same range as
AMReX, OpenFPM scales marginally better. We use up to 24 cores within one
cluster node for the task of 2563 mesh nodes (Table 6.5). As a result, this bench-
mark demonstrates how the codes scale in terms of memory bandwidth. The
bigger problem of 7843 mesh nodes (Table 6.6) spans several computer nodes
and demonstrates how the algorithms scale with respect to network communi-
cation overhead. For this benchmark, both AMReX and OpenFPM employ a
mix of C++ and Fortran code, with all stencil iterations written in Fortran.
Fortran produces more efficient assembly code than C++ because it has native
support for multi-dimensional arrays. A completely C++ version was around
20% slower in our tests than a mixed C++/Fortran version. In addition, we
show how the OpenFPM code’s runtime changes when employing alternative
distributions of the same total number of cores over different numbers of CPU
sockets in Table 6.7. The memory bus saturates when employing more than 4
cores per socket, as seen in Table 6.1, and runtimes considerably increase.

6.0.4 Vortex Methods

This benchmark consider a complete vortex-in-cell algorithm. A hybrid particle-
mesh approach [50] to numerically solve the incompressible Navier-Stokes equa-
tions in vorticity formulation with periodic boundary conditions, to highlight
how OpenFPM handles hybrid particle-mesh problems. These are the equations:

Dω

Dt
= (ω · ∇)u+ ν∆ω

∆ψ = ∇× u = ω ,
(6.8)

ω is the vorticity, ψ is the vector stream function, ν is the viscosity, and
u is the fluid velocity. [50] The operator D

Dt specifies a Lagrangian (material)
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#cores OpenFPM (seconds) AMReX (seconds) AMReX param
1 393.1 ± 1.3 388.5 ± 1.5 256
2 207.5 ± 1.3 265.0 ± 0.8 128
4 105.8 ± 1.3 144.8 ± 0.3 128
8 65.1 ± 2.1 106.6 ± 2.6 128
12 65.6 ± 2.6 90.9 ± 5.0 64
16 57.6 ± 1.9 173.6 ± 3.6 64
20 56.8 ± 2.0 66.0 ± 1.7 64
24 60.5 ± 0.3 60.9 ± 4.0 64

Table 6.5: Performance of the OpenFPM finite-difference code compared with
AMReX [35]. Times are given in seconds as mean±standard deviation over 10
independent runs for a fixed problem size of 2563 mesh nodes over 5000 time
steps (strong scaling). The grid-size parameters used for AMReX are given in
the last column.

#cores OpenFPM (seconds) AMReX (seconds) AMReX param
1 199.7 ± 0.4 205.5 ± 1.4 740
4 52.5 ± 0.3 56.1 ± 0.3 370
8 32.0 ± 0.1 39.7 ± 0.1 370
16 15.2 ± 0.1 28.1 ± 0.1 294
32 8.4 ± 0.1 13.8 ± 0.1 233
64 4.3 ± 0.1 6.8 ± 0.1 185
128 3.1 ± 0.1 4.33 ± 0.2 147
256 2.3 ± 0.1 2.7 ± 0.1 117

Table 6.6: Performance of the OpenFPM finite-difference code compared with
AMReX [35]. Times are given in seconds as mean±standard deviation over 5
independent runs for a fixed problem size of 7843 mesh nodes over 100 time
steps (strong scaling). The grid-size parameters used for AMReX are given in
the last column.

#cores per socket × #sockets OpenFPM (seconds)
8 × 1 61.03
4 × 2 32.0
2 × 4 25.53
1 × 8 24.2

Table 6.7: Average runtime of the OpenFPM finite-difference code using dif-
ferent numbers of cores per socket for the same total of 8 cores for the large
problem from Table 6.6.
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Figure 6.7: OpenFPM Gray-Scott finite-difference code (5-point stencil) code
scalability in comparison to AMReX [35] for strong scaling. OpenFPM scal-
ability on a single node 2563 (Table 6.5) and multiple nodes 7843 (Table 6.6)
problems are represented by blue and yellow lines, respectively, where AMREX
single node and multiple nodes are represented by red and green lines. On a
2563 uniform Cartesian grid with varied numbers of cores, we report the wall-
clock time in seconds to complete 5000 time steps, for the 7843 we report the
time to run 100 time steps

time derivative. With two-stage Runge-Kutta time-stepping, we numerically
solve these equations using an OpenFPM-based implementation of the classic
vortex-in-cell method as provided in Algorithm 22. The moment-conserving M ′

4

interpolation kernel is used in particle-mesh and mesh-particle interpolations
([71]).

We run a simulation that replicates earlier self-propelling vortex ring results
[77]. The vortex ring is created on a grid 1600× 400× 400.

ω0 =
Γ

πσ2
e−s/σ , (6.9)

where s2 = (z − zc)
2 + [(x− xc)

2 + (y − yc)
2 −R2], R = 1, sigma = R/3.531,

and the domain (0 . . . 5.57, , 0 . . . 5.57, , 0 . . . 22.0) with periodic boundary condi-
tions. The original vortex ring was defined byGamma = 1 and xc = yc = zc = 2.785
as the center of the torus.

The time-stepping strategy is Runge-Kutta of order 2 with a fixed step size of
deltat = 0.0025. The time step size is determined empirically, ensuring stability
qualitatively.

