54,261 research outputs found

    Deep Gaussian Mixture Models

    Get PDF
    Deep learning is a hierarchical inference method formed by subsequent multiple layers of learning able to more efficiently describe complex relationships. In this work, Deep Gaussian Mixture Models are introduced and discussed. A Deep Gaussian Mixture model (DGMM) is a network of multiple layers of latent variables, where, at each layer, the variables follow a mixture of Gaussian distributions. Thus, the deep mixture model consists of a set of nested mixtures of linear models, which globally provide a nonlinear model able to describe the data in a very flexible way. In order to avoid overparameterized solutions, dimension reduction by factor models can be applied at each layer of the architecture thus resulting in deep mixtures of factor analysers.Comment: 19 pages, 4 figure

    Infinite factorization of multiple non-parametric views

    Get PDF
    Combined analysis of multiple data sources has increasing application interest, in particular for distinguishing shared and source-specific aspects. We extend this rationale of classical canonical correlation analysis into a flexible, generative and non-parametric clustering setting, by introducing a novel non-parametric hierarchical mixture model. The lower level of the model describes each source with a flexible non-parametric mixture, and the top level combines these to describe commonalities of the sources. The lower-level clusters arise from hierarchical Dirichlet Processes, inducing an infinite-dimensional contingency table between the views. The commonalities between the sources are modeled by an infinite block model of the contingency table, interpretable as non-negative factorization of infinite matrices, or as a prior for infinite contingency tables. With Gaussian mixture components plugged in for continuous measurements, the model is applied to two views of genes, mRNA expression and abundance of the produced proteins, to expose groups of genes that are co-regulated in either or both of the views. Cluster analysis of co-expression is a standard simple way of screening for co-regulation, and the two-view analysis extends the approach to distinguishing between pre- and post-translational regulation

    A non-parametric hierarchical clustering model

    Get PDF
    © 2015 IEEE. We present a novel non-parametric clustering model using Gaussian mixture model (NHCM). NHCM uses a novel Dirichlet process (DP) prior allowing for more flexible modeling of the data, where the base distribution of DP is itself an infinite mixture of Gaussian conjugate prior. NHCM can be thought of as hierarchical clustering model, in which the low level base prior governs the distribution of the data points forming sub-clusters, and the higher level prior governs the distribution of the sub-clusters forming clusters. Using this hierarchical configuration, we can maintain low complexity of the model and allow for clustering skewed complex data. To perform inference, we propose a Gibbs sampling algorithm. Empirical investigations have been carried out to analyse the efficiency of the proposed clustering model

    Model-based clustering via linear cluster-weighted models

    Full text link
    A novel family of twelve mixture models with random covariates, nested in the linear tt cluster-weighted model (CWM), is introduced for model-based clustering. The linear tt CWM was recently presented as a robust alternative to the better known linear Gaussian CWM. The proposed family of models provides a unified framework that also includes the linear Gaussian CWM as a special case. Maximum likelihood parameter estimation is carried out within the EM framework, and both the BIC and the ICL are used for model selection. A simple and effective hierarchical random initialization is also proposed for the EM algorithm. The novel model-based clustering technique is illustrated in some applications to real data. Finally, a simulation study for evaluating the performance of the BIC and the ICL is presented

    Hierarchical Bayesian sparse image reconstruction with application to MRFM

    Get PDF
    This paper presents a hierarchical Bayesian model to reconstruct sparse images when the observations are obtained from linear transformations and corrupted by an additive white Gaussian noise. Our hierarchical Bayes model is well suited to such naturally sparse image applications as it seamlessly accounts for properties such as sparsity and positivity of the image via appropriate Bayes priors. We propose a prior that is based on a weighted mixture of a positive exponential distribution and a mass at zero. The prior has hyperparameters that are tuned automatically by marginalization over the hierarchical Bayesian model. To overcome the complexity of the posterior distribution, a Gibbs sampling strategy is proposed. The Gibbs samples can be used to estimate the image to be recovered, e.g. by maximizing the estimated posterior distribution. In our fully Bayesian approach the posteriors of all the parameters are available. Thus our algorithm provides more information than other previously proposed sparse reconstruction methods that only give a point estimate. The performance of our hierarchical Bayesian sparse reconstruction method is illustrated on synthetic and real data collected from a tobacco virus sample using a prototype MRFM instrument.Comment: v2: final version; IEEE Trans. Image Processing, 200

    Posterior Regularization on Bayesian Hierarchical Mixture Clustering

    Full text link
    Bayesian hierarchical mixture clustering (BHMC) improves on the traditional Bayesian hierarchical clustering by, with regard to the parent-to-child diffusion in the generative process, replacing the conventional Gaussian-to-Gaussian (G2G) kernels with a Hierarchical Dirichlet Process Mixture Model (HDPMM). However, the drawback of the BHMC lies in the possibility of obtaining trees with comparatively high nodal variance in the higher levels (i.e., those closer to the root node). This can be interpreted as that the separation between the nodes, particularly those in the higher levels, might be weak. We attempt to overcome this drawback through a recent inferential framework named posterior regularization, which facilitates a simple manner to impose extra constraints on a Bayesian model to address its weakness. To enhance the separation of clusters, we apply posterior regularization to impose max-margin constraints on the nodes at every level of the hierarchy. In this paper, we illustrate the modeling detail of applying the PR on BHMC and show that this solution achieves the desired improvements over the BHMC model

    Hierarchical Mixture-of-Experts Model for Large-Scale Gaussian Process Regression

    Full text link
    We propose a practical and scalable Gaussian process model for large-scale nonlinear probabilistic regression. Our mixture-of-experts model is conceptually simple and hierarchically recombines computations for an overall approximation of a full Gaussian process. Closed-form and distributed computations allow for efficient and massive parallelisation while keeping the memory consumption small. Given sufficient computing resources, our model can handle arbitrarily large data sets, without explicit sparse approximations. We provide strong experimental evidence that our model can be applied to large data sets of sizes far beyond millions. Hence, our model has the potential to lay the foundation for general large-scale Gaussian process research

    A dimensionally reduced finite mixture model for multilevel data

    Get PDF
    AbstractRecently, different mixture models have been proposed for multilevel data, generally requiring the local independence assumption. In this work, this assumption is relaxed by allowing each mixture component at the lower level of the hierarchical structure to be modeled according to a multivariate Gaussian distribution with a non-diagonal covariance matrix. For high-dimensional problems, this solution can lead to highly parameterized models. In this proposal, the trade-off between model parsimony and flexibility is governed by assuming a latent factor generative model
    corecore