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Segmentation of remote sensing images using
similarity measure based fusion-MRF model

Tamas Sziranyi, Senior Member, IEEE and Maha Shadaydeh

Abstract—Classifying segments and detecting changes in ter-
restrial areas are important and time-consuming efforts for
remote-sensing image analysis tasks, including comparison and
retrieval in repositories containing multi-temporal remote image
samples for the same area in very different quality and details. We
propose a multi-layer fusion model for adaptive segmentation and
change detection of optical remote sensing image series, where
trajectory analysis or direct comparison is not applicable. Our
method applies unsupervised or partly supervised clustering on
a fused image series by using cross-layer similarity measure,
followed by a multi-layer MRF segmentation. The resulted label-
map is applied for the automatic training of the single layers.
After the segmentation of each single layer separately, changes
are detected between the single label-maps. The significant benefit
of the proposed method has been numerically validated on
remotely sensed image series with ground-truth data.

Index Terms—Image segmentation, Remote sensing, Fusion-
MRF, Similarity measure, Change detection, Cluster Reward
Algorithm

I. INTRODUCTION

EARTH observation based on aerial and satellite image
series, including high-resolution remote sensing image

time-series (RSITS) [1], results in a large data volume con-
taining several known and maybe unknown details at differ-
ent sampling-time rates. The sample series (of large image
repositories) can have long and irregular revisit times [2],
where usual time-series’ evaluation methods of learning and
retrieving spatio-temporal structures [1] cannot be applied.

The definition of changes is usually related to some su-
pervised segmentation method, where preliminary statistical
or semantic information is considered. For the semantic level
reasoning, in [3] a model is shown to map heterogeneous pix-
els with similar intermediate-level semantic meaning into land
cover classes of various mapping products. When different
land classes can be well characterized by different statistical
models, energy optimization based segmentation methods can
be applied for discriminating green and urban areas [2] in
a Markov Random Field (MRF) [4]-[5] framework. As the
above examples show, very different levels of information may
help in defining terrestrial details of semantic meaning into
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land cover classes. However, in these cases a kind of human
interaction defining semantic labels (e.g. in [3]) is needed,
considering that the clustering is steady over the time. If new
details related to new clusters occur then it should be detected
and the cluster schema should be updated.

Another class of problems occurs when the definition of
possible classes is uncertain, and we have more image samples
in time, but the rare sampling rate makes it impossible to
find spatio-temporal structures. Exploring these rarely scanned
RSITS, the images in the series are usually different in light,
weather, season, traffic, flooding or blooming conditions. For
this reason a sort of prior segmentation, based on object
(building roofs [6]), structure (urban and green areas, roads in
[7]) or pixel connection models [8] should precede the com-
parison of the different time-layers. Since comparison of time-
layers needs a common basis for clusters, the segmentation of
one time-layer should be parametrized by some preliminary
cluster-consensus method (as an unsupervised training), where
the map of clusters related to similar areas on different time-
layers are assigned to the common multi-layer categories.

For MRF segmentation unsupervised labeling is often used
[9][10]. Hierarchical models or tree structures are also applica-
ble for Markov chain models for unsupervised texture segmen-
tation [7][11]. For remote sensing tasks a color segmentation
method, using the unsupervised TS-MRF algorithm [12], can
be successfully used, but this method is divisive, meaning
largely unbalanced clusters. This problem is partly solved in
[7] by a graph based representation related to neighborhood
relationships, by measuring the context similarity. In the above
examples statistical or structural investigation in the neighbor-
hood or multiscale hierarchy gives solutions for unsupervised
or semi-supervised methods to avoid direct human annotation.