All differential operators are discretized using second-order symmetric finite
differences on the mesh. To model the behavior of the vortex ring at Reynolds
number Re = 3750 till final time t = 225.5, we employ 256 million particles
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(a) (b)

(c) (d)

Figure 6.8: Visualization of the OpenFPM simulation of a vortex ring at
Re=3750 with 256 million particles on 3072 processors using a hybrid particle-
mesh Vortex Method (Algorithm 22) to solve the incompressible Navier-Stokes
equations. When the ring is going to become turbulent, the results are de-
picted for t = 195.5. (a)The vorticity iso-surfaces emphasize the tubular dipole
structures in the vortex ring. The color correlates to the vorticity’s x compo-
nent, with red suggesting positive and blue suggesting negative vorticity. (b)–
(d) Three different perspectives of a volume rendering of four vorticity bands:

orange represents ‖ω‖2 = 3.239 . . . 2.3, green represents ‖ω‖2 = 1.16 . . . 1.372,

yellow represents ‖ω‖2 = 0.7 . . . 0.815, and blue represents ‖ω‖2 = 0.3 . . . 0.413

dispersed over 3072 processors. OpenFPM creates VTK files, which can be
viewed directly in Paraview [68]. In the ring, we see the same patterns and
structures as in Ref.[77], as shown in figure 6.8.

To solve the Poisson equation, the linear system solver requires computing
the velocity from the vorticity on the mesh. Solving the linear system is where
the simulation spends most of the time. For this reason the performance and
scalability of the OpenFPM code are mainly given by the linear solver. Inter-
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nally, OpenFPM employs a solution supplied by the PetSc library [55]. We test
the solver and overall code parallel scalability in a weak scaling, starting with
an 109× 28× 28 mesh on 1 processor and scaling up to 1207× 317× 317 mesh
nodes on 1536 processors. The PetSc solver and the OpenFPM components of
the code (particle-mesh/mesh-particle interpolation, remeshing, temporal inte-
gration, right-hand side evaluation) are benchmarked separately. The results are
shown in 6.9 in figure 6.9. The decline in efficiency inside a cluster node (1. . .24
cores) can be explained by the shared memory bandwidth (see Table 6.1). When
switching from one cluster node to two cluster nodes, PetSc displays yet another
significant loss in efficiency (48 cores). Following that, the efficiency remains
consistent until 768 cores, at which point it begins to decline again gradually.

We compare the particle-mesh interpolation element of the code to the com-
parable section of a PPM-based hybrid particle-mesh vortex code previously em-
ployed [44] to put these results in context. This code section is simply compared
to rule out discrepancies between PetSc and PPM internal linear solver. Using
the M

′

4 interpolation kernel, interpolating two million particles to a 129×65×65
mesh takes 0.078,s in OpenFPM on a single core, and it takes the same amount
of time in PPM on the same computer.

The OpenFPM particle-mesh interpolation achieves a parallel efficiency of
75% on 128 cores after performing a mild scaling starting from a 1283 mesh
on 1 CPU (16 nodes using 8 cores of each node). This is equivalent to PPM’s
scalability on the same test case (see Ref. [44], figure 13).

6.0.5 Discrete element methods

Discrete element methods (DEM) help study granular materials, especially for
deriving effective macroscopic dynamics when the governing equations are un-
known. They explicitly model each grain of the material, with all collisions
resolved. The dynamic of the grains is governed by the forces and torque calcu-
lation for each grain. The fundamental distinction from MD is that forces are
only produced through direct contact, and contact sites are subject to elastic
deformation. As a result, DEM is simply a collision-detection technique. Lists
of interaction sites between particles must be managed in order to integrate the
dynamics throughout time accurately. Parallelizing DEM is difficult since these
lists are of different lengths in both time and space, and collisions involving
ghost particles must be correctly accounted for in the lists of the corresponding
source particles. DEM has previously been parallelized on distributed-memory
machines using the PPM Library [44], allowing DEM simulations of 122 million
elastic spheres to be distributed across 192 processors [78].

In order to directly compare performance with the previous PPM version,
we implement the identical DEM simulation in OpenFPM. We pre-allocate the
contact list to their maximum length for comparison. In OpenFPM, dynamic
lists can potentially bypass the limit to bound the maximum number of contacts.

We use the traditional Silbert grain model [79], which includes Hertzian
contact forces and elastic grain deformation, as discussed earlier [78]. The radius
R, mass m, and moment of inertia I of all particles are the same. The location
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Algorithm 22 Vortex-in-Cell Method with two-stage Runge-Kutta (RK) time
integration

1: procedure VortexMethod
2: initialize the vortex ring on the mesh
3: do a Helmholtz-Hodge projection to make the vorticity divergence-free
4: initialize particles at the mesh nodes
5: while t < tend do
6: calculate velocity u from the vorticity ω on the mesh (Poisson equa-

tion solver)
7: calculate the right-hand side of Eq. 6.8 on the mesh and interpolate

to particles
8: interpolate velocity u to particles
9: 1st RK stage: move particles according to the velocity; save old po-

sition in xold

10: interpolate vorticity ω from particles to mesh
11: calculate velocity u from the vorticity ω on the mesh (Poisson equa-

tion solver)
12: calculate the right-hand side of Eq. 6.8 on the mesh and interpolate

to particles
13: interpolate velocity u to particles
14: 2nd RK stage: move particles according to the velocity starting from

xold

15: interpolate the vorticity ω from particles to mesh
16: create new particles at mesh nodes (remeshing)
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Figure 6.9: Parallel efficiency of the OpenFPM-based hybrid particle-mesh vor-
tex code for a scaled-in-size problem (weak scaling). On a single processor core,
the problem scales from 109× 28× 28 mesh nodes to 1207× 317× 317 mesh
nodes on 1536 cores (24 cores per node). We plot individually, the PetSc Pois-
son solver’s parallel efficiency (yellow squares), the OpenFPM components of
the code (red triangles), and the overall scalability are all shown (blue circles).
Next to the symbols, we give the sizes of the problem for three points and the
wall-clock time for one time-step in seconds. In order to compare across runs,
we force the linear solver to use a fixed number of iteration

of each particle’s center of mass rp is used to symbolize it. The radial elastic
contact deformation occurs when two particles p and q come into touch with
each other and is given by:

δpq = 2R− rpq , (6.10)

with rpq = rp−rq the vector between the two particle centers and rpq = ‖rpq‖2
its distance.

