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Abstract

High-Dimensional Non-Gaussian Data Clustering using

Variational Learning of Mixture Models

Wentao Fan, Ph.D.

Concordia University, 2013

Clustering has been the topic of extensive research in the past. The main concern is to automat-

ically divide a given data set into different clusters such that vectors of the same cluster are as sim-

ilar as possible and vectors of different clusters are as different as possible. Finite mixture models

have been widely used for clustering since they have the advantages of being able to integrate prior

knowledge about the data and to address the problem of unsupervised learning in a formal way.

A crucial starting point when adopting mixture models is the choice of the components densities.

In this context, the well-known Gaussian distribution has been widely used. However, the deploy-

ment of the Gaussian mixture implies implicitly clustering based on the minimization of Euclidean

distortions which may yield to poor results in several real applications where the per-components

densities are not Gaussian. Recent works have shown that other models such as the Dirichlet,

generalized Dirichlet and Beta-Liouville mixtures may provide better clustering results in appli-

cations containing non-Gaussian data, especially those involving proportional data (or normalized

histograms) which are naturally generated by many applications. Two other challenging aspects

that should also be addressed when considering mixture models are: how to determine the model’s

complexity (i.e. the number of mixture components) and how to estimate the model’s parameters.

Fortunately, both problems can be tackled simultaneously within a principled elegant learning

framework namely variational inference. The main idea of variational inference is to approximate

the model posterior distribution by minimizing the Kullback-Leibler divergence between the exact

(or true) posterior and an approximating distribution. Recently, variational inference has provided

good generalization performance and computational tractability in many applications including

learning mixture models.
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In this thesis, we propose several approaches for high-dimensional non-Gaussian data cluster-

ing based on various mixture models such as Dirichlet, generalized Dirichlet and Beta-Liouville.

These mixture models are learned using variational inference which main advantages are com-

putational efficiency and guaranteed convergence. More specifically, our contributions are four-

fold. Firstly, we develop a variational inference algorithm for learning the finite Dirichlet mixture

model, where model parameters and the model complexity can be determined automatically and

simultaneously as part of the Bayesian inference procedure; Secondly, an unsupervised feature

selection scheme is integrated with finite generalized Dirichlet mixture model for clustering high-

dimensional non-Gaussian data; Thirdly, we extend the proposed finite generalized mixture model

to the infinite case using a nonparametric Bayesian framework known as Dirichlet process, so that

the difficulty of choosing the appropriate number of clusters is sidestepped by assuming that there

are an infinite number of mixture components; Finally, we propose an online learning framework

to learn a Dirichlet process mixture of Beta-Liouville distributions (i.e. an infinite Beta-Liouville

mixture model), which is more suitable when dealing with sequential or large scale data in contrast

to batch learning algorithm. The effectiveness of our approaches is evaluated using both synthetic

and real-life challenging applications such as image databases categorization, anomaly intrusion

detection, human action videos categorization, image annotation, facial expression recognition,

behavior recognition, and dynamic textures clustering.
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Chapter 1

Introduction

1.1 Clustering via Finite Mixture Models

Data clustering is the unsupervised partitioning of data into homogeneous components. It is an

important problem in several fields, such as signal and image processing, and has been the topic of

extensive research in the past [1–4]. There are a myriad of clustering methods (see [5] for a review).

Among all these methods, finite mixture models have been shown to provide flexibility for data

clustering [6] and have been successfully applied in several domains and applications. Examples

include cognitive understanding [7], epidemiological studies [8], speaker’s location detection [9],

person authentication [10], and so forth. Indeed, they have been proven to be a powerful way to

capture hidden structure in data and to take uncertainty into account.