In the paper, remote sensing areas of fused image series are
examined in different levels of MRF segmentation; the goal
is to automatically detect the category changes of the yearly
transmuting areas having rich variations within a category by
using more sample layers. The overlapping combination of
category variations can be collected in a multi-layer MRF [13]
segmentation; this supports the layer-by-layer MRF segmen-
tation and change detection later. The definition of change
is parallel to the definition of similarity; locations of image
time series data that come from different sensors at different
lighting and weather conditions can be compared if we can
find robust in-layer and cross-layer descriptors. For this reason
we add block-wise similarity measures to the stacking of
the layers’ pixel/microstructure information; we propose to
use Cluster Reward Algorithm (CRA) [14] in the multi-
layer fusion calculated between layer pairs in the series. The
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novelties of our approach are discussed in the following:
• Finding clusters on the stack of image-layers results in

aligned cluster-definition for the different layers;
• Fused segmentation on the stack of image-layers, result-

ing in multi-layer labeling;
• Multi-layer labeling is used for the unsupervised clus-

tering of the single-layer labeling; this aligned labeling
makes the change detection unequivocal;

• A noise-tolerant cross-layer similarity measure, CRA, is
used to better identify some classes where radiometric
values are dubious.

II. MULTI-LAYER FUSION-MRF MODEL

In a series of N layers of remote sensing images, let
xLi
s denote the feature vector at pixel s of layer Li,
i = 1, 2, · · · , N . This feature vector might contain color,
texture/micro-structural features, cross layer similarity mea-
sures, or mixture of these. Set X = {xs|s ∈ S} marks the
global image data. An example of a feature vector would be

xLi
s = [xLi

C(s), x
Li

M(s)]
T (1)

where xLi

C(s) contains the pixel’s color values, and xLi

M(s) is the
cross layer similarity measures between the image and other
two or more images in the series. The cross layer similarity
measure might be correlation, mutual information, or CRA.

The multiple layers of RSITS are characterized by the stack
x
Li1...in
s of these vectors for a reasonable set of them, n ≤ N :

x
Li1...in
s = {xLi1

s , x
Li2
s , ...x

Lin
s } (2)

A. Fusion-MRF: multi-layer segmentation and change detec-
tion

For MRF segmentation, more details can be found in [2],
[4], [5], [9]. Once feature vectors are generated, the six steps
of the algorithm proposed here are applied. This segmentation
and change detection procedure contains different levels of
MRF optimization in the following main steps:

1) Selecting and registering the image layers; an example
is shown in [14]. In case of professional data suppliers
orthonormed and geographically registered images are
given; no further registration is needed. In our method no
color-constancy or any shape/color semantic information
is needed; the color of the corresponding areas and the
texture can differ strongly layer-by-layer.

2) Finding clusters in the set of vectors (xLi1...in
s ) and

calculating the cluster parameters (mean and covariance
of the conditional term in eq. 6) for the fusion based
”multi-layer clusters”. This step can be performed either
by using unsupervised methods such as the K-means
algorithm, or by choosing the characteristic training
areas manually.

3) Running MRF segmentation (see Subsection II-C) on
the fused layer data (xLi1...in

s ) containing the cross-layer
measures (eq. 5), and the multi-layer cluster parameters,
resulting in a multi-layer labeling ΩLi1...in

;
4) Single-layer training: the map of multi-layer labeling

ΩLi1...in
is used as a training map for each image layer

Li: cluster parameters are calculated for each single
layer controlled by the label map of multi-layer clusters.

5) For each single layer Li (containing only its color
and maybe texture features) a MRF segmentation is
processed, resulting in a labeling: ΩLi

;
6) The consecutive image layers (..., (i − 1), (i), ...) are

compared to find the changes among the different label
maps to get the δi−1,i change map:

δi−1,i(.) =
[(

ΩLi(.) 6= ΩLi−1(.)
)

= TRUE
]

(3)

B. Cross-layer CRA similarity measures in the fusion

Different similarity measures have been considered in the
preliminary tests, such as distance to independence, mutual
information, CRA [14], Kullback Leibler divergence (see [15]
and references therein).
CRA(I, J) between two images I and J is calculated using

the joint histogram of the two images: pIJ and the marginal
histograms: pI , pJ as follows [15]:

CRA(I, J) =

∑
i,j p

2
IJ(i, j)−

∑
i p

2
I(i) ·

∑
j p

2
J(j)√∑

i p
2
I(i) ·

∑
j p

2
J(j)−

∑
i p

2
I(i) ·

∑
j p

2
J(j)

(4)
The value of CRA(I, J) is large when there is high correlation
between the two images or the joint histogram has little disper-
sion. The CRA similarity measure is chosen as it gives better
segmentation and change detection results than other similarity
measures such as correlation and mutual information. This is
due to the fact that joint histogram estimation noise has weak
influence on the CRA values and thus smaller window size
can be used [15], which in turn enables detection of changes in
small areas. In the proposed segmentation algorithm a multi-
layer MRF model is applied by contributing the term of the
cross-layer CRA similarity measure calculated between each
pair in a subset of three or more consecutive images. In
our presentation here we used three consecutive images only,
however the algorithm can be easily extended to more layers.
The stack of feature vectors xL1...3

s is generated as follows
1) For each pair of the three consecutive images Li, Li+1

and Li+2, the CRA image is calculated. In the calcula-
tion of the CRA image at each pixel, we use D ×D-
pixel estimation window around this pixel to calculate
the local histograms; The window size can be varied
according to the required scale of change detection.
Each CRA image is then normalized to have values
in the range [0, 1]. Let the obtained CRA images be
CRA(i, i+ 1), CRA(i+ 1, i+ 2), and CRA(i, i+ 2).

2) Let xLi
s denote the luminance value of pixel s in image

Li. Construct the stack of feature vectors for pixels s in
the three images Li, Li+1 and Li+2 as follows:

xLi,i+1,i+2
s = [xLi

s + αCRAs(i, i+ 1),

xLi+1
s + αCRAs(i+ 1, i+ 2),

xLi+2
s + αCRAs(i, i+ 2)]T (5)

where α is a positive normalizing scalar ensuring the
same range of the two different terms.
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(2000) (2005) (2007)

Fig. 1. Row (1): aerial photos around the Tiszadob oxbow area (Hungary, photos by FÖMI) from the years 2000, 2005 and 2007. Rows (2-5): segmentation
results for the proposed new ML-MRF-CRA algorithm compared the performance to that of the conventional SL-MRF method, its improvement with CRA
(SL-MRF-CRA), and the proposed ML-MRF without CRA. Training areas used in the segmentation process are shown in the upper right image, Meadow
(M), Forest (F), Sand (S), and River (R).

Note that the use of the addition of xLi
s and CRAs(i, i+1)

in the feature vector as given in eq. (5) means lower di-
mensionality than using these features as two separate values
as in eq. (1). However, with the assumption that xLi

s and
CRAs(i, i+ 1) are statistically independent, it can be verified
that they will contribute similar terms to the energy of MRF
as when they are used as two separate features.

C. MRF optimization

Let S = {s1, s2, ...sH} denote the image pixels, and Ω =
{ω = (ωs1 , . . . , ωsH ) : ωsi ∈ Λ, 1 ≤ i ≤ H} be the set of
all possible labels assigned to the image classes. We use a
Maximum A Posteriori (MAP) estimator for the label field.
The MAP estimator is realized by combining a conditional
independent random field of observed data P (xs|ωs) and an
unconditional Potts model [16] for forming smooth connected
regions, eq. (7). The optimal segmentation corresponds to the

global labeling Ω̂ and is defined by the energy minimum:

Ω̂ = argminΩ

[∑
s∈S
− logP (xs|ωs) +

∑
r,s∈S

Θ(ωr, ωs)

]
(6)

where the minimum is searched over all the possible segmenta-
tions (Ω) of the input, and the Θ(ωr, ωs) neighborhood-energy
term is zero if s and r are not neighboring pixels, otherwise
Θ can be modified by applying the β homogeneity weight:

Θ(ωr, ωs) =

{
0 if ωr = ωs

+β if ωr 6= ωs
(7)

In our application we set β = 10.0 and we used a graph cut
based α-expansion algorithm for energy minimization of MRF,
with the adherent implementation of [5].