We use an explicit Euler integration scheme, and the evolution of the tan-
gential elastic deformation utpq is integrated as:

utpq = utpq + vtpqδt , (6.11)

where δt represents the simulation time step and vpq = vtpq
+ vnpq

is the tan-
gential and radial components of the relative velocity of the colliding particles,
respectively. The deformation of the contact points is tracked for each particle,
and the elastic tangential displacement is initialized with ~utij = 0 for each new
contact point. The normal and tangential forces for any pair of particles in
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(a) t = 0.1 (b) t = 0.2

(c) t = 0.3 (d) t = 0.4

(e) t = 0.5 (f) t = 0.6

Figure 6.10: Visualization of the Discrete Element Method (DEM) simulation of
an avalanche of spheres down an inclined plane (inclination angle: 31.2 degrees)
at different times. While the simulation is 3D, we visualize the same 2D cross-
section here as in [78] to allow direct visual comparison.

contact with each other are [79]:

Fnpq
=

√

δpq
2R

(

knδpqnpq − γnmeffvnij

)

, (6.12)

Ftpq =

√

δpq
2R

(

−ktutpq − γtmeffvtpq
)

, (6.13)

where kn,t are the elastic constants for normal and tangential directions,
and γn,t are the friction constants. meff = m

2 is used to calculate the effective
collision mass. In addition, as detailed in [79, 78], the tangential deformation is
rescaled to enforce Coulomb’s law.

By combining the contributions over all collisions q and the gravitational
force vector, we calculate the total resultant force F tot

p and torque T tot
p on

particle p are computed.
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We integrate the equations of motion using the second-order leapfrog scheme,
as:

vn+1
p = vnp +

δt

m
F tot
p , rn+1

p = rnp + δtvn+1
p , ωn+1

p = ωn
p +

δt

I
T tot
p ,

(6.14)
where rnp , v

n
p , and ω

n
p are the particle p’s center-of-mass position, velocity, and

rotational/angular velocity at time step n, respectively.
We simulate an avalanche down an inclined plane, which has been used

as a benchmark case for distributed-memory parallel DEM simulations using
the PPM Library [78]. The simulation has 82,300 particles with kn = 7.849,
kt = 2.243, γn = 3.401, R = 0.06, m = 1.0, and I = 1.44 · 10− 3 shown in fig-
ure 6.10. The simulation domain is 8.4× 3.0× 3.18 in size. As seen in fig-
ure 6.10 a, all particles are initially put on a Cartesian lattice inside a box of
size 4.26× 3.06× 1.26. The simulation box contains fixed-boundary walls in
the x direction, a free-space boundary in the positive z direction, and periodic
boundaries in the y direction, and is inclined by 30 degrees by rotating the
gravity vector correspondingly.
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Figure 6.11: Using 677, 310 particles divided across 192 cores with 8 cores on
each cluster node, the OpenFPM DEM simulation scaled well. The numbers
next to the symbols represent the absolute wall-clock time in seconds each time
step.

Using the identical test scenario, we evaluate the performance of the OpenFPM
DEM with the old PPM code [78]. We display the parallel efficiency of the
OpenFPM DEM simulation with strong scaling on up to 192 processors in fig-
ure 6.11. OpenFPM takes 0.32 seconds to finish a time step with 677,310 par-
ticles on a single core, but the PPM-based code takes 1.0 second per time step
with 635,780 particles. OpenFPM completes a time step of the same problem in
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3 milliseconds on 192 cores, with a parallel efficiency of 56 percent. On the other
hand, the PPM DEM client requires 11 milliseconds per time step on 192 cores
and has a parallel efficiency of 47%, according to [78]. The PPM code was tested
on a Cray XT-3 system, whose AMD Opteron 2.6,GHz processors are around 3
times slower than the 2.5,GHz Intel Xeon E5-2680v3 of the present benchmark
machine, showing that both codes had identical effective performance.

6.0.6 Particle-swarm covariance-matrix-adaptation evolu-
tion strategy (PS-CMA-ES)

One of the most significant advantages of OpenFPM over other simulation
frameworks is that it can transparently handle spaces of any dimension. This
feature allows simulations in higher-dimensional spaces, like in lattice quan-
tum chromodynamics [80, 81] with four and five-dimensional spaces, or non-
simulation applications such as image analysis algorithms [82], and Monte-Carlo
sampling strategies [83].

The Covariance-Matrix-Adaptation Evolution Strategy (CMA-ES) is a Monte-
Carlo sampling teqhnique used for black box optimization [84, 85]. The objec-
tive is to find a (local) optimum for a (non-convex) function f : R

n 7→ R.
The domain’s dimensionality n in the tested applications ranges from 10 to 50.
CMA-ES has already been parallelized by running numerous instances of the
program at the same time that exchange information in the same way that a
particle-swarm optimizer does. On multi-funnel functions, the resulting particle-
swarm CMA-ES (PS-CMA-ES) has been demonstrated to outperform regular
CMA-ES [86], and an efficient Fortran version, pCMAlib [87], is available.

We use OpenFPM to implement PS-CMA-ES in order to show how OpenFPM
transparently handles high-dimensional spaces and can also be used for non-
simulation tasks like sampling and computational optimization. Each OpenFPM
particle corresponds to one CMA-ES instance in our solution, allowing us to im-
plement PS-CMA-ES via particle interactions across processors. We employ the
multi-modal test function f15 from the IEEE CEC2005 collection of standard
optimization test functions to assess the OpenFPM implementation [88]. To
compare directly with pCMAlib, we set the maximum number of function eval-
uations to 5× 10 and run both implementations 25 times each. In 10, 30, and
50 dimensions, we compare the success rate, which is the fraction of the 25
runs that reached the genuine global optimum, and the success performance,
which is the average best function value discovered over all 25 runs [86, 87].
When employing the same pseudo-random number sequence, the findings from
the OpenFPM-based implementation are similar to those from pCMAlib (not
shown).

