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Robust and reliable stroke lesion segmentation is a crucial step toward employing

lesion volume as an independent endpoint for randomized trials. The aim of this work

was to develop and evaluate a novel method to segment sub-acute ischemic stroke

lesions from fluid-attenuated inversion recovery (FLAIR) magnetic resonance imaging

(MRI) datasets. After preprocessing of the datasets, a Bayesian technique based on

Gabor textures extracted from the FLAIR signal intensities is utilized to generate a

first estimate of the lesion segmentation. Using this initial segmentation, a customized

voxel-level Markov random field model based on intensity as well as Gabor texture

features is employed to refine the stroke lesion segmentation. The proposed method

was developed and evaluated based on 151 multi-center datasets from three different

databases using a leave-one-patient-out validation approach. The comparison of the

automatically segmented stroke lesions with manual ground truth segmentation revealed

an average Dice coefficient of 0.582, which is in the upper range of previously presented

lesion segmentation methods using multi-modal MRI datasets. Furthermore, the results

obtained by the proposed technique are superior compared to the results obtained

by two methods based on convolutional neural networks and three phase level-sets,

respectively, which performed best in the ISLES 2015 challenge using multi-modal

imaging datasets. The results of the quantitative evaluation suggest that the proposed

method leads to robust lesion segmentation results using FLAIR MRI datasets only as a

follow-up sequence.

Keywords: magnetic resonance imaging, ischemic stroke, image segmentation, classification, brain lesion

segmentation

1. INTRODUCTION

Strokes are a leading cause of death and disability worldwide (1). Acute ischemic strokes, which
are caused by a blockade of an artery, account for 80% of all strokes. However, a blockade of an
artery by a blood clot does not lead to an immediate necrosis of the brain region supplied by the
blocked artery since collateral blood vessel connections can partly compensate the blocked blood
flow from the main artery (2). It is typically assumed that the infarct core will gradually expand
into this hypoperfused brain region over time if the blood clot is not dissolved (3). This region
is typically referred to as the penumbra or tissue-at-risk (4–6) and represents the target for any
ischemic stroke treatment.

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org/journals/neurology#editorial-board
https://www.frontiersin.org/journals/neurology#editorial-board
https://www.frontiersin.org/journals/neurology#editorial-board
https://www.frontiersin.org/journals/neurology#editorial-board
https://doi.org/10.3389/fneur.2019.00541
http://crossmark.crossref.org/dialog/?doi=10.3389/fneur.2019.00541&domain=pdf&date_stamp=2019-05-24
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles
https://creativecommons.org/licenses/by/4.0/
mailto:nils.forkert@ucalgary.ca
https://doi.org/10.3389/fneur.2019.00541
https://www.frontiersin.org/articles/10.3389/fneur.2019.00541/full
http://loop.frontiersin.org/people/691696/overview
http://loop.frontiersin.org/people/691694/overview
http://loop.frontiersin.org/people/194723/overview
http://loop.frontiersin.org/people/128902/overview
http://loop.frontiersin.org/people/171865/overview
http://loop.frontiersin.org/people/660609/overview
http://loop.frontiersin.org/people/167568/overview


Subbanna et al. Lesion Segmentation Using Customized MRF

For almost 25 years, the clot dissolving tissue plasminogen
activator (tPA) was the only available treatment option with
varying success rates depending on the clot location and
morphology (7). Recent prospective randomized trials have
shown overwhelming success of mechanical thrombectomy (8).
Currently, more andmore devices for mechanical thrombectomy
are developed while at the same timemore research is focusing on
the development and evaluation of novel treatment approaches
such as the use of neuroprotective drugs. In any case, clinical
studies are required to show the efficacy of these new devices or
treatment options. Although the clinical outcome (e.g., modified
Rankin scale at 90 days post stroke) is typically used as the
primary endpoint for such studies, the follow-up stroke lesion
volume is becoming more important as an alternative primary
or secondary study endpoint nowadays. This is not only because
the continuous lesion volume has a higher statistical power
compared to categorical outcome measures but also because it
can be measured at an earlier time point.

Magnetic resonance imaging is one of the most used
techniques for follow-up brain lesion assessment. However,
the quantitative measurement of the lesion volume in follow-
up imaging data requires a precise segmentation, which is a
tedious and complex task, if performed manually, since stroke
lesions vary considerably in shape, size, and location in the
brain (see Figure 1).

