5,751 research outputs found

    Extending the Nested Parallel Model to the Nested Dataflow Model with Provably Efficient Schedulers

    Full text link
    The nested parallel (a.k.a. fork-join) model is widely used for writing parallel programs. However, the two composition constructs, i.e. "\parallel" (parallel) and ";;" (serial), are insufficient in expressing "partial dependencies" or "partial parallelism" in a program. We propose a new dataflow composition construct "\leadsto" to express partial dependencies in algorithms in a processor- and cache-oblivious way, thus extending the Nested Parallel (NP) model to the \emph{Nested Dataflow} (ND) model. We redesign several divide-and-conquer algorithms ranging from dense linear algebra to dynamic-programming in the ND model and prove that they all have optimal span while retaining optimal cache complexity. We propose the design of runtime schedulers that map ND programs to multicore processors with multiple levels of possibly shared caches (i.e, Parallel Memory Hierarchies) and provide theoretical guarantees on their ability to preserve locality and load balance. For this, we adapt space-bounded (SB) schedulers for the ND model. We show that our algorithms have increased "parallelizability" in the ND model, and that SB schedulers can use the extra parallelizability to achieve asymptotically optimal bounds on cache misses and running time on a greater number of processors than in the NP model. The running time for the algorithms in this paper is O(i=0h1Q(t;σMi)Cip)O\left(\frac{\sum_{i=0}^{h-1} Q^{*}({\mathsf t};\sigma\cdot M_i)\cdot C_i}{p}\right), where QQ^{*} is the cache complexity of task t{\mathsf t}, CiC_i is the cost of cache miss at level-ii cache which is of size MiM_i, σ(0,1)\sigma\in(0,1) is a constant, and pp is the number of processors in an hh-level cache hierarchy

    Parallelizing with BDSC, a resource-constrained scheduling algorithm for shared and distributed memory systems

    No full text
    International audienceWe introduce a new parallelization framework for scientific computing based on BDSC, an efficient automatic scheduling algorithm for parallel programs in the presence of resource constraints on the number of processors and their local memory size. BDSC extends Yang and Gerasoulis's Dominant Sequence Clus-tering (DSC) algorithm; it uses sophisticated cost models and addresses both shared and distributed parallel memory architectures. We describe BDSC, its integration within the PIPS compiler infrastructure and its application to the parallelization of four well-known scientific applications: Harris, ABF, equake and IS. Our experiments suggest that BDSC's focus on efficient resource man-agement leads to significant parallelization speedups on both shared and dis-tributed memory systems, improving upon DSC results, as shown by the com-parison of the sequential and parallelized versions of these four applications running on both OpenMP and MPI frameworks

    Autotuning for Automatic Parallelization on Heterogeneous Systems

    Get PDF

    Performance Estimation for Task Graphs Combining Sequential Path Profiling and Control Dependence Regions

    Get PDF
    The speed-up estimation of parallelized code is crucial to efficiently compare different parallelization techniques or task graph transformations. Unfortunately, most of the time, during the parallelization of a specification, the information that can be extracted by profiling the corresponding sequential code (e.g. the most executed paths) are not properly taken into account. In particular, correlating sequential path profiling with the corresponding parallelized code can help in the identification of code hot spots, opening new possibilities for automatic parallelization. For this reason, starting from a well-known profiling technique, the Efficient Path Profiling, we propose a methodology that estimates the speed-up of a parallelized specification, just using the corresponding hierarchical task graph representation and the information coming from the dynamic profiling of the initial sequential specification. Experimental results show that the proposed solution outperforms existing approaches

    05101 Abstracts Collection -- Scheduling for Parallel Architectures: Theory, Applications, Challenges

    Get PDF
    From 06.03.05 to 11.03.05, the Dagstuhl Seminar 05101 ``Scheduling for Parallel Architectures: Theory, Applications, Challenges\u27\u27 was held in the International Conference and Research Center (IBFI), Schloss Dagstuhl. During the seminar, several participants presented their current research, and ongoing work and open problems were discussed. Abstracts of the presentations given during the seminar as well as abstracts of seminar results and ideas are put together in this paper. The first section describes the seminar topics and goals in general

    Safety verification of asynchronous pushdown systems with shaped stacks

    Full text link
    In this paper, we study the program-point reachability problem of concurrent pushdown systems that communicate via unbounded and unordered message buffers. Our goal is to relax the common restriction that messages can only be retrieved by a pushdown process when its stack is empty. We use the notion of partially commutative context-free grammars to describe a new class of asynchronously communicating pushdown systems with a mild shape constraint on the stacks for which the program-point coverability problem remains decidable. Stacks that fit the shape constraint may reach arbitrary heights; further a process may execute any communication action (be it process creation, message send or retrieval) whether or not its stack is empty. This class extends previous computational models studied in the context of asynchronous programs, and enables the safety verification of a large class of message passing programs
    corecore