A finite mixture model is formed by taking linear combinations of a finite number of basic

distributions. These basic distributions are called components of the mixture model. For instance,

a finite mixture model with M components is given by

p(X) =
M∑
j=1

πjp(X|θj) (1.1)

where p(X|θj) is a component of the mixture and has its own parameter θj . In general, mixture

models can comprise linear combinations of any distributions, such as Gaussian, Beta, Dirichlet,

etc. The parameters {πj} are called mixing coefficients and are subject to the constraints: 0 ≤
πj ≤ 1 and

∑M
j=1 πj = 1. In mixture modeling, three challenging aspects should be carefully

addressed: how to choose the proper basic distribution, how to estimate the model’s parameters

and how to select the model’s complexity. Each of these aspects has a significant impact on the

performance of model learning.
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Selecting the most accurate probability density functions (pdfs) that best represent the mixture

components is important when modeling and clustering data. The Gaussian assumption has been

widely adopted (i.e. assuming that each per-class density is Gaussian) due to its simplicity. In

several real-world applications, however, when the data clearly appear with a non-Gaussian struc-

ture, this assumption fails. For instance, recent works have shown that other models such as the

Dirichlet [11–16], the generalized Dirichlet [17–23] and the Beta-Liouville mixtures [24–27] pro-

vide better clustering results in several applications, especially those involving normalized count

data (i.e. proportional vectors) which naturally appear in many applications such as text, image

and video modeling.

The majority of parameter estimation approaches in mixture modeling consider either de-

terministic or Bayesian techniques [6]. Deterministic techniques aim at optimizing the model

likelihood function, are generally implemented within the expectation-maximization (EM) [28]

framework, and are well documented [29, 30]. On the other hand, Bayesian techniques have been

proposed to avoid drawbacks related to deterministic techniques such as their suboptimal gener-

alization performance, dependency on initialization, over-fitting and noise level under-estimation

problems of classic likelihood-based inference [31, 32]. These drawbacks are avoided via the incor-

poration of prior knowledge (or belief) in a principled way and then marginalizing over parameter

uncertainty. Bayesian methods [33, 34] have considered either Laplace’s approximation [35] or

Markov chain Monte Carlo (MCMC) simulation techniques [36, 37]. While MCMC techniques

are computationally expensive, Laplace’s approximation is generally imprecise, since it is based

on the strong assumption that the likelihood function is unimodal which is not generally the case

for finite mixtures of distributions [38]. Recently, Variational inference (also known as variational

Bayes) [39, 40] framework has been widely used as an efficient alternative and as a more control-

lable way to approximate Bayesian learning. The variational learning approach was introduced in

the context of the multi-layer perceptron in [41] where it was called ensemble learning and de-

veloped further in [42, 43]. The main idea is to approximate the model posterior distribution by

minimizing the Kullback-Leibler divergence between the exact (or true) posterior and an approxi-

mating distribution. The variational inference has received a lot of attention and has provided good

generalization performance and computational tractability in various applications including finite

2



mixtures learning [44–46]. For instance, the authors in [39, 40, 47, 48] have developed comprehen-

sive frameworks for variational learning, in the case of Gaussian mixture models, which have been

shown to provide better parameter estimates than the maximum likelihood (ML) approach.

Another crucial issue when using mixture models is the model complexity (i.e. model structure

or number of mixture components) determination problem. Indeed, it is important to estimate the

number of clusters that best describes the data without over-fitting or under-fitting it [6]. In general,

this problem is tackled using ML method in conjunction with a given model selection criterion,

such as minimum description length (MDL) and minimum message length (MML) [6, 11], in fre-

quentist frameworks or by considering Bayes factors in the case of fully Bayesian approaches.

However, these approaches are clearly time-consuming since they have to evaluate a given selec-

tion criterion for several numbers of mixture components. This is especially true in the case of

the Bayesian approach because it requests the evaluation of multi-dimensional integrals which is

generally tackled via MCMC techniques (e.g. Gibbs sampling, Metropolis Hastings). Despite the

fact that MCMC techniques have revolutionized Bayesian statistics by accommodating situations

characterized by uncertainty of the statistical model structure [49–51], their use is often limited

to small-scale problems in practice because of its high computational cost and the difficulty in

tracking convergence. Apart from the elegant way to estimate the parameters of mixture models,

another advantage of variational inference is that it is able to automatically determine the number

of mixture components as part of the Bayesian inference procedure.