Due to the importance of follow-up lesion segmentation,
multiple methods for semi-automatic or automatic stroke lesion
segmentation have been presented in the past, for example using
unsupervised k-means clustering (9), active learning approaches
(10), or more advanced extra tree forests (11), Markov random
field (MRF)models (12), and convolutional neural networks (13).
Almost all recently proposed lesion segmentation techniques
utilize local features and contexts that can be affected by signal
noise, geometric distortions, magnetization inhomogeneities,
and anatomical variations. Furthermore, previously described
methods often suffer from normalization problems inherent
to non-quantitative imaging methods, which is especially
important in case of multi-center datasets that are typically
acquired using varying imaging parameters. Finally, if multiple
imaging modalities with complementary information are used
for lesion segmentation, a registration of all multi-modal datasets
into a common reference space is required, which leads to
interpolation artifacts but might also require extensive tuning of
registration methods to account for all possible problems such
as local imaging distortions, for example, often seen in case of
diffusion-weighted MRI datasets acquired using an echo-planar
imaging technique.

Fluid-attenuated inversion recovery (FLAIR) MRI (see
Figure 1) is an image sequence that is typically used as a
stroke follow-up sequence. Although using only FLAIR datasets
for lesion segmentation does not leverage the multi-modal
information, should it be available, it represents the lowest
common denominator of image sequences typically available in
follow-up stroke MRI protocols. Thus, it is useful to develop and
evaluate lesion segmentation methods specifically and only for
this image sequence, especially if historical datasets are used for
the control group in a clinical trial.

A major issue for segmenting stroke lesions using FLAIR
datasets only is that small white matter lesions, which are not
part of the ischemic stroke lesion (see Figure 1), are often falsely
segmented. In order to overcome this problem, we propose
a technique based on MRFs that utilize multiple local and
regional observations to improve the automatic stroke lesion
segmentation using only FLAIR MRI datasets. Utilizing multiple
observations, especially including texture features, often leads to
more robust segmentation results. Similar techniques have been
successfully developed and evaluated for other segmentation
tasks such as the delineation of brain tumors (14) and multiple
sclerosis lesions (15). In this paper, the generic graphical model
framework described in (16) is adapted to segment stroke
lesions by merging the two hierarchical levels into a single
MRF model that includes local observations such as signal
intensities and intensity variations, and regional observations
such as texture features.

2. MATERIALS AND METHODS

2.1. Material
Three different multi-center databases were used in this work
for the development and evaluation of the proposed lesion
segmentation method. All datasets were made available fully
anonymized for this retrospective, secondary study so that ethics
approval was not required.

The first database consists of 23 FLAIR MRI datasets
acquired at the University Medical Center Hamburg-Eppendorf,
Germany, for a clinical study focusing on the analysis, modeling,
and modulation of the human motor network during recovery
from motor stroke (17), which is referred to as the SFB database
in the following. All of these datasets were acquired on a 3T
Siemens SkyraMRI scanner (Siemens, Erlangen, Germany) using
a 32-channel head coil (repetition time (TR) = 9,000 ms, echo
time (TE) = 90 ms, inversion time (TI) = 2,500 ms, field of
view = 230 × 230 mm2, slice thickness = 5 mm, and in-plane
resolution= 0.7×0.7 mm2).

The second database consists of 108 FLAIR datasets acquired
within a prospective European multi-center stroke imaging study
(I-KNOW) from a total of five contributing centers (18). The aim
of I-KNOWwas to collect a large sample of patients with anterior
circulation stroke, with admission and follow-up MRI to develop
infarct predictionmodels based on clinical and imaging variables.
The FLAIR imaging parameters and scanners (all 1.5T) used
for image acquisition were different for all contributing centers.
The slice thickness of these datasets ranges from 5.5 to 7.2 mm,
while the in-plane resolution ranges from 0.45 × 0.45 mm2 to
0.94× 0.94 mm2.

The third database consists of 28 FLAIR MRI datasets that are
publicly available for classifier training as part of the Ischemic
Stroke Lesion Segmentation (ISLES) challenge organized in
conjunction with the Medical Image Computing and Computer
Assisted Intervention (MICCAI) conference 2015 (19). These
FLAIR datasets were acquired in two centers, which were both
equipped with a 3T MRI scanner. Datasets of patients with
isolated brainstem lesions were excluded from the original ISLES
training database to ensure consistency with the other two
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FIGURE 1 | Selected slices from four FLAIR MRI datasets (1a–4a) with corresponding expert lesion segmentations (1b–4b).The lesions vary considerably with

respect to shape, position, and size. Patient 4 does not display a lesion resulting from an acute ischemic stroke but considerable white matter hyperintensities, which

are often falsely segmented by automatic lesion segmentation methods.

databases. It also has to be highlighted that the FLAIR MRI
datasets from this database were only available registered and
resampled to the corresponding high-resolution T1-weighted
MRI dataset and not as the original images. The in-slice spatial
resolution of these registered images is 1.0× 1.0 mm2 while the
slice thickness is 1.0 mm in all cases.

