298 research outputs found

    Measuring concept similarities in multimedia ontologies: analysis and evaluations

    Get PDF
    The recent development of large-scale multimedia concept ontologies has provided a new momentum for research in the semantic analysis of multimedia repositories. Different methods for generic concept detection have been extensively studied, but the question of how to exploit the structure of a multimedia ontology and existing inter-concept relations has not received similar attention. In this paper, we present a clustering-based method for modeling semantic concepts on low-level feature spaces and study the evaluation of the quality of such models with entropy-based methods. We cover a variety of methods for assessing the similarity of different concepts in a multimedia ontology. We study three ontologies and apply the proposed techniques in experiments involving the visual and semantic similarities, manual annotation of video, and concept detection. The results show that modeling inter-concept relations can provide a promising resource for many different application areas in semantic multimedia processing

    A Review of Codebook Models in Patch-Based Visual Object Recognition

    No full text
    The codebook model-based approach, while ignoring any structural aspect in vision, nonetheless provides state-of-the-art performances on current datasets. The key role of a visual codebook is to provide a way to map the low-level features into a fixed-length vector in histogram space to which standard classifiers can be directly applied. The discriminative power of such a visual codebook determines the quality of the codebook model, whereas the size of the codebook controls the complexity of the model. Thus, the construction of a codebook is an important step which is usually done by cluster analysis. However, clustering is a process that retains regions of high density in a distribution and it follows that the resulting codebook need not have discriminant properties. This is also recognised as a computational bottleneck of such systems. In our recent work, we proposed a resource-allocating codebook, to constructing a discriminant codebook in a one-pass design procedure that slightly outperforms more traditional approaches at drastically reduced computing times. In this review we survey several approaches that have been proposed over the last decade with their use of feature detectors, descriptors, codebook construction schemes, choice of classifiers in recognising objects, and datasets that were used in evaluating the proposed methods

    Learning visual contexts for image annotation from Flickr groups

    Get PDF

    Learning visual contexts for image annotation from Flickr groups

    Get PDF

    A perceptual learning model to discover the hierarchical latent structure of image collections

    Get PDF
    Biology has been an unparalleled source of inspiration for the work of researchers in several scientific and engineering fields including computer vision. The starting point of this thesis is the neurophysiological properties of the human early visual system, in particular, the cortical mechanism that mediates learning by exploiting information about stimuli repetition. Repetition has long been considered a fundamental correlate of skill acquisition andmemory formation in biological aswell as computational learning models. However, recent studies have shown that biological neural networks have differentways of exploiting repetition in forming memory maps. The thesis focuses on a perceptual learning mechanism called repetition suppression, which exploits the temporal distribution of neural activations to drive an efficient neural allocation for a set of stimuli. This explores the neurophysiological hypothesis that repetition suppression serves as an unsupervised perceptual learning mechanism that can drive efficient memory formation by reducing the overall size of stimuli representation while strengthening the responses of the most selective neurons. This interpretation of repetition is different from its traditional role in computational learning models mainly to induce convergence and reach training stability, without using this information to provide focus for the neural representations of the data. The first part of the thesis introduces a novel computational model with repetition suppression, which forms an unsupervised competitive systemtermed CoRe, for Competitive Repetition-suppression learning. The model is applied to generalproblems in the fields of computational intelligence and machine learning. Particular emphasis is placed on validating the model as an effective tool for the unsupervised exploration of bio-medical data. In particular, it is shown that the repetition suppression mechanism efficiently addresses the issues of automatically estimating the number of clusters within the data, as well as filtering noise and irrelevant input components in highly dimensional data, e.g. gene expression levels from DNA Microarrays. The CoRe model produces relevance estimates for the each covariate which is useful, for instance, to discover the best discriminating bio-markers. The description of the model includes a theoretical analysis using Huber’s robust statistics to show that the model is robust to outliers and noise in the data. The convergence properties of themodel also studied. It is shown that, besides its biological underpinning, the CoRe model has useful properties in terms of asymptotic behavior. By exploiting a kernel-based formulation for the CoRe learning error, a theoretically sound motivation is provided for the model’s ability to avoid local minima of its loss function. To do this a necessary and sufficient condition for global error minimization in vector quantization is generalized by extending it to distance metrics in generic Hilbert spaces. This leads to the derivation of a family of kernel-based algorithms that address the local minima issue of unsupervised vector quantization in a principled way. The experimental results show that the algorithm can achieve a consistent performance gain compared with state-of-the-art learning vector quantizers, while retaining a lower computational complexity (linear with respect to the dataset size). Bridging the gap between the low level representation of the visual content and the underlying high-level semantics is a major research issue of current interest. The second part of the thesis focuses on this problem by introducing a hierarchical and multi-resolution approach to visual content understanding. On a spatial level, CoRe learning is used to pool together the local visual patches by organizing them into perceptually meaningful intermediate structures. On the semantical level, it provides an extension of the probabilistic Latent Semantic Analysis (pLSA) model that allows discovery and organization of the visual topics into a hierarchy of aspects. The proposed hierarchical pLSA model is shown to effectively address the unsupervised discovery of relevant visual classes from pictorial collections, at the same time learning to segment the image regions containing the discovered classes. Furthermore, by drawing on a recent pLSA-based image annotation system, the hierarchical pLSA model is extended to process and representmulti-modal collections comprising textual and visual data. The results of the experimental evaluation show that the proposed model learns to attach textual labels (available only at the level of the whole image) to the discovered image regions, while increasing the precision/ recall performance with respect to flat, pLSA annotation model