We also evaluate the OpenFPM-based implementation’s runtime perfor-
mance and parallel scalability to the highly optimized Fortran pCMAlib. For
dimension 50, the findings are shown in figure 6.12. The results for dimensions
10 and 30 are similar and are not shown. This corresponds to robust scaling
because the total number of function evaluations is kept constant at 5× 105

regardless of the number of cores employed. However, because this is a hard
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Figure 6.12: Scaling from 1 to 48 cores for IEEE CEC2005 test function f15 in
dimension 50 using the OpenFPM PS-CMA-ES client (blue circles) in compar-
ison to the Fortran pCMALib (red triangles). The minimum total wall-clock
time in seconds for 5× 105 function executions is shown (over 25 independent
repeats).

requirement of pCMALib, the number of swarm particles is always chosen to
be equal to the number of cores, but OpenFPM does not. The OpenFPM
implementation is about a third quicker than pCMAlib in all circumstances.

Because dimensionality is a template parameter in all data structures, imple-
menting arbitrary-dimensional codes with OpenFPM is simple. The PS-CMA-
ES data structures in 50 dimensions are defined in OpenFPM using the code
example in Listing 6.0.6. All iterators and mappings operate in a transparent
manner. This example shows how OpenFPM naturally extends to problems in
higher-dimensional spaces, something that the original PPM Library [44] could
not do.

[Listing 4.6: OpenFPM code example for high-dimensional spaces]

1 constexpr int dim = 50; // define the dimensionality
2

3 ///// Define the optimization domain as (-5:5)^dim
4 Box<dim,double> domain;
5 for (size_t i = 0; i < dim; i++) {
6 domain.setLow(i,-5.0);
7 domain.setHigh(i,5.0);
8 }
9

10 ///// Define periodic boundary conditions
11 size_t bc[dim];
12 for (size_t i = 0; i < dim; i++) {bc[i] = NON_PERIODIC;};
13

14 ///// There are no ghost layers needed for this problem
15 Ghost<dim,double> g(0.0);
16
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17 ///// define the particles data structure
18 vector_dist<dim,double,aggregate<double,double[dim]>> particles(8,domain,bc,g);
19

20 ///// get an iterator over particles and loop over all of them
21 auto it = vd.getDomainIterator();
22 while (it.isNext()) {
23 ....... // do PS-CMA-ES here
24 ++it;
25 }



Chapter 7

OpenFPM Development

While in the previous chapters, focused mainly on discussing the design, fea-
tures, and performance of OpenFPM. This chapter, is going to discuss the de-
velopment infrastructure. Such infrastructure makes OpenFPM maintainable,
keeping high-quality code standards in terms of robustness against multiple com-
pilers, different systems, and hardware. During the development of OpenFPM
a lot of lessons has been learned in many aspects regarding its development. In
this chapter, will go through some of them.

7.1 Repository structure

As we already saw throughout this thesis, OpenFPM is composed of six reposito-
ries. Each of these repositories contains classes developed for a determined pur-
pose. The six repos stack up to create the software stack in figure 1.1. The stack
starts from openfpm devices where we have memory allocators, passing through
openfpm data where we have single-core data structures. Openfpm vcluster,
where we have functionalities to communicate across processes. Openfpm pdata
where we have distributed data structures and finally openfpm numerics, where
we have numerical algorithms on top of data structures.

Each repo has its tests suites and is tested without the top-level modules.
This guarantees that each module can be tested with classes in the same or
below repos in the stack. Having vertical development and multi-level test-
ing give robust criteria to develop tests that are useful to detect regressions
near the place where they are introduced. It also provides good feedback on
the quality and granularity of the tests. Let us imagine we have a failure in
the openfpm pdata project tests. Tracking the problem from the failing test,
we realize the error requires commits not only in openfpm pdata but also in
the project openfpm data. Having commits in two modules gives the feedback
that we lack lower level tests in openfpm data that control regressions and cor-
rectness of the openfpm data module. Additionally, they enforce an order on
the test. Test in data has to pass before checking the test in openfpm pdata

129
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or any other module higher than openfpm data. In the ideal case, a failure
in openfpm pdata and not openfpm data should restrict our bug search to the
openfpm pdata module. Within the repo, the classes are developed using a test-
driven development approach. The test is the starting point that defines the
class member functions and their behavior. Bugs are seen as a lack of testing,
so fixing a bug start from developing a test that detect the problem failing. The
bug is considered fixed when we are able to make pass the test.

An important aspect to consider when creating a test is to avoid redundan-
cies. Avoid redundancies, mean that each test has to control some new code
developed on the top of code already tested by other tests. This explain also
why giving an order respecting the vertical development is fundamental. Any
mechanism to organize tests in suites or even more strict mechanisms like sep-
arate repos play a role in the verticality of the development and testing. Every
test ideally checks a small section of code on top of already tested code. These
are the main criteria used to develop a valuable test suite in OpenFPM.

The rules provided above give criteria to decide when to add a test and
when not, providing equilibrium in finding the right amount of testing. Al-
though the rules above are good practice to find a good spot, context must
always be considered. A software controlling critical system in which a bug can
lead to significant damages like an autopilot or security system requires special
consideration and complete solid testing before releasing. The software control-
ling non-critical systems like a library for simulation can initially release a new
feature with less testing and add tests to fix bugs later on.

Templated code makes it difficult to evaluate coverage, but the coverage
reported by gcov using the full test suite with over 600 test cases is around 90%
and 95% or above for each repo. While the overall testing coverage is above
95%

7.2 Build pipeline and full automation

It has been shown the importance of creating a valuable testing suite for the
OpenFPM code in the previous section. This chapter will show how to automate
the testing and separate tests in stages, giving them priorities. The purpose of
running the code under an automated pipeline is to test code robustness against
regressions and robustness against multiple compilers, systems, and hardware
systematically. The full pipeline is shown in Fig: 7.1

Each rectangle indicates a particular test/operation or a swarm of tests/-
operations, while their color indicates the automation service that triggers or
manages such test/operation. Red for GitLab blue for Rundeck. Instead, the
green part indicates the web services front end for the user, like the OpenFPM
website or web-based developer tools like GitLab development repo, Github
staging repo, and the Github release repo. The pipeline automatically publishes
on the OpenFPM website reports regarding performance tests, static analysis,
or coverage.