Thus, a total of 159 FLAIR datasets of patients with an
ischemic stroke acquired at the sub-acute phase (2–7 days post
stroke onset) were available for this work. An experienced
observer segmented all lesions in the first two databases using the
in-house developed software tool AnToNIa (20). The procedure
used for the manual lesion segmentation is described in detail
in Cheng et al. (18). For the ISLES database, the ground truth
segmentations available for the training datasets were used
directly for the development and evaluation of the method
described in this work.

2.2. Preprocessing
The datasets from the ISLES database are only available already
skull stripped, which means that only brain tissue is visible
in these datasets. As this was not the case for the other two
databases available for this work, skull stripping was performed
to ensure consistency between the databases. Therefore, the GIN-
IMN elderly brain atlas (21) was skull stripped using the Brain
Extraction Tool (BET) (22). After this, the GIN-IMN elderly
brain atlas (21) was registered non-linearly to each FLAIR MRI
dataset using ANTs (23) and the corresponding brain atlas
segmentation was transformed accordingly to the each FLAIR
dataset using Lanczos windowed sinc interpolation, which was
then used for skull stripping.

As described above, the datasets used in this study were
acquired using a variety of MRI scanners with different field
strengths and imaging parameters. Thus, the FLAIR image
intensities are not directly comparable between the different
centers. To overcome this problem, an inter-patient intensity
normalization was performed using image intensity histogram
quartiles as control points as described in Nyl et al. (24).

After skull stripping, a non-uniformity intensity correction
was performed using the N3 algorithm (25) to account for
local bias field inhomogeneities. As high-intensity lesions in the
FLAIR MRI datasets can negatively influence the calculation of
the bias field, this computation was restricted to a brain mask
that excluded high-intensity regions as well as the background.
Practically, the mask was generated using a lower threshold of
0.12 and an upper threshold of 0.65 of the normalized FLAIR
MRI datasets. These threshold values were manually selected
because they led to suitable results across multiple different
datasets. The bias field corrected FLAIR datasets were manually
examined and datasets that showed artifacts due to the bias field
correction were excluded from this study.

In the last step, the non-linear GIN-IMN elderly brain atlas
to FLAIR MRI transformation as described above was also used
to transform tissue prior maps of gray matter, white matter, and
cerebrospinal fluid to each FLAIR MRI dataset.

2.3. Lesion Segmentation
The proposed method for lesion segmentation in FLAIR MRI
datasets uses a two-step technique. In the first step, a Bayesian
classification based on Gabor texture information is used to
evaluate the probability of each voxel belonging to one of two
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groups, lesion or non-lesion voxels. The output of the Bayesian
segmentation is then used as the input to a customized MRF,
where each brain voxel is assigned one ofM classes. In this work
M = 4 classes are used, which include cerebrospinal fluid (CSF),
gray matter (GM), white matter (WM), and the stroke lesion
(Les). Figure 2 illustrates the processing steps of this two-step
lesion segmentation method for automatic lesion delineation in
FLAIRMRI datasets (only the lesion segmentation class is shown
for the MRF output), described in more detail in the following.

2.3.1. Initial Classification
For the initial Bayesian classification, each FLAIR dataset is
decomposed into its multi-window Gabor filter bank outputs, IG,
using the convolution at each voxel as described below. The class
of each voxel, Ci, is then estimated using Bayesian classification:

P(Ci|I
G
i ) ∝ P(IGi |Ci)P(Ci), (1)

where IGi is the set of Gabor coefficients of the ith voxel. The
likelihood term encapsulates the probability of the class, given
the texture features in Gabor space. The technique to compute
the Gabor features is described in the following.

2.3.2. Gabor Window Computation
In a first step, each axial slice of a given FLAIR image is processed
using multi-window, 2D discrete Gabor transforms as suggested
in Zibulski and Zeevi (26). 2D instead of 3D Gabor transforms
are used in this work since FLAIR MRI datasets usually exhibit a
rather coarse slice thickness that is considerably worse compared
to the in-slice spatial resolution. The set of R window functions is

computed as suggested in Subbanna et al. (16):

gr[x, y; a, b, n1, n2,m1,m2, σxr , σyr ]

= e
−

(

(x−n1a)
2

σxr
2 +

(y−n2a)
2

σyr
2

)

e
−j2π

(m1bx/L1+m2by)
L2 , (2)

where L1 and L2 are the total number of voxels in the slice in X
and Y directions, x and y are space coordinates within the slice,
a and b are the magnitudes of the isotropic shifts in the spatial
and frequency domains, respectively, n1,2 andm1,2 are the indices
of the shifts in the position and frequency domains, respectively,
σxr and σyr are variance parameters of the r-th window, and
r ∈ 0 . . .R − 1 with R denoting the number of windows. Let
G be the Gabor matrix, whose columns are generated using all
possible shift values for a and b for all R windows with every x
and y represented in each column. The filter bank coefficients
c are obtained by convolving each volume slice-by-slice with
G. The same G matrix is used for all volumes. An example
of a representative Gabor filter output for a stroke lesion is
shown in Figure 3.