Data clustering is known to be a challenging task in modern knowledge discovery and data

mining. This is especially true in high-dimensional spaces mainly because of data sparsity. Thus,

feature selection is a crucial factor to improve the clustering performance [52–54]. Its primary

objective is the identification and the reduction of the influence of extraneous (or irrelevant) fea-

tures which do not contribute information about the true clusters structure. The automatic selection

of relevant features in the context of unsupervised learning is challenging and is far from trivial

because inference has to be made on both the selected features and the clustering structure [54–

61]. [54] is an early influential paper advocating the use of finite mixture models for unsupervised

feature selection. The main idea is to suppose that a given feature is generated from a mixture of

two univariate distributions. The first one is assumed to generate relevant features and is different

3



for each cluster and the second one is common to all clusters (i.e. independent from class labels)

and assumed to generate irrelevant features 1. The unsupervised feature selection models in [54, 60]

have been trained using a MML objective function with the EM algorithm. Despite the fact that

the EM algorithm is the procedure of choice for parameter estimation in the case of incomplete

data problems where part of the data is hidden, several studies have shown theoretically and exper-

imentally that the EM algorithm, in deterministic settings (e.g. ML estimation), converges either

to a local maximum or to a saddle point solution and depends on an appropriate initialization (see,

for instance, [29, 63, 64]) which may compromise the modeling capabilities. Recently, variational

inference have shown promising results in learning mixture models with integrated unsupervised

feature selection [57, 65], by providing parameters estimation and features selection in a single

optimization framework.

1.2 Variational Inference

In this section, a brief introduction to variational inference is presented. Assume that we have a

fully Bayesian model in which all parameters are given proper prior distributions. Let Θ repre-

sents the set of all non-observed variables (including latent variables) and X denotes the set of

observations. The goal of variational inference is to find a proper approximation q(Θ) for the true

posterior distribution p(Θ|X ). In order to do this, we can write the following decomposition of the

log marginal probability of the observed data X , which holds for any choice of distribution q(Θ)

ln p(X ) = L(q) +KL(q||p) (1.2)

where

L(q) =
∫

q(Θ) ln
p(Θ,X )

q(Θ)
dΘ (1.3)

KL(q||p) = −
∫

q(Θ) ln
p(Θ|X )

q(Θ)
dΘ (1.4)

here, KL(q||p) is the Kullback-Leibler (KL) divergence which represents the dissimilarity between

the true posterior p(Θ|X) and the variational approximation q(Θ). We know that KL(q||p) ≥ 0

1Several other quantitative formalisms for relevance in the case of feature selection have been proposed in the past
(see, for instance, [62]).
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(according to Jensen’s inequality), and that the equality is achieved when if and only if q(Θ) =

p(Θ|X ). Then, we can conclude that L(q) ≤ ln p(X ) from Eq. (1.2), which means that L(q) forms

a lower bound on ln p(X ).

Suppose that we allow any possible choice for q(Θ). Then, the lower bound of ln p(X )

can be maximized with respect to q(Θ) when the KL divergence is minimized, that is when

q(Θ) = p(Θ|X ). However, in practice the true posterior distribution is normally computation-

ally intractable and can not be directly used for variational inference. Thus, a restricted family of

distributions q(Θ) needs to be considered. An ideal restriction should have the property that, the

family of q(Θ) comprises only tractable distributions, and at meanwhile is still flexible enough to

provide a good approximation to the true posterior distribution. A common approach in variational

inference literatures is to adopt factorization assumptions for restricting the form of q(Θ) [66].