III. EXPERIMENTAL RESULTS AND DISCUSSION

Experiments have been tested on aerial scanned images
of Tiszadob area from years 2000, 2005, 2007; the spatial
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Fig. 2. Ground-truth result by a one layer fusion with infrared image to find
the class variants of different water covers. Infrared image from the year 2007
(Left) and the segmentation results for 2007 (Right) using MRF segmentation
on CIE Lab color values (Fig.1 top right input layer) fused by the infrared
image. Compare the results to the 3rd column of Fig.1.

Fig. 3. Unsupervised segmentation results for the multi-layer image seg-
mentation for meadow, river and three variants of forest/bush categories; the
proposed similarity measure based fusion-MRF model gives the best result
with automatically synchronized cluster definition.

resolution is 0.5m/pixel, and all the images have been aligned
as orthophoto. Images of 2000 and 2005 were scanned on
photo-films (Hasselblad 500 EL/M) before digital scan. The
2007 image has been originally scanned in digital form (Nikon
D3X, with AF-S Nikkor 50 mm 1.4G lens). The multi-
layer fusion-MRF and the CRA cross-layer measure proposed
in Section II are validated on the above aerial images of
very different scanning time instants and seasonal conditions,
having complex (multiple pattern) classes. First, a multi-class
(having 4 labels) segmentation is performed to find meaning-
ful regions in a partly supervised multi-layer segmentation
procedure. Then, in a second experiment, we show results
evaluated on a ground-truth image series, which is artificially
composed of different parts taken from the Tiszadob image
series. In the experiment MRF segmentation (Sect. II-A) on
the fused images is applied following the unsupervised K-
means clustering of the fused data. The labeling resulting
from the fused segmentation is then fed into each single
layers for training the Gaussian models [2], [9] of the inlayer
clusters. In both experiments, we compare the performance of
our new multi-layer MRF segmentation against independently
processed single layer labeling [9],[10]. The comparison is
carried out with and without including the CRA values in the
feature vector to highlight the effect of the proposed fusion of
CRA images. That is, we compare the performance of the best
proposed ML-MRF-CRA with the following three methods:
• Single Layer MRF on CIE Lab color values: SL-MRF;
• SL-MRF with CRA similarity measures: SL-MRF-CRA;
• The proposed multi-layer fusion-MRF on Lab color val-

ues only: ML-MRF.

Fig. 4. Change detection results for unsupervised multi-layer image segmen-
tation methods in Fig.3; ML-MRF-CRA method performs the best. Circled
areas denote miss-classified regions. See the numerical results in Table I.
First row: changes 200-2005, Second row: changes 2005-2007

TABLE I
MISCLASSIFIED PIXELS’ RATES FOR FIG.1 AND FIG.4, AND THE

EXECUTION TIME (MATLAB, 2.67GHZ) OF THE THREE LAYERS IN FIG.1

Method Sup.Segment. Unsup.Change Det, Fig.4 Time
2007, Fig.1 2003-2005 2005-2007 sec

SL-MRF 19% 16.4% 10.4% 43
SL-MRF-CRA 20% 11.3% 11.2% 293
ML-MRF 21% 11.04% 1.0% 52
ML-MRF-CRA 10% 0.65% 1.0% 290

A. Supervised multi-class segmentation of image time series
using cross-layer CRA

In this experiment three 800 × 400 aerial image sections -
shown in Fig. 1 (Row 1) - are evaluated in the comparison.
The images are from different scanning time conditions. They
consist of four main classes: meadow, forest, river, and sand
areas. We can check that the small island that appears in year
2000 input image, does not exist in the other two images.
The rivers contain dense vegetation that is very different from
one year to the other; this makes it difficult to identify the
water class based on color or texture alone. Since only one
variant per class is trained (see selected training areas in Fig.
1, upper right image), other class-variants (e.g. differently
colored oxbow sections of different vegetations in 2007) can
be recognized by the help of similarity measure among layers.