2.3.3. Gabor Window Parameter Optimization
For the initial Bayesian classification, only two classes, non-
lesion and lesion, are used. In order to optimize the Gabor
window parameters, the remapping window remains fixed while
the analysis window gr[·] is varied over the parameters (σxr
and σyr ) aiming to maximize the distance between the non-
lesion and lesion classes. More formally, let {ft} and {fh} be the
sets of voxels belonging to the stroke lesion class and the non-
lesion class, respectively, as suggested in Subbanna et al. (16).
The corresponding lesion coefficients ct in the time-frequency

FIGURE 2 | Flowchart illustrating the various stages of the method employed to segment stroke lesions. Initially, a Bayesian classifier is employed to classify each

voxel of the preprocessed FLAIR MRI dataset into lesion and non-lesion voxels, based on the maximum a posteriori probability of the Gabor textures. Then, the

customized voxel-based MRF utilizing the intensity of each voxel, intensities of the neighboring voxels, and the texture is used to compute the final classification.
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FIGURE 3 | FLAIR MRI dataset (Left) with corresponding lesion segmentation

(Center) and dominant Gabor texture coefficient image (Right). Since the

lesion is rather small, the middle (second octave) component Gabor function

at 45◦ orientation to the x-axis dominates.

domain are obtained by a convolution of the set of Gabor filters,
with the center of the Gabor mask aligning with the stroke voxel,
whose texture is being computed. Similarly, the non-lesioned
tissue coefficients ch are obtained by convolution with the Gabor
filters, with the center of the Gabor mask aligning with the
healthy voxels, whose textures are computed, at the non-lesion
voxels. For maximum separation between the lesion and the
non-lesion classes, the following formula is optimized:

argmax
σx ,σy

∑

j,k

|cj − ck|, ∀cj ∈ {ct}, ∀ck ∈ {ch} (3)

where σx and σy are the vectors containing the R values of σxr
and σyr for the different spreads in the x and the y directions.
Practically, this optimization problem is solved using a graph cut
approach (27).

2.3.4. Customized Markov Random Fields
The principal purpose of this stage is to refine the initial voxel-
based classification by considering the local observations and
contexts. The MRF used for this purpose is specifically designed
to not only use intensities at the voxel level as suggested in the
standard Potts model (28), which simply uses the observations
at the voxel-level and just pairwise voxel cliques, but also to
model the intensity differences in the neighborhood and the
textures of the voxels, to preserve lesion boundaries correctly.

The labelCi of voxel i can be inferred probabilistically from the
intensity vector Ii, texture vector Ti, and the intensity difference
vector 1INi , which describes the intensity difference between the
voxel and its neighbors in the cliques. The cliques, in this case, are
the sets of voxels in the defined neighborhood that share either an
edge or a vertex. Thus, for an 8 voxel neighborhood, there are 2
voxel, 3 voxel, and 4 voxel cliques. The probability of the label at
the voxel i can be inferred from:

P(Ci | Ii,Ti,1INi ) =
∑

CNi

P(Ci,CNi | Ii,Ti,1INi )

=
∑

CNi

P(1INi , Ii,Ti | CNi ,Ci)P(CNi ,Ci)

P(1INi , Ii,Ti)

∝
∑

CNi

P(1INi | Ii,Ti,CNi ,Ci)P(Ti | Ii,CNi ,Ci)

P(Ii | CNi ,Ci)P(CNi | Ci)P(Ci)

≈
∑

CNi

P(1INi | CNi ,Ci)P(Ti | Ci)P(Ii | Ci)

P(CNi | Ci)P(Ci) (4)

Equation 4 is obtained from the preceeding equation using
Bayes rule and assuming that P(1INi | CNi ,Ti,Ci, II)=P(1INi |

