27 research outputs found

    Hierarchical Kohonenen Net for Anomaly Detection in Network Security

    Get PDF
    A novel multilevel hierarchicalKohonen Net (K-Map) for an intrusion detection system is presented. Each level of the hierarchical map is modeled as a simple winner-take-all K-Map. One significant advantage of this multilevel hierarchical K-Map is its computational efficiency. Unlike other statistical anomaly detection methods such as nearest neighbor approach, K-means clustering or probabilistic analysis that employ distance computation in the feature space to identify the outliers, our approach does not involve costly point-to-point computation in organizing the data into clusters. Another advantage is the reduced network size. We use the classification capability of the K-Map on selected dimensions of data set in detecting anomalies. Randomly selected subsets that contain both attacks and normal records from the KDD Cup 1999 benchmark data are used to train the hierarchical net. We use a confidence measure to label the clusters. Then we use the test set from the same KDD Cup 1999 benchmark to test the hierarchical net. We show that a hierarchical K-Map in which each layer operates on a small subset of the feature space is superior to a single-layer K-Map operating on the whole feature space in detecting a variety of attacks in terms of detection rate as well as false positive rate

    Network Attacks Detection by Hierarchical Neural Network

    Get PDF
    Intrusion detection is an emerging area of research in the computer security and net-works with the growing usage of internet in everyday life. Most intrusion detection systems (IDSs) mostly use a single classifier algorithm to classify the network traffic data as normal behavior or anomalous. However, these single classifier systems fail to provide the best possible attack detection rate with low false alarm rate. In this paper,we propose to use a hybrid intelligent approach using a combination of classifiers in order to make the decision intelligently, so that the overall performance of the resul-tant model is enhanced. The general procedure in this is to follow the supervised or un-supervised data filtering with classifier or cluster first on the whole training dataset and then the output are applied to another classifier to classify the data. In this re- search, we applied Neural Network with Supervised and Unsupervised Learning in order to implement the intrusion detection system. Moreover, in this project, we used the method of Parallelization with real time application of the system processors to detect the systems intrusions.Using this method enhanced the speed of the intrusion detection. In order to train and test the neural network, NSLKDD database was used. Creating some different intrusion detection systems, each of which considered as a single agent, we precisely proceeded with the signature-based intrusion detection of the network.In the proposed design, the attacks have been classified into 4 groups and each group is detected by an Agent equipped with intrusion detection system (IDS).These agents act independently and report the intrusion or non-intrusion in the system; the results achieved by the agents will be studied in the Final Analyst and at last the analyst reports that whether there has been an intrusion in the system or not. Keywords: Intrusion Detection, Multi-layer Perceptron, False Positives, Signature- based intrusion detection, Decision tree, Nave Bayes Classifie

    Denial-of-service attack detection based on multivariate correlation analysis

    Get PDF
    The reliability and availability of network services are being threatened by the growing number of Denial-of-Service (DoS) attacks. Effective mechanisms for DoS attack detection are demanded. Therefore, we propose a multivariate correlation analysis approach to investigate and extract second-order statistics from the observed network traffic records. These second-order statistics extracted by the proposed analysis approach can provide important correlative information hiding among the features. By making use of this hidden information, the detection accuracy can be significantly enhanced. The effectiveness of the proposed multivariate correlation analysis approach is evaluated on the KDD CUP 99 dataset. The evaluation shows encouraging results with average 99.96% detection rate and 2.08% false positive rate. Comparisons also show that our multivariate correlation analysis based detection approach outperforms some other current researches in detecting DoS attacks. © 2011 Springer-Verlag

    IoT Threat Detection Testbed Using Generative Adversarial Networks

    Full text link
    The Internet of Things(IoT) paradigm provides persistent sensing and data collection capabilities and is becoming increasingly prevalent across many market sectors. However, most IoT devices emphasize usability and function over security, making them very vulnerable to malicious exploits. This concern is evidenced by the increased use of compromised IoT devices in large scale bot networks (botnets) to launch distributed denial of service(DDoS) attacks against high value targets. Unsecured IoT systems can also provide entry points to private networks, allowing adversaries relatively easy access to valuable resources and services. Indeed, these evolving IoT threat vectors (ranging from brute force attacks to remote code execution exploits) are posing key challenges. Moreover, many traditional security mechanisms are not amenable for deployment on smaller resource-constrained IoT platforms. As a result, researchers have been developing a range of methods for IoT security, with many strategies using advanced machine learning(ML) techniques. Along these lines, this paper presents a novel generative adversarial network(GAN) solution to detect threats from malicious IoT devices both inside and outside a network. This model is trained using both benign IoT traffic and global darknet data and further evaluated in a testbed with real IoT devices and malware threats.Comment: 8 pages, 5 figure

    Self-organizing maps in computer security

    Get PDF

    A New Multivariate Correlation Study for Detection of Denial-of-Service Attack

    Get PDF
    We present a attack detection system that utilizes Multivariate Correlation Analysis (MCA) for precise system traffic portrayal by removing the geometrical relationships between's system traffic highlights. Our MCA-based DoSattack identification framework utilizes the rule of abnormality based detection in attack acknowledgment. This makes our answer equipped for distinguishing known and obscure DoSattacks adequately by learning the examples of real system traffic as it were. Besides, a triangle-zone based system is proposed to upgrade and to accelerate the procedure of MCA. The adequacy of our proposed location framework is assessed utilizing KDD Cup 99 dataset, and the impacts of both non-standardized information and standardized information on the execution of the proposed identification framework are analyzed

    Different approaches for the detection of SSH anomalous connections

    Get PDF
    The Secure Shell Protocol (SSH) is a well-known standard protocol, mainly used for remotely accessing shell accounts on Unix-like operating systems to perform administrative tasks. As a result, the SSH service has been an appealing target for attackers, aiming to guess root passwords performing dictionary attacks or to directly exploit the service itself. To identify such situations, this article addresses the detection of SSH anomalous connections from an intrusion detection perspective. The main idea is to compare several strategies and approaches for a better detection of SSH-based attacks. To test the classification performance of different classifiers and combinations of them, SSH data coming from a real-world honeynet are gathered and analysed. For comparison purposes and to draw conclusions about data collection, both packet-based and flow data are analysed. A wide range of classifiers and ensembles are applied to these data, as well as different validation schemes for better analysis of the obtained results. The high-rate classification results lead to positive conclusions about the identification of malicious SSH connections

    Improved Mca Based Dos Attack Detection

    Get PDF
    A denial of service (DoS) attack is a malicious attempt to make a server or a network resource unavailable to users, usually by temporarily interrupting or suspending the services of a host connected to the Internet Interconnected systems, such as Web servers, database servers, cloud computing servers etc, are now under threads from network attackers. As one of most common and aggressive means, Denial-of-Service (DoS) attacks cause serious impact on these computing systems. In this paper, we present a DoS attack detection system that uses Multivariate Correlation Analysis (MCA) for accurate network traffic characterization by extracting the geometrical correlations between network traffic features. Our MCA-based DoS attack detection system employs the principle of anomaly-based detection in attack recognition. This makes our solution capable of detecting known and unknown DoS attacks effectively by learning the patterns of legitimate network traffic only. Furthermore, a triangle-area-based technique is proposed to enhance and to speed up the process of MCA. The effectiveness of our proposed detection system is evaluated using KDD Cup 99 dataset, and the influences of both non-normalized data and normalized data on the performance of the proposed detection system are examined. The results show that our system outperforms two other previously developed state-of-the-art approaches in terms of detection accuracy

    Self-organizing maps in computer security

    Get PDF
    corecore