Segmentation results for the three layers are shown in Fig. 1;
we can see that only ML-MRF-CRA can detect the different
oxbow sections with success. For ground-truth illustration
purpose, we further run a two-layer MRF optimization for the
fusion of the color and infrared images of 2007. The infrared
image and resulted labeling of this experiment are shown
in Fig. 2. The use of infrared image helped in identifying
correctly the water class and other details. Compared to
Fig. 1 (2007, right), these results show that oxbow water-
surface variants cannot be identified by the methods SL/ML-
MRF, but only with ML-MRF-CRF. By using Fig. 2 (right)
as ground-truth reference, we can numerically evaluate the
labeling methods; rates for 2007 can be found in Column 2 of
Table I. These results show that the use of fusion segmentation
with CRA values has improved the segmentation accuracy
significantly from that of the color data only, without using IR
source. We can see here that more information can be exploited
from the single layers by using cross-layer and fusion data.
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B. Unsupervised segmentation and change detection

In [13] we have successfully tested a two-class multi-layer
change detection method. Now, numerical evaluation of a
three-class unsupervised segmentation and change detection
experiment is shown, where one of the classes is assigned
by 3 variations. A ground-truth image series has been gener-
ated: three 910 × 750 images composed of original textures
(meadow, forest, and river) from the Tiszadob aerial image
series. MRF segmentation (Steps 1-3 in II-A) on the fused
images is applied following a K-means clustering of the fused
data with three classes. The segmented fusion labeling is then
fed into each single layer for training (keeping together the
class-variations) and then MRF segmentation on each layer
is run separately (Steps 4-5 in II-A); segmentation results are
shown in Fig. 3; Change detection results (see Sect. II-A, Step
6) are shown in Fig. 4, and in Columns 3&4 of Table I. This
experiment shows that the use of the fusion-MRF model with
CRA results in proper change detection for compound classes.

C. Discussion

From the above experiments we can conclude that:
• The use of cross-layer similarity helps to better identify

some classes where radiometric values are dubious: in
Fig. 1 the river class variants for 2007, and in Fig. 3 the
meadow, river and forest/bush (three variants) classes;

• The proposed method relies on the δi−1,i change map in
cross-layer labeling (eq. 3) and does not depend on any
threshold values; thus it performs better than similarity
measure based change detection algorithms which use
thresholds for change/no-change classification [14];

• Since the outcome classes of the multi-layer segmentation
is later used in the training of each single layer, similar
classes are automatically given similar labels in all layers.

• No specific information of image sources is considered,
which makes it possible to use the method for any other
image sources or modalities.

The improved performance of the proposed algorithm for
both experiments comes along with additional computational
load due to the calculation of the CRA images, see Column
5 of Table I. It depends on the used window size and also on
the estimation method of the joint histograms. However, the
projection of the multi-layer labeling (Step 4 of Sect. II-A) to
each single layer makes the MRF on single layers (Step 5 of
Sect. II-A) converge faster compared to SL-MRF.

In the above experiments, we used 7 × 7-pixel estimation
window for the calculation of CRA local histograms; testing
the evaluation at different window sizes, this size was found to
give the best segmentation as well as change detection of the
small island in evaluation of Fig. 1. The choice of the window
size depends on the resolution of the images and the scale of
the desired change detection. The detection of small changes
requires small window size; however larger window size gives
better estimation of the CRA similarity measures. Finding the
optimum CRA window size for each point adaptively, along
with the definition of the scale of change detection and the
image resolution, needs further research on the local scale
characteristics, see more in [11] or [17].

For the present experiments using three image layers in the
comparison gives good results. Using more layers requires
dimensionality reduction or larger training areas that assure
the presence of sufficient independent samples. Moreover, in
such case, the number of possible CRA image combinations
is larger than the number of layers. The used CRA images can
be selected on the basis of maximal cross-layer information
complexity. This problem needs further research on the quality
of images and the dimensionality of the feature vectors.

IV. CONCLUSION

We have shown that a fused segmentation using cross-image
featuring may result in better segmentation or change detection
for sparely sampled remote sensing image series with classes
having more undefined variants. The unsupervised or partly
supervised (only one class-variant in training) method results
in getting the common classes on the different layers, and its
projection to the single layers works as an adaptive training.
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