CNi ,Ci), P(Ti | Ii,CNi ,Ci)=P(Ti | Ci), and P(Ii | CNi ,Ci)=P(Ii |
Ci). In Equation 4, P(Ci) is the prior probability of class Ci as
determined by the registered atlas tissue map, P(Ii | Ci) is the
likelihood of Ci given Ii, P(Ti | Ci) models the likelihood of
Ci given the texture Ti, P(1INi | CNi ,Ci) models the intensity
difference between voxel i and its neighbors in the clique, given
the neighboring classes, and P(CNi | Ci) models the probability
of transition between Ci and CNi . Ti at every voxel are computed
using the set of Gabor windows described in 2.3.2, centered at
voxel i. To infer the class labels, the energies at all voxels i, i ∈

0, . . . ,Q − 1 have to be minimized simultaneously. Assuming
that Gibbs sampling assumption holds true (28), the MRF energy
equation for the energy at voxel i is given by:

U(Ci | I) = − logP(Ii|Ci)− log(Ti | Ci)− log P(Ci)

−
∑

k∈Cliques(Ni)

∑

j∈k

(

log P(1Ii,j|Ci,Cj)− αm(Cj,Ci)
)

, (5)

where I is the intensity vector for all voxels i ∈ 0, . . . ,Q − 1,
k indexes over all the possible clique sizes in Ni, and j indexes
over all possible clique combinations of size k, m(Cj,Ci) is the
potential associated with the spatial relationship between Ci and
the vector of classes in the jth clique Cj, and α is a weighting
parameter used to handle the differences between inter-slice and
intra-slice distances. Specifically, α is computed using the ratio of
the intra-slice and inter-slice distances.

2.3.5. Training and Classification
The neighborhood considered in this work includes 8 in-plane
neighbors and the corresponding voxels in the slices above and
below. All possible cliques, i.e., all 2, 3, and 4 voxel cliques,
are considered. Gaussian distributions were used to model the
non-lesion and lesion tissue classes. Similarly, intensity difference
likelihoods are modeled using Gaussian distributions to describe
the differences of lesions with other tissue classes. Finally,
the texture coefficients are modeled by multivariate Gaussian
distributions. The class transition probabilities are extracted
from the frequency of co-occurrences of the classes in the
training volumes. With the models for the tissue class intensities,
tissue class intensity differences, and tissue class textures, and
the statistics for the 2, 3, and 4 voxel cliques obtained from the
training images, and the prior probabilities available from the
registrations, the labels are inferred using Equation. 5. During
classification, the combined energy of all voxels in Equation 5
is minimized using asynchronously updated iterated conditional
modes (ICM) (29, 30) since the Bayesians usually give a good
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initial estimate for the subsequent optimization. The maximum
iteration was set to 10, but convergence was typically achieved in
less iterations.

2.4. Evaluation
Leave-one-patient-out evaluations were performed separately for
each database. This did not include the optimization of the Gabor
parameters, which were computed only once for each database
using the datasets of another database and were kept constant
to ensure consistency regarding the texture features but also to
reduce the computational needs as this is a very time-consuming
step. More precisely, the Gabor parameters for the classification
of the SFB datasets were optimized using the datasets from the I-
KNOWdatabase and vice versa, while the SFB datasets were used
for optimization of the Gabor window parameters required for
the segmentation of the ISLES datasets. Given that the parameters
for the initial classifications originate from different datasets
acquired using different imaging parameters, this does not give
advantage the proposed method.

The Dice score, which measures the overlap of the manual
ground truth lesion segmentation and the automatic lesion
segmentation was used as the primary outcome measure (for
training and testing). Additional metrics calculated include
the positive predictive value (PPV) and sensitivity of the
classification, the ground truth and automatic lesion volume, as
well as the average surface and Hausdorff distance. Additionally,
Spearman’s rank-order correlation was used to compare the
automatically derived lesion volumes with the corresponding
ground truth lesion volumes.

Furthermore, the results of the proposed method were also
compared to the lesion segmentation results of two state-of-
the-art lesion segmentation methods that performed best in the
ISLES 2015 challenge. The first technique (31) is a method based
on convolutional neural networks, while the second approach
(32) is a technique based on fuzzy C-means clustering to
obtain an initial classification, which is refined using a three-
phase level set segmentation technique. Of note, neither of the
implementations can be assumed to be exact replica of the
original implementation. The comparison techniques were re-
implemented based on the code available from the authors
and other described filter steps required but not part of the
available source code. In case of the lesion segmentation using
convolutional neural networks, the general network setup was
not modified but only re-trained and tested using the same
leave-one-patient-out evaluation scheme as used for evaluation
of the proposed method. In case of the fuzzy c-means and level-
set method, only the fuzzy c-means method was optimized for
this evaluation while the parameters for the level-set method
described by the authors were not modified.

