6 research outputs found

    Clique Identification and Propagation for Multimodal Brain Tumor Image Segmentation

    Get PDF
    Brain tumors vary considerably in size, morphology, and location across patients, thus pose great challenge in automated brain tumor segmentation methods. Inspired by the concept of clique in graph theory, we present a clique-based method for multimodal brain tumor segmentation that considers a brain tumor image as a graph and automatically segment it into different sub-structures based on the clique homogeneity. Our proposed method has three steps, neighborhood construction, clique identification, and clique propagation. We constructed the neighborhood of each pixel based on its similarities to the surrounding pixels, and then extracted all cliques with a certain size k to evaluate the correlations among different pixels. The connections among all cliques were represented as a transition matrix, and a clique propagation method was developed to group the cliques into different regions. This method is also designed to accommodate multimodal features, as multimodal neuroimaging data is widely used in mapping the tumor-induced changes in the brain. To evaluate this method, we conduct the segmentation experiments on the publicly available Multimodal Brain Tumor Image Segmentation Benchmark (BRATS) dataset. The qualitative and quantitative results demonstrate that our proposed clique-based method achieved better performance compared to the conventional pixel-based methods

    Brain Tumor Segmentation Methods based on MRI images: Review Paper

    Get PDF
    Statistically, incidence rate of brain tumors for women is 26.55 per 100,000 and this rate for men is 22.37 per 100,000 on average. The most dangerous occurring type of these tumors are known as Gliomas. The form of cancerous tumors so-called Glioblastomas are so aggressive that patients between ages 40 to 64 have only a 5.3% chance with a 5-year survival rate. In addition, it mostly depends on treatment course procedures since 331 to 529 is median survival time that shows how this class is commonly severe form of brain cancer. Unfortunately, a mean expenditure of glioblastoma costs 100,000$. Due to high mortality rates, gliomas and glioblastomas should be determined and diagnosed accurately to follow early stages of those cases. However, a method which is suitable to diagnose a course of treatment and screen deterministic features including location, spread and volume is multimodality magnetic resonance imaging for gliomas. The tumor segmentation process is determined through the ability to advance in computer vision. More precisely, CNN (convolutional neural networks) demonstrates stable and effective outcomes similar to other automated methods in terms of tumor segmentation algorithms. However, I will present all methods separately to specify effectiveness and accuracy of segmentation of tumor. Also, most commonly known techniques based on GANs (generative adversarial networks) have an advantage in some domains to analyze nature of manual segmentations.

    Stroke Lesion Segmentation in FLAIR MRI Datasets Using Customized Markov Random Fields

    Get PDF
    Robust and reliable stroke lesion segmentation is a crucial step toward employing lesion volume as an independent endpoint for randomized trials. The aim of this work was to develop and evaluate a novel method to segment sub-acute ischemic stroke lesions from fluid-attenuated inversion recovery (FLAIR) magnetic resonance imaging (MRI) datasets. After preprocessing of the datasets, a Bayesian technique based on Gabor textures extracted from the FLAIR signal intensities is utilized to generate a first estimate of the lesion segmentation. Using this initial segmentation, a customized voxel-level Markov random field model based on intensity as well as Gabor texture features is employed to refine the stroke lesion segmentation. The proposed method was developed and evaluated based on 151 multi-center datasets from three different databases using a leave-one-patient-out validation approach. The comparison of the automatically segmented stroke lesions with manual ground truth segmentation revealed an average Dice coefficient of 0.582, which is in the upper range of previously presented lesion segmentation methods using multi-modal MRI datasets. Furthermore, the results obtained by the proposed technique are superior compared to the results obtained by two methods based on convolutional neural networks and three phase level-sets, respectively, which performed best in the ISLES 2015 challenge using multi-modal imaging datasets. The results of the quantitative evaluation suggest that the proposed method leads to robust lesion segmentation results using FLAIR MRI datasets only as a follow-up sequence

    The Multimodal Brain Tumor Image Segmentation Benchmark (BRATS)

    Get PDF
    In this paper we report the set-up and results of the Multimodal Brain Tumor Image Segmentation Benchmark (BRATS) organized in conjunction with the MICCAI 2012 and 2013 conferences. Twenty state-of-the-art tumor segmentation algorithms were applied to a set of 65 multi-contrast MR scans of low-and high-grade glioma patients-manually annotated by up to four raters-and to 65 comparable scans generated using tumor image simulation software. Quantitative evaluations revealed considerable disagreement between the human raters in segmenting various tumor sub-regions (Dice scores in the range 74%-85%), illustrating the difficulty of this task. We found that different algorithms worked best for different sub-regions (reaching performance comparable to human inter-rater variability), but that no single algorithm ranked in the top for all sub-regions simultaneously. Fusing several good algorithms using a hierarchical majority vote yielded segmentations that consistently ranked above all individual algorithms, indicating remaining opportunities for further methodological improvements. The BRATS image data and manual annotations continue to be publicly available through an online evaluation system as an ongoing benchmarking resource
    corecore