In the red section, we mainly find the integration phase, which include mainly
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Figure 7.1: Build pipeline used to test and release OpenFPM
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code-based testing. As we said, each repo has its tests for a total of over 600
tests cases (growing). All of them are grouped in the rectangle ”Integration
test” in figure 7.1. These tests are automated and triggered at every commits
by GitLab-CI. Gitlab-CI is connected to dedicated machines to provide feedback
in running the tests with newly added code as soon as possible. Overnight the
rest of the pipeline is triggered, starting from the delivery phase 1 section, then
the delivery phase 2, and finally the deploy phase 1 and deploy phase 2. All
the jobs in each section (delivery phase 1-2, deploy phase 1-2) are triggered in
parallel on the MPI-CBG cluster during the night. Each section has a barrier,
and the next session is only triggered if all the tests/operations in the previous
section have been completed successfully. If the entire automated pipeline is
completed overnight successfully, new online documentation, examples code,
docker containers, super bundles, and source code are uploaded and accessible
from the OpenFPM website.

Here we will give a small description of what every test/operation does:
OpenFPM io: Integration tests for the repository OpenFPM io

OpenFPM devices: Integration tests for the repository OpenFPM devices
OpenFPM data: Integration tests for the repository OpenFPM data
OpenFPM vcluster: Integration tests for the repository OpenFPM vcluster
OpenFPM pdata: Integration tests for the repository OpenFPM pdata
OpenFPM numerics: Integration tests for the repository OpenFPM numerics

Medium scale test: Integration tests are tests that run in a short amount
of time on the range of 1, 2, and 3 processes maximum. This test runs overnight
and runs the tests in the range of 4 to 12 processors.

Example tests: In the repository, there is also the folder with the example
codes. Example codes are distributed in order to show how to use the library.
There are around 60 examples. This test compiles and install the library and
check that the test compiles and run against the installed library. This step
guarantee that the released examples code never goes outdated with the library.

Run test with SE CLASS1 and sanitizers: This step runs the tests
with libsanitizer and the internal assertion active. Internal assertion enables
detection of buffer-overrun in all single-core data structures, and any internal
abuse of functions: going out of range for parameters, using functions when not
allowed.

Test secondary compilers: In this test, we check if the code is robust
against additional compilers different from the one used in CI. Like for example,
the Intel compiler.

High scale test: Is the same as medium-scale tests but scale up to 240
cores

High scale GPU test: In this case, we test our code with GPU activated
up to 14 GPU on the MPI-CBG cluster.

Secondary OS: The code is tested against secondary operating systems.
In this case, the secondary operating system is Windows with MSYS2.

Execute performance test and generate report: Run a test that checks
the performance of the basic data structure and compares it with the last ref-



CHAPTER 7. OPENFPM DEVELOPMENT 133

erence point. The suite is based on 50 graphs. In Fig 7.2 we have an example
of a graph when we have a performance gain and one when we do not have a
performance gain.

Generate Doxygen documentation: This is not a test but generates
Doxygen documentation out of the openfpm code base, and it made it available
online as documentation for the in-development version.

Test coverage report: This job generates a coverage report of the openfpm
test suites. The results are analyzed with coveralls.

codacy analysis: Copy the code in repositories for static analysis. Codacy
does static analysis of the code. In particular regarding copy-paste, code styles
or potentially uninitialized variables.

Pack the examples: pack the example codes in a zip and upload them on
the website

Test the compilation of the packed and uploaded example codes:
Download the example codes packed from before and test them against the
actual release candidate

public code on github: Upload the code on GitHub staging from the
development repository

move from incardon to IBirdSoft Move the repository from GitHub
staging, to GitHub release.

construct and deploy dockers Test the installation on several operating
systems with different pack managers to check that the installation system pro-
poses the correct packages installation for a correct installation of OpenFPM
from scratch. The systems are: Fedora, OpenSuse, Debian, Ubuntu, Mac +
Homebrew, Linux Mint

7.3 Tools for development: Parallel debuggers

In order to develop a parallel library, development tools like parallel debuggers
are fundamental. For MPI-based parallel debugger, two predominant options ex-
ist, Allinea DDT, TotalView. Both work very well, but they are proprietary and
costly if the research institute/university does not provide licenses. OpenFPM
includes gdbgui, an open-source debugger, extended as part of the OpenFPM
work to support an MPI debugger; therefore, its architecture extension is dis-
cussed in the next section. To the best of our knowledge, gdbgui extended to
MPI is the only free opensource parallel debugger for MPI programs.

7.3.1 gdbgui architecture

Gdbgui is a simple project composed of an HTTP/Websocket server that man-
ages multiple gdb sessions and a GUI that run on a web browser figure 7.3.
In the original architecture shown in figure 7.3, there is one browser tab that
connects to one gdb session through the server. The web browser tab running
the gdbgui web app sends commands to control the underlying gdb session. A
new gdb session starts with an HTTP request from the web browser. The server
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Figure 7.2: Performance graphs with different r cut and for two type of cell-
lists denoted by red and blue lines. Graphs are plotted with the number of
particles along the x axis and time along the y axis. The lines denote the
mean performance of the actual code. The regions have a width of 6 times the
standard deviation of the previous performance test, with 3 times up and down
from the previous measured mean. In the first case (left), the mean of the new
tests is lower than 3 times sigma, signifying an improvement in performance
and consequently the graph is marked by a green border. The second graph
(on the right) denotes a case in the which the mean stays within the regions
indicating the absence of any performance gain. If the lines were to stay above
the regions, it would denote a degradation of performance and in this case, the
graph is marked by a red border.
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Figure 7.3: Standard architecture of gdbgui. Every browser tab is connected to a
server machine. The server machine can debug either a local program spawning
a local gdb process (red rectangle) and loading the program, or connect to a
remote GDBServer spawning a to a remote gdb session

answers with a web page containing the gdbgui web app with the user interface
code. The code on the browser triggers a secondary connection to the server via
WebSocket. The user interface use this connection, to send command to the gdb
session. The same connection is used to receive the answers or messages from
the gdb sessions. The connection triggers a new gdb session on the server-side.
Subsequent gdb commands and responses from the gdb session are sent and
received through the WebSocket connection.