3. RESULTS

Visual analysis of the bias field correction results resulted in
exclusion of six datasets from the I-KNOW database and two
datasets from the SFB database. Computationally, the proposed
method requires between 20 and 30 min for lesion segmentation
in the I-KNOW and SFB datasets, depending on the number
of iterations required for the algorithm to converge. Due to the

high spatial resolution of the interpolated ISLES datasets, the
computation time increases to 70 to 90 min. Likewise, the actual
training of the classifier for lesion segmentation also depends on
the training set and required about 50 to 60 min for the I-KNOW
and the SFB data sets, and about three hours for the ISLES
data set. However, the training of the Gabor filter parameters is
the computationally most expensive step and requires multiple
hours. However, both training procedures only need to be
computed once for lesion segmentation of new datasets.

3.1. Qualitative Results
The qualitative results for two selected patients are shown in
Figure 4. Lesions of two different sizes and shapes, in different
regions were selected for this. Overall, it can be seen that
the proposed approach successfully identifies and segments all
lesions independent of the size and location, which includes even
small lesions with complex, non-compact shapes (see Figure 4

top), while at the same time not segmenting periventricular
lesions, which was one of the problems observed for the
comparison method employing a combination of fuzzy C-means
clustering and a three-phase level set segmentation technique (see
Figure 4 bottom).

3.2. Quantitative Results
Overall, the quantitative results (Table 1) support the findings
based on the qualitative results described above. Generally,
the segmentation evaluation metrics for the proposed lesion
segmentation method are well in line with the results from the
ISLES challenge generated using a separate testing set, in which
the winning algorithm achieved a mean Dice coefficient of 0.59,
mean average surface distance of 5.95mm, and averageHausdorff
distance of 37.88 mm (19). However, the highest ranked method
achieving these results employed regional random forests based
on the available multi-modal MRI datasets, while the method
proposed in this work is using only single-channel FLAIR
MRI datasets.

Furthermore, the average quantitative results revealed
a volumetric lesion undersegmentation for the proposed
method in the I-KNOW database (see Table 2), while the
other two databases lead to rather comparable volumes for
the automatically and manually segmented lesions. Taking
all segmentation evaluation metrics into account, the best
segmentation results were achieved for the SFB database,
followed by the I-KNOW database, while the segmentation of
the ISLES datasets led to the overall worst results. In line with
these results, Spearman’s rank-order correlation comparing
the automatically extracted lesion volumes with the manually
segmented lesion volumes was lowest but still very strong for the
ISLES datasets (r = 0.74) and similar for the I-KNOW (r = 0.84)
and SFB (r = 0.81) datasets. However, the overall correlation of
r = 0.81 across all databases is very strong.

The corresponding Bland-Altman plots (see Figure 5)
generally support the previously described findings but also
show that the proposed method increasingly underestimates the
volume of larger stroke lesions compared to the manual ground
truth segmentation. This tendency toward underestimated lesion
volumes is masked in the average lesion volumes in the SFB
and ISLES database due to 1 and 2, respectively, considerably
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FIGURE 4 | Selected slices (A) from two FLAIR MRI datasets (top and bottom) and corresponding automatic lesion segmentations generated using the proposed

method (B), the convolutional neural network approach (C), and the fuzzy C-means clustering and level-set method (D).

TABLE 1 | Quantitative results (mean ± standard deviation) of the proposed lesion

segmentation method for the three databases are shown in the table.

Dataset Images D PPV Sensitivity ASD HD

SFB 23 0.621 ± 0.26 0.551 0.615 6.8 ± 8.26 32.15 ± 15.35

I-KNOW 102 0.583 ± 0.236 0.742 0.464 7.39 ± 9.32 36.23 ± 27.32

ISLES 26 0.544 ± 0.28 0.422 0.594 8.91 ± 10.15 35.34 ± 31.94

Wtd. Avg. 151 0.582 ± 0.25 0.658 0.509 7.56 ± 9.29 35.38 ± 25.97

D, Dice; PPV, Positive predictive value; the sensitivity; ASD, Average surface distance (in

mm); HD, Hausdorff distance (in mm) are presented.

TABLE 2 | Vman = Volume of the manual lesion segmentation (in mL), Vaut =

Volume of the automatic lesion segmentation (in mL), and the Spearman

correlation coefficient for volumetric correlation for all datasets for our proposed

algorithm.

Dataset Images Vman Vaut Spearman

coefficient

SFB 23 23.82 ± 26.18 23.36 ± 23.23 0.81

I-KNOW 102 42.95 ± 57.6 26.82 ± 41.37 0.84

ISLES 26 43.28 ± 57.64 52.08 ± 41.42 0.74

Wtd. Avg. 151 40.09 ± 51.83 30.65 ± 40.07 0.81

over-segmented lesions, which were relatively less frequent in
the I-KNOW database. In all cases, these few outliers originated
from small lesions that were in close vicinity to other larger
white matter lesions, which are difficult to separate even for
human experts.