This approximation framework is known as mean field theory [67, 68] which was developed in the

filed of physics [69]. With the factorization assumption, the posterior distribution q(Θ) can be

factorized into T disjoint tractable distributions as

q(Θ) =
T∏
i=1

qi(Θi) (1.5)

Notice that this is the only assumption about the distribution, and no further restriction is placed on

the functional forms of the individual factors qi(Θi). In order to maximize the lower bound L(q),
we need to make a variational optimization of L(q) with respect to each of the distributions qi(Θi)

in turn. Let us substitute Eq. (1.5) into Eq. (1.3), and use qi to denote qi(Θi) for simplification,
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then the optimization of L(q) with respect to a specific factor qs(Θs) can be given as

L(q)=
∫ T∏

i=1

qi ln

[
p(Θ,X )∏T

i=1 qi

]
dΘ

=

∫
qs

T∏
i �=s

qi

[
ln p(Θ,X )−

T∑
i=1

ln qi

]
dΘ

=

∫
qs

[∫ T∏
i �=s

qi ln p(Θ,X )dΘi

]
dΘs −

∫
qs ln qsdΘs + const.

=

∫
qs ln f(Θs,X )dΘs −

∫
qs ln qsdΘs + const.

(1.6)

where any terms that are independent of qs(Θs) are absorbed into the additive constant. A new

distribution f(Θs,X ) in Eq. (1.6) is introduced as

ln f(Θs,X ) =

∫ T∏
i �=s

qi ln p(Θ,X )dΘi = 〈ln p(Θ,X )〉i �=s (1.7)

Here, we use the notation 〈. . .〉i �=s to represent the expectation with respect to all the distribu-

tions of qi(Θi) except for i = s. We can also notice that Eq. (1.6) is actually a minus KL di-

vergence between qs(Θs) and f(Θs,X ). Therefore, maximizing L(q) in Eq. (1.6) is equivalent

to minimizing the KL divergence. We know that the KL divergence reaches its minimum when

qs(Θs) = f(Θs,X ). Thus, a general expression for the optimal solution q∗s(Θs) can be given by

ln q∗s(Θs) = 〈ln p(X ,Θ)〉i �=s + const. (1.8)

Here, the additive constant denotes the normalization coefficient for the distribution. By taking

the exponential of both sides of Eq. (1.8) and normalize, we can obtain the variational solution of

q∗s(Θs) as

q∗s(Θs) =
exp

(〈ln p(X ,Θ)〉i �=s

)∫
exp

(〈ln p(X ,Θ)〉i �=s

)
dΘ

(1.9)

Since the expression for q∗s(Θs) depends on calculating the expectations with respect to the other

factors q∗i (Θi) for i �= s, we need to cycle through all the factors to find the maximum of the
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lower bound. In general, in order to perform the variational inference, all the factors qi(Θi) need

to be suitably initialized first, then each factor is updated in turn with a revised value obtained

by Eq. (1.9) using the current values of all of the other factors. Convergence is guaranteed since

bound is convex with respect to each of the factors qi(Θi) [66, 70].

1.3 Contributions

The goal of this thesis is to propose several novel approaches for high-dimensional non-Gaussian

data clustering based on variational inference framework in the context of various mixture models

including Dirichlet, generalized Dirichlet and Beta-Liouville. The contributions of this thesis are

listed as the following:

� Finite Dirichlet Mixture Models with Variational Bayes Learning:

We propose a variational inference framework for learning finite Dirichlet mixture models.

Compared with other algorithms which are commonly used for mixture models (such as

EM), our approach has several advantages: first, the problem of over-fitting is prevented;

furthermore, the complexity of the mixture model (i.e. the number of components) can

be determined automatically and simultaneously with the parameters estimation as part of

the Bayesian inference procedure; finally, since the whole inference process is analytically

tractable with closed-form solutions, it may scale well to large applications.

� Finite Generalized Dirichlet Mixture Models with Unsupervised Feature Selection:

A variational inference framework is developed for unsupervised non-Gaussian feature se-

lection, in the context of finite generalized Dirichlet mixture-based clustering. Under the

proposed principled variational framework, we simultaneously estimate, in a closed-form,

all the involved parameters and determine the complexity (i.e. both model an feature selec-

tion) of the finite generalized Dirichlet mixture model.