Gdbgui is a relatively compact code to modify and is easy to maintain. The
user interface is composed of 7.7 thousand lines of Javascript with TypeScript
and JSX extensions. The server is around 1.2 thousand lines of python code.
Typescript is an extension of Javascript to introduce types in the javascript lan-
guage, while JSX is an extension of the language to handle ReactJS components
with a more compact code. ReactJS is a framework for building modular user
interfaces and is the main library used to build the web-based GUI for gdbgui.

7.3.2 gdbgui extension to MPI programs architecture

Figure 7.3 shows the typical architecture of gdbgui with multiple debugging
sessions where multiple users want to debug multiple programs. From this
base, gdbgui has been extended to support a network of the type in figure 7.4.
In the figure, there is one browser connected to a server typically running on
the login node or another allocated node for the purpose, able to access the
computational nodes. The server opens multiple gdb sessions that connect to
the respective gdbserver on the computational nodes, and only one web browser
commands the multiple sessions.

Many clusters have a batch system that allocates nodes dynamically, and
it is impossible to know in advance which node to connect to. Launching the
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Figure 7.4: Architecture of gdbgui in case of MPI programs

MPI program to debug is done through a script that first runs an MPI program
to discover all nodes in which the program is running. Once ranks and node
names are collected, the information is saved in a file called nodes name. After
the program to debug is launched with the debugger gdbserver. Running the
program with gdbserver makes the program pause at the beginning and wait
for connections.

The next step is to launch the server that manages gdb sessions, open a web
browser and connect to the server. Once connected, the gdbgui user interface
runs on the browser. The gdbgui has been extended to have the option ”Connect
to mpi-gdbserver” in the menu. The input box is set to *:60000 and does not
need to be changed for most of the cases. To connect to a standard gdbserver,
we need the address ”host:port” where the host is the machine where gdbserver
is running, and port is the port where gdb is listening. Because gdbserver is
running on multiple nodes, ”*” instruct the user interface to check for a list of
nodes’ name, and 60000 indicate the port in which rank zero is listening (rank
one listen at 60001, rank two listen at 60002 ... ). The file with node names
is on the server and is requested by the gdbgui UI running on the browser.
The number of lines indicates the number of sessions to open, while every line
indicates how to connect each session remotely. The gdbgui UI requests the
server to open as many sessions as many lines and connect each session to the
same gdbgui UI. This ensures that all the messages generated by the opened
session are forwarded to the same gdbgui UI.

7.3.3 gdbgui extension to MPI programs user interface

Although the web browser handles multiple sessions, its appearance remains
mostly the same as figure 7.5. The only additional element is the process bar on
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Figure 7.5: gdbgui user interface when debugging MPI programs

top containing the six red buttons from zero to five. The processor bar contains
buttons to switch between processors and select the processor in focus. It works
very similar to the Allinea DDT processor bar from which it takes inspiration.
The color gives a visual indication of the state of the process: green if the process
is running, red if the process is on pause like when it hits a breakpoint or it is
in a step by step mode, and grey if the process is disconnected or terminated.
Commands are issued either to all the sessions or to the process in focus.

The elements of the user interface figure 7.5 remain the same. However, in
the case of an MPI program, depending on the GUI element used, commands
can be sent either to all the process sessions or only one process. It remains to
go across all the GUI elements of gdbgui and explain how they work in non-
MPI programs and how they have been changed in the case of MPI programs.
The GUI is composed of 7 sections marked in the figure 7.5. The top bar, the
central/left (CL) panel, the central/central (CC), the central/right panel (CR),
the bottom/left (BL), the bottom/center (BC), and the bottom right (BR). The
top panel contains information about the source code opened in the source code
view (CC). The typical command panel is used to resume the execution, stop
the execution, step over, step into, step over. In MPI programs, the top bar is
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enriched with the processor buttons bar explained before.
The CL panel remains aesthetically the same. This panel provides informa-

tion about the sources used to compile the binary. Because the binary does not
change across processes in an MPI program, the command to fetch sources used
to create the binary is sent only to one gdb session, more precisely the process
in focus.

The CC-panel is used to visualize the source code in which the processes
have stopped. The line marked in white indicate where the processes have been
stopped in the source code. A bright white mark is used for the process on focus
and lighter white for the other processors. In the case of total divergence in the
sense that processes stop in entirely different sources, the view always points to
where the focus process has stopped. Switching the process will also switch the
Source View to the source code in which the process we selected has stopped.
Breakpoints can be set by clicking on the line number of the source code. A
simple click sends a breakpoint command to all gdb sessions.

The CR-Panel contains information on the process on focus. Like local
variables, the number of threads, expressions to watch registers. Switching the
process on focus will also switch the process information visualized by the CR-
Panel.

The BR, BC, and BL panels contain respectively the gdb session raw output
collected from all gdb-sessions, the errors sent by all gdb sessions, like a gdb
session that crash or get stuck, and the stdin of the program. In the case of
MPI, the stdin remains unused.
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Appendix A

C++ Functional
meta-Language

This section will explain the essential elements of the C++ functional meta-
language or, more simply, the C++ template engine. At the end of this section,
it should be clear how to write or map an imperative algorithm into a C++
functional meta-language.