Small lesions are often falsely segmented by automatic
methods if only FLAIR datasets are used for this purpose.
Connected component analysis using a 26-neighborhood
analysis of the manually segmented lesions in all datasets from
the three databases identified a total of 483 lesion components

that are smaller than 1 ml. These small lesions were further
analyzed to investigate the performance of the proposed
algorithm to segment small lesions components in more detail.
Therefore, a small lesion was classified as a true-positive
segmentation if at least three voxels within the lesion are
segmented by the proposed automatic method. Likewise, a lesion
component segmented by the automatic method was defined as
a false-positive if the corresponding manual lesion segmentation
contains less than three segmented voxels in that area. Based on
these definitions, the proposed method segmented 258 of the
483 lesions correctly while falsely segmenting 81 lesions smaller
than 1 ml.

3.3. Comparison to State of the Art
Techniques
The quantitative results of the comparison of the proposed
method to the two comparison methods are shown in Table 3.
Here, it can be seen that the proposed technique leads to
improved lesion segmentation results compared to the other two
automatic lesion segmentation methods with an improvement
of around 8% compared to the method using a convolutional
neural network, which in turn performed better than the
combined fuzzy C-means and level-set lesion segmentation
method, which is also in line with the results from the ISLES
challenge 2015.

A paired t-test comparing the Dice scores using the
entire set of 151 datasets revealed that the proposed method
performs significantly better compared to the convolutional
neural network lesion segmentation method (p = 0.046) and
the combined fuzzy C-means and level-set lesion segmentation
method (p= 0.041).

Using the same definitions for small lesions, revealed that
the convolutional neural network lesion segmentation method
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FIGURE 5 | Bland-Altman plots showing the relationship between the difference and mean of the manually and automatically segmented stroke lesions for the three

databases used for evaluation.

TABLE 3 | The Dice scores and standard deviation for the three automatic lesion

segmentation methods (CNN, convolutional neural network; FCM, Fuzzy

C-Means).

Database Images Proposed method CNN (31) FCM and level sets (32)

SFB 23 0.621± 0.260 0.572± 0.230 0.534± 0.280

I-Know 102 0.583± 0.236 0.535± 0.301 0.521± 0.288

ISLES 26 0.544± 0.280 0.541± 0.270 0.527± 0.299

Wtd. Avg. 151 0.582± 0.250 0.541± 0.272 0.524± 0.287

was able to identify a slightly smaller number of true-positive
lesions (n = 239) but considerably more false-positive lesions
(n=131) compared to the proposed method (n = 258/n = 81).
The combined fuzzy C-means and level-set lesion segmentation
method identified considerably less true-positive small lesions (n
= 209) but performed equally as well considering false-positive
small lesions (n= 84) compared to the proposed method.

In a final evaluation, the generalizability of the three
segmentation methods was investigated. Therefore, all three
methods were trained/optimized using all datasets from the I-
KNOW database, which was selected for this purpose due to
the number of datasets and rather large data variability resulting
from the multi-center image acquisition. The trained models
were then applied to the SFB datasets. The ISLES were excluded
from this analysis because these datasets were only available
registered and resampled to the corresponding T1-weightedMRI
datasets, which introduces interpolation artifacts. For all three
methods, the drop in Dice score comparing the manual with
the automatically segmented lesions was comparable for the
proposed method and the method using the convolutional neural
network and considerably higher for the fuzzy C-means and
level-set method. More precisely, the proposed method achieved
a Dice score of 0.56 ± 0.26, the convolutional neural network a
Dice score of 0.51 ± 0.25, and the fuzzy C-means and level-set
method a Dice score of 0.44± 0.3.

4. DISCUSSION AND CONCLUSION

This work presented a novel method for the segmentation of sub-
acute stroke lesions from uni-modal FLAIR MRI datasets using

modified Markov random fields employing intensity, intensity
variation, and texture features.