    Exploiting Sparse Representations for Robust Analysis of Noisy Complex Video Scenes

    Full text link
    Abstract. Recent works have shown that, even with simple low level visual cues, complex behaviors can be extracted automatically from crowded scenes, e.g. those depicting public spaces recorded from video surveillance cameras. However, low level features as optical flow or fore-ground pixels are inherently noisy. In this paper we propose a novel unsupervised learning approach for the analysis of complex scenes which is specifically tailored to cope directly with features ’ noise and uncer-tainty. We formalize the task of extracting activity patterns as a matrix factorization problem, considering as reconstruction function the robust Earth Mover’s Distance. A constraint of sparsity on the computed basis matrix is imposed, filtering out noise and leading to the identification of the most relevant elementary activities in a typical high level behavior. We further derive an alternate optimization approach to solve the pro-posed problem efficiently and we show that it is reduced to a sequence of linear programs. Finally, we propose to use short trajectory snippets to account for object motion information, in alternative to the noisy optical flow vectors used in previous works. Experimental results demonstrate that our method yields similar or superior performance to state-of-the arts approaches.

    Bag-of-Words Representation in Image Annotation: A Review

    Get PDF

    High-Dimensional Non-Gaussian Data Clustering using Variational Learning of Mixture Models

    Get PDF
    Clustering has been the topic of extensive research in the past. The main concern is to automatically divide a given data set into different clusters such that vectors of the same cluster are as similar as possible and vectors of different clusters are as different as possible. Finite mixture models have been widely used for clustering since they have the advantages of being able to integrate prior knowledge about the data and to address the problem of unsupervised learning in a formal way. A crucial starting point when adopting mixture models is the choice of the components densities. In this context, the well-known Gaussian distribution has been widely used. However, the deployment of the Gaussian mixture implies implicitly clustering based on the minimization of Euclidean distortions which may yield to poor results in several real applications where the per-components densities are not Gaussian. Recent works have shown that other models such as the Dirichlet, generalized Dirichlet and Beta-Liouville mixtures may provide better clustering results in applications containing non-Gaussian data, especially those involving proportional data (or normalized histograms) which are naturally generated by many applications. Two other challenging aspects that should also be addressed when considering mixture models are: how to determine the model's complexity (i.e. the number of mixture components) and how to estimate the model's parameters. Fortunately, both problems can be tackled simultaneously within a principled elegant learning framework namely variational inference. The main idea of variational inference is to approximate the model posterior distribution by minimizing the Kullback-Leibler divergence between the exact (or true) posterior and an approximating distribution. Recently, variational inference has provided good generalization performance and computational tractability in many applications including learning mixture models. In this thesis, we propose several approaches for high-dimensional non-Gaussian data clustering based on various mixture models such as Dirichlet, generalized Dirichlet and Beta-Liouville. These mixture models are learned using variational inference which main advantages are computational efficiency and guaranteed convergence. More specifically, our contributions are four-fold. Firstly, we develop a variational inference algorithm for learning the finite Dirichlet mixture model, where model parameters and the model complexity can be determined automatically and simultaneously as part of the Bayesian inference procedure; Secondly, an unsupervised feature selection scheme is integrated with finite generalized Dirichlet mixture model for clustering high-dimensional non-Gaussian data; Thirdly, we extend the proposed finite generalized mixture model to the infinite case using a nonparametric Bayesian framework known as Dirichlet process, so that the difficulty of choosing the appropriate number of clusters is sidestepped by assuming that there are an infinite number of mixture components; Finally, we propose an online learning framework to learn a Dirichlet process mixture of Beta-Liouville distributions (i.e. an infinite Beta-Liouville mixture model), which is more suitable when dealing with sequential or large scale data in contrast to batch learning algorithm. The effectiveness of our approaches is evaluated using both synthetic and real-life challenging applications such as image databases categorization, anomaly intrusion detection, human action videos categorization, image annotation, facial expression recognition, behavior recognition, and dynamic textures clustering
    corecore