The first important point is that there are no variables but only functions in
this language. We will return later on, showing how it is possible to store data
in them. For now, we analyze the main features of a meta-function.

Functions can take one or more inputs and return an output. In general, the
input is a combination of integers or functions and returns either one integer or
another function. Listing A.1 shows the definition of a function in the context
of the C++ functional meta-language.

Listing A.1: meta-function definition

1

2 template<unsigned int integer>
3 struct value_function
4 {
5 enum
6 {
7 value = integer
8 };
9 };

10

11 template<typename arg_f1,typename arg_f2, unsigned int s>
12 struct function
13 {
14 typedef value_function<arg_f1::value + arg_f2::value + s> value;
15 };

The first definition is simply a function that returns the input itself as a num-
ber. The expression value_function<5>::value returns the value 5 as a number.
The second function is more complicated than the first; it takes two functions
as arguments indicated as typename parameters and an additional integer s.
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Internally the function sum the values returned by the argument functions and
the integer s. Instead of a number, this time a function is returned, which
returns the result of the summation via the structure value_function. The ex-
pression function<value_function<5>,value_function<4>,3>::value is resolved by the
compiler to value_function<12>.

Operationally, the compiler tries to resolve the type given by the expression
::value of the type function. The expression at line 14 in listing A.1 requires
to resolve the expression value_function<arg_f1::value + arg_f2::value + s>. This
expression triggers the resolution of arg_f1::value. arg_f1::value in our case is
value_function<5>::value resolving to 5, and arg_f2::value is value_function<4>::

value, resolving to 4. At the end of the sequence, this leads to value_function<5

+ 4 + 3> and finally value_function<12>.
As we can see, a sequence of instructions is substituted by a nested set of

functions. While in an imperative language, a sequence of instructions are used
to transform data progressively b = f1(a);c = f1(b);, in a functional language, a
sequence of instructions is constructed by a nested set of functions, like c = f1(

f1(a)).
Additionally to how instructions are formulated, imperative and functional

languages provide different mechanisms for storing states or information. The
primary way to store information in an imperative language is variables. In
the C++ functional language, a state or information is stored in the function
arguments and returned when queried afterward.

A.1 control statment ”if”

Another vital element of imperative and functional languages are a control flow
statements like the typical ”if” condition. The partial specialization mechanism
of ”struct” enables constructing ”if” conditions in the C++ meta-language.
Suppose, for example, to create a function. expressed in standard C++ code as

1

2 unsigned int value_function(unsigned int integer)
3 {
4 if (integer < 5)
5 {return integer;}
6 else
7 {return integer+1;}
8 }

In meta-code, this function look like

1

2 template<unsigned int integer,bool condition = integer < 5>
3 struct value_function_meta
4 {
5 enum
6 {
7 value = integer
8 };
9 };

10

11 // Partial specialization in case cond is false
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12 template<unsigned int integer>
13 struct value_function_meta<integer,false>
14 {
15 enum
16 {
17 value = integer + 1
18 };
19 };

The specialization mechanism tells the compiler to use the second vari-
ant if the condition parameter is false, while the first variant is chosen for
all the other cases. The condition is defined as second argument of the meta-
function with condition = integer < 5. We can use and test the metafunction
with value_function_meta<3>::value returning the integer 3 and value_function_meta

<7>::value returning the integer 8 at compile-time.
In the C++ meta-language, the partial specialization is equivalent to the

if-else condition. The if condition without else does not exist. The constrain
makes sense in functional language because value_function_meta must always re-
turn a value for every possible argument, hence requiring an else condition. It
is possible to leave it blank in practice, but unfortunately, this will lead to a
compile-time error if the compiler selects such a branch.

A.2 Arrays

We have seen how functions as objects are helpful to store states. It is possible
now to extend this concept and see them as an encapsulator of a list of variables.
For example, consider

1

2 template<typename ... Args>
3 struct list_or_tuple
4 {};

In this case, the struct list_or_tuple can be seen as a tuple or a list of types.
The metafunction does not operate on the arguments, and its purpose is only
to store arrays of types as arguments. Reminding that C++ templated types
are functions in the meta-language, in the following, the name function or types
will be used as an interchangeable term.

list_or_tuple store types and can be seen as an equivalent of an array in an
imperative language. The concept of having a buffer in C++ Meta-language
does not exist, out of having meta-function with variadic template arguments
as a mechanism to store a variable length of information.

A.3 functions

This section presents functions that operate on tuples of types.

Listing A.2: function working on tuples

1

2 template<typename first, typename ... Others>
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3 struct take_first_element
4 {
5 typedef first value;
6 }
7

8 template<typename args>
9 struct function_on_list_or_tuple

10 {};
11

12 template<typename ... Args>
13 struct function_on_list_or_tuple<list_or_tuple<Args ... >>
14 {
15 typedef take_first_element<Args ... > value;
16 };

The function function_on_list_or_tuple is a function that operates on a tuple.
From listing A.2 it is possible to see how to create a function that operate specif-
ically on list_or_tuple. First we have to create a non specilized function taking
one argument function_on_list_or_tuple followed by a specialization for the case
when the argument is a list_or_tuple. The specialization use the meta-function
take_first_element to retrieve the first element of the list. The reason why it is
necessary to specify two functions is that a meta-function with arguments must
be specified for every type it receives as an argument.

A.4 Loops

The last element from an imperative language is the loops. There are two ways
to create loops in the C++ meta-language. The first is through recursion, and
the second is with the variadic unpack operator. The recursion method gives
more flexibility than recursion, but the variadic unpack operator provides more
compactness than recursion. This thesis shows the variadic unpack operator
because it is enough in many cases as well as to to write the algorithm 1

Given a tuple, it is possible to apply a function to each element using a code
like in listing A.3.