Overall, the quantitative results are in the upper range
of previously presented methods. However, it needs to be
highlighted that the results of most of these methods are not
directly comparable as different databases were used for the
development and evaluation of the methods. The highest ranking
method of the ISLES challenge of 2015 achieved an average Dice
similarity coefficient of 0.59, mean average surface distance of
5.95 mm, and average Hausdorff distance of 37.88 mm (19),
which is in the range of the average Dice similarity coefficient
of 0.582, mean average surface distance of 7.56 mm, and average
Hausdorff distance of 35.38 mm achieved by the proposed
method in this work. However, it has to be highlighted that
the ISLES datasets consisted of multi-modal MRI sequences
including T1-weighted, T2-weighted, diffusion-weighted, and
FLAIRMRI datasets. The inclusion of such multi-modal imaging
information can help to improve the segmentation accuracy,
but in this work, only FLAIR datasets were considered for the
lesion segmentation. As noted above, the pre-processing of such a
multi-modal dataset can be very challenging and the whole range
of these sequences is not always available in typical stroke follow-
up studies. For this reason, themethod presented in this work was
developed and evaluated only based on single-channel FLAIR
MRI datasets, which are typically part of any stroke follow-up
MRI protocol. In this respect, the quantitative results achieved by
the proposed method can be considered very good. In addition, it
should be noted that the lesion segmentation approach presented
in this paper is highly flexible and an integration of multi-modal
MRI datasets for lesion segmentation is possible.

The average Dice similarity metric was lowest for the
ISLES database compared to the other two databases used for
evaluation, whereas the average Dice similarity value was better
for the SFB dataset compared to the I-KNOW database. One
potential reason why the Dice score was best for the SFB
database is that all of these datasets were acquired on the same
scanner with the same imaging parameters so that all of these
images are much more similar compared to the two other two
databases, which consist of datasets acquired in multiple centers.
Furthermore, it should be highlighted that the FLAIR MRI
datasets in the SFB database were acquired using a 3T MRI
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FIGURE 6 | Selected slice from a FLAIR MRI dataset with multiple lesions

(Left) and corresponding manual (Center) and automatic lesion segmentation

(Right).

scanner, which results in a better signal-to-noise ratio compared
to datasets acquired on 1.5T scanners as used for the other two
databases. As a result of this, the volumes of the automatically
segmented lesions are very similar to the volumes of the manual
ground truth segmentation with a very strong correlation.

A potential reason for the worse quantitative results (Dice and
lowest overall correlation compared to manual segmentations)
obtained for ISLES datasets compared to the other two database
could be that the FLAIR MRI datasets were not available in
the original imaging space but only registered and resampled
to the corresponding T1-weighted image, which comes at the
expense of interpolation-related artifacts, which, for example,
affects the Gabor texture feature calculation making it not
comparable to the other two databases. For this reason, a
pooling of the three databases for a combined leave-one-out
evaluation was not conducted. This problem likely also caused
the volumetric overestimation of the lesions segmented using the
proposed method compared to the manual segmentations found
for this database.

Another benefit of the proposed method is that it can
detect multiple stroke lesions with higher accuracy, while at
the same time small white matter hyperintensities not part of
the ischemic stroke lesion are correctly segmented less often by
the proposed method compared to the other two approaches
tested (see Figure 6).

However, this benefit also comes along with the drawback that
the automatic lesion segmentations seem to be underestimated
at the border leading to the reduced volumes compared to the
true manually segmented lesion volumes. As the lesion volume
increases, the volumetric underestimation is also increasing,
which is related to the increased surface-area-to-volume ratio
of complex structures. Due to this volumetric underestimation,
the proposed method is not yet optimally suited to be used
to extract the lesion volume as a clinical endpoint using

FLAIR datasets only. However, the comparably good results
achieved in this study suggest that it represents a good basis
for further refinement to achieve this goal. A potential technical
improvement to the method to overcome this issue is non-
uniformweighting of contrasts and textures based on the location
of the voxel with respect to the lesion boundaries. Texture
features are more characteristic for the lesion core, while the
contrasts are more useful at the boundaries.

Another limitation is that the proposed method was not
validated using a completely independent validation set. Training
of all three methods with the I-KNOW database and application
to the SFB datasets resulted in a similar drop in Dice score
for all three methods, which might raise concerns regarding
the generalizability. However, it needs to be highlighted that the
SFB datasets were acquired on a 3T MRI scanner while the
datasets of the I-KNOW database were acquired on various
1.5T MRI scanners, which likely explains the drop in Dice
score. Thus, another multi-center dataset would be required
for a true validation and investigation of the generalizability
abilities. Within this context, it should also be mentioned that
not all hyper-parameters of the two comparison methods, e.g.,
the general deep neural network architecture or the exact level-
set parameters, were optimized again in this work but taken
directly from the available source code corresponding to the
methods achieving the best results in the ISLES challenge.
Thus, the results of the two comparison methods could be
further improved by further optimization of all potentially
relevant parameters.

In conclusion, the proposed lesion segmentationmethod leads
to robust segmentation results of lesions in follow-up FLAIR
dataset and could prove valuable for lesion volume estimations
in future stroke trials.
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