12 research outputs found

    Hierarchical Multiple Markov Chain Model for Unsupervised Texture Segmentation

    Full text link

    Hierarchical Multiple Markov Chain Model for Unsupervised Texture Segmentation

    Get PDF
    International audienceIn this work, we present a novel multiscale texture model, and a related algorithm for the unsupervised segmentation of color images. Elementary textures are characterized by their spatial interactions with neighboring regions along selected directions. Such interactions are modeled in turn by means of a set of Markov chains, one for each direction, whose parameters are collected in a feature vector that synthetically describes the texture. Based on the feature vectors, the texture are then recursively merged, giving rise to larger and more complex textures, which appear at different scales of observation: accordingly, the model is named Hierarchical Multiple Markov Chain (H-MMC). The Texture Fragmentation and Reconstruction (TFR) algorithm, addresses the unsupervised segmen- tation problem based on the H-MMC model. The “fragmentation” step allows one to find the elementary textures of the model, while the “reconstruction” step defines the hierarchical image segmentation based on a probabilistic measure (texture score) which takes into account both region scale and inter-region interactions. The performance of the proposed method was assessed through the Prague segmentation benchmark, based on mosaics of real natural textures, and also tested on real-world natural and remote sensing images

    Unsupervised Classification of SAR Images using Hierarchical Agglomeration and EM

    Get PDF
    We implement an unsupervised classification algorithm for high resolution Synthetic Aperture Radar (SAR) images. The foundation of algorithm is based on Classification Expectation-Maximization (CEM). To get rid of two drawbacks of EM type algorithms, namely the initialization and the model order selection, we combine the CEM algorithm with the hierarchical agglomeration strategy and a model order selection criterion called Integrated Completed Likelihood (ICL). We exploit amplitude statistics in a Finite Mixture Model (FMM), and a Multinomial Logistic (MnL) latent class label model for a mixture density to obtain spatially smooth class segments. We test our algorithm on TerraSAR-X data

    Segmentation of remote sensing images using similarity measure based fusion-MRF model

    Get PDF
    Classifying segments and detecting changes in terrestrial areas are important and time-consuming efforts for remote sensing image analysis tasks, including comparison and retrieval in repositories containing multitemporal remote image samples for the same area in very different quality and details. We propose a multilayer fusion model for adaptive segmentation and change detection of optical remote sensing image series, where trajectory analysis or direct comparison is not applicable. Our method applies unsupervised or partly supervised clustering on a fused-image series by using cross-layer similarity measure, followed by multilayer Markov random field segmentation. The resulted label map is applied for the automatic training of single layers. After the segmentation of each single layer separately, changes are detected between single label maps. The significant benefit of the proposed method has been numerically validated on remotely sensed image series with ground-truth data

    Model-based learning of local image features for unsupervised texture segmentation

    Full text link
    Features that capture well the textural patterns of a certain class of images are crucial for the performance of texture segmentation methods. The manual selection of features or designing new ones can be a tedious task. Therefore, it is desirable to automatically adapt the features to a certain image or class of images. Typically, this requires a large set of training images with similar textures and ground truth segmentation. In this work, we propose a framework to learn features for texture segmentation when no such training data is available. The cost function for our learning process is constructed to match a commonly used segmentation model, the piecewise constant Mumford-Shah model. This means that the features are learned such that they provide an approximately piecewise constant feature image with a small jump set. Based on this idea, we develop a two-stage algorithm which first learns suitable convolutional features and then performs a segmentation. We note that the features can be learned from a small set of images, from a single image, or even from image patches. The proposed method achieves a competitive rank in the Prague texture segmentation benchmark, and it is effective for segmenting histological images

    Fast Segmentation of Industrial Quality Pavement Images using Laws Texture Energy Measures and k-Means Clustering

    Get PDF
    Thousands of pavement images are collected by road authorities daily for condition monitoring surveys. These images typically have intensity variations and texture non-uniformities making their segmentation challenging. The automated segmentation of such pavement images is crucial for accurate, thorough and expedited health monitoring of roads. In the pavement monitoring area, well known texture descriptors such as gray-level co-occurrence matrices and local binary patterns are often used for surface segmentation and identification. These, despite being the established methods for texture discrimination, are inherently slow. This work evaluates Laws texture energy measures as a viable alternative for pavement images for the first time. k-means clustering is used to partition the feature space, limiting the human subjectivity in the process. Data classification, hence image segmentation, is performed by the k-nearest neighbor method. Laws texture energy masks are shown to perform well with resulting accuracy and precision values of more than 80%. The implementations of the algorithm, in both MATLAB and OpenCV/C++, are extensively compared against the state of the art for execution speed, clearly showing the advantages of the proposed method. Furthermore, the OpenCV based segmentation shows a 100% increase in processing speed when compared to the fastest algorithm available in literature

    Unsupervised amplitude and texture based classification of SAR images with multinomial latent model

    Get PDF
    We combine both amplitude and texture statistics of the Synthetic Aperture Radar (SAR) images for classification purpose. We use Nakagami density to model the class amplitudes and a non-Gaussian Markov Random Field (MRF) texture model with t-distributed regression error to model the textures of the classes. A non-stationary Multinomial Logistic (MnL) latent class label model is used as a mixture density to obtain spatially smooth class segments. The Classification Expectation-Maximization (CEM) algorithm is performed to estimate the class parameters and to classify the pixels. We resort to Integrated Classification Likelihood (ICL) criterion to determine the number of classes in the model. We obtained some classification results of water, land and urban areas in both supervised and unsupervised cases on TerraSAR-X, as well as COSMO-SkyMed data

    An Embedded Marked Point Process Framework for Three-Level Object Population Analysis

    Full text link

    Unsupervised amplitude and texture classification of SAR images with multinomial latent model

    Get PDF
    International audienceWe combine both amplitude and texture statistics of the Synthetic Aperture Radar (SAR) images for modelbased classification purpose. In a finite mixture model, we bring together the Nakagami densities to model the class amplitudes and a 2D Auto-Regressive texture model with t-distributed regression error to model the textures of the classes. A nonstationary Multinomial Logistic (MnL) latent class label model is used as a mixture density to obtain spatially smooth class segments. The Classification Expectation-Maximization (CEM) algorithm is performed to estimate the class parameters and to classify the pixels. We resort to Integrated Classification Likelihood (ICL) criterion to determine the number of classes in the model. We present our results on the classification of the land covers obtained in both supervised and unsupervised cases processing TerraSAR-X, as well as COSMO-SkyMed data

    Unsupervised Amplitude and Texture Classification of SAR Images With Multinomial Latent Model

    Full text link
    corecore