Listing A.3: loops on tuples

1

2 templat<unsigned int>
3 struct integer_e
4 {};
5

6 template<typename args>
7 struct function_on_list_or_tuple
8 {};
9

10 template<typename ... Args>
11 struct function_on_list_or_tuple<list_or_tuple<Args ... >>
12 {
13 typedef list_or_tuple< add_one<Args>::value ... > value;
14 };
15

16 template<typename ie>
17 struct add_one
18 {
19 typedef integer_e<ie::value + 1> value;
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20 }
21

22

23 typedef list_or_tuple<integer_e<4>,
24 integer_e<10>,
25 integer_e<24>> integers_list;

The first integer_e is used as a function that encapsulates an integer. The
function_on_list_or_tuple at line 7 together with its specialization at line 11 is a
function that operate on a tuple. Inside this function with the line 13 add_one<

Args>::value ... the notation ”...” means to apply the meta-function add one
to each elements in Args. The result is again a variadic list encapsulated into
a list_or_tuple. For example if we have a list_or_tuple<integer_e<4>,integer_e

<10>, integer_e<24>> and we renamed as integers_list line 23− 25 and we apply
the meta-function function_on_list_or_tuple on integers_list we will obtain from
function_on_list_or_tuple<integers_list>::value the type list_or_tuple<integer_e

<5>,integer_e<11>, integer_e<25>>. We can also notice that function_on_list_or_tuple
has been designed to work only on list_or_tuple as argument based on the
specialization 10− 14. Any attempt to make it works on a different type as ar-
gument will lead the compiler to choose the first specialization 6–8 and generate
an error when we ask for the element ::value.

At this point, we have all the elements to construct the algorithm 1.

Listing A.4: Align the types to 8 bytes

1 template<typename T>
2 struct if_float_or_int // No tranform
3 {
4 typedef T value;
5 }
6

7 template<>
8 struct if_float_or_int<float> // transform float to double
9 {

10 typedef double value;
11 }
12

13 template<>
14 struct if_float_or_int<int> // tranform int to long int
15 {
16 typedef long int value;
17 }

In listing A.4, the meta-code starts creating the logic to transform a type
from 4 bytes to the 8 bytes counterpart using a meta-function. The code has
to create an ”if” condition, so it creates one partial specialization for the float
case that returns double, one for int that returns a long int, and the standard
case that does not do any transformation. This meta-function encapsulate the
lines from 2–7 in the algorithm 1. As an example, the meta-function produces
the following result when queried with ::value

1 if_float_or_int<float>::value a // equivalent to double a
2 if_float_or_int<int>::value b // equivalent to long int b
3 if_float_or_int<std::string>::value c // equivalent to std::string c;
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It remains to loop over all the elements of the tuple and apply the meta-
function. This operation, as seen before, can be done with the template unpack
operator ....

Listing A.5: Meta loop

1

2 template<typename T>
3 struct align_to_8_byte
4 {};
5

6 struct align_to_8_byte<typename ... props>
7 {
8 typedef aggregate<if_float_or_int<props>...> value;
9 }

In the listing A.5, align_to_8_byte can be seen again as a meta-function that
encapsulates the compile-time algorithm and the if_float_or_int<props>... ap-
plies if_float_or_int function for every property. The output of if_float_or_int
<props>::value... is again a variadic list. A variadic list can be finally given
to an aggregate. The aggregate is our final return type of our meta-function
align_8_byte. All together the algorithm 1 at compile-time will look like

1

2 template<typename T>
3 struct if_float_or_int // No tranform
4 {
5 typedef T value;
6 }
7

8 template<>
9 struct if_float_or_int<float> // transform float to double

10 {
11 typedef double value;
12 }
13

14 template<>
15 struct if_float_or_int<int> // tranform int to long int
16 {
17 typedef long int value;
18 }
19

20 template<typename T>
21 struct align_to_8_byte
22 {};
23

24 struct align_to_8_byte<typename ... props>
25 {
26 typedef aggregate<if_float_or_int<props>...> value;
27 }

To use the meta-function align_to_8_byte on an aggregate of types, we can use
the expression align_to_8_byte<aggregate<float,double,int,int,long int>>::value.
This will produce a transformed aggregate of type aggregate<double,double,long

int,long int,long int>. There are other and more extended ways to express
loops in metaprogramming, but the technique above is enough for our purpose.
A complete explanation of template meta-programming techniques is out of the
scope of this thesis.
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Another essential technique used throughout the library is introspection. It
is possible to create a metafunction to introspect if a particular structure exposes
a method. An example in C++11 is shown in listing A.6

Listing A.6: introspecion

1

2

3 struct test
4 {
5 typedef double value_type;
6 }
7

8 template<typename> struct Void
9 {

10 //! define void type
11 typedef void type;
12 };
13

14 template<typename T, typename Sfinae = void>
15 struct has_value_type: value function <false > {};
16

17

18

19 template<typename T>
20 struct has_value_type<T,
21 typename Void< typename T::value type >::type
22 >
23 : value function <true >

24 {};

The meta-code is very verbose, but its functionality is straightforward. has_value_type

<T>::value return true only if the type T expose the member value type. For
example has_value_type<double>::value returns false, while has_value_type<test>::

value returns true. Without going into the details, the meta-code in listing A.6
uses one feature of the compiler called substitution failure is not an error (SFI-
NAE). In particular, if one template substitution fails, the compiler discards the
specialization rather than produces an error. Based on this feature, we can test
the validity of certain expressions with some generic type T at compile time.
In the example above has value type check if T::value_type is a valid expression.
If not, the specialization is discarded, and the compiler falls back to the first
definition.

Finally the first definition inherits false value value_function<false> marked
in blue in the code, while the second inherit value_function<true> marked again
in blue in the code. This inheritance gives the possibility with has_value_type<T

>::value to check which specialization the compiler has chosen.
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sphysics: Open-source parallel cfd solver based on smoothed particle hydro-
dynamics (sph), Computer Physics Communications 187 (2015) 204–216.
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