� Infinite Generalized Dirichlet Mixture Models via Dirichlet Process:

We extend the finite generalized Dirichlet mixture model to an infinite case through a non-

parametric Bayesian framework namely Dirichlet process. The infinite assumption is used
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to avoid problems related to model selection (i.e. determination of the number of clusters)

and allows simultaneous separation of data in to similar clusters and selection of relevant

features.

� Online Learning of Infinite Beta-Liouville Mixture Models:

We propose a novel online clustering approach based on a Dirichlet process mixture of Beta-

Liouville distributions (i.e. an infinite Beta-Liouville mixture model). We are mainly moti-

vated by the fact that online algorithms allow data instances to be processed in a sequential

way, which is important for large-scale and real-time applications.

1.4 Thesis Overview

The organization of this thesis is as follows:

� Chapter 1 introduced the background knowledge regarding finite mixture models and varia-

tional inference learning framework.

� In Chapter 2, we propose a variational inference framework approach to learn finite Dirichlet

mixture models. Both synthetic and real data, generated from real-life challenging applica-

tions namely image databases categorization and anomaly intrusion detection, are experi-

mented to verify the effectiveness of the proposed approach. This work has been published

in the IEEE Transactions on Neural Networks and Learning Systems [71].

� In Chapter 3, we develop a novel statistical approach of simultaneous clustering and feature

selection for unsupervised learning. The proposed approach is based on finite generalized

mixture models and variational inference learning. We apply the proposed approach to both

synthetic data and a challenging application which concerns human action videos catego-

rization. This contribution has been published in the IEEE Transactions on Knowledge and

Data Engineering [72].

� In Chapter 4, we propose a novel unsupervised clustering approach based on an infinite

generalized mixture model with variational framework. We test the proposed approach using
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both synthetic data and real-world applications involving visual scenes categorization, auto-

annotation and retrieval. This research work has been published in Pattern Recognition [73].

� In Chapter 5, a novel online clustering approach based on infinite Beta-Liouville mixture

models is proposed. The effectiveness of the proposed work is evaluated on three challenging

real applications namely facial expression recognition, behavior modeling and recognition,

and dynamic textures clustering. This work has been published in the IEEE Transactions on

Neural Networks and Learning Systems [74].

� In Conclusions, we summarize our contributions and present some promising future works.
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Chapter 2

Variational Learning for Finite Dirichlet Mixture

Models

In this chapter, we focus on the variational learning of finite Dirichlet mixture models. Com-

pared to other algorithms which are commonly used for mixture models (such as expectation-

maximization), our approach has several advantages: first, the problem of over-fitting is prevented;

furthermore, the complexity of the mixture model (i.e. the number of components) can be de-

termined automatically and simultaneously with the parameters estimation as part of the Bayesian

inference procedure; finally, since the whole inference process is analytically tractable with closed-

form solutions, it may scale well to large applications. Both synthetic and real data, generated from

real-life challenging applications namely image databases categorization and anomaly intrusion

detection, are experimented to verify the effectiveness of the proposed approach.

2.1 The Finite Dirichlet Mixture Model

The Dirichlet distribution is the multivariate generalization of the Beta distribution, which offers

considerable flexibility and ease of use. In contrast to Gaussian distribution which only contains

symmetric modes, the Dirichlet distribution may have multiple symmetric and asymmetric modes.

Additionally, the Dirichlet distribution is defined in the compact support [0, 1] and can be easily

generalized to be defined in a compact support of the form [A,B], where (A,B) ∈ R
2. Thus, the

Dirichlet distribution is a better choice for modeling compactly supported data, such as images,

text or videos [11].
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A finite mixture of Dirichlet distributions with M components is represented by [75]

p( �X|�π, �α) =
M∑
j=1

πjDir( �X|�αj) (2.1)

where �π = (π1, . . . , πM) denotes the mixing coefficients which are positive and sum to one.

Dir( �X|�αj) in Eq. (2.1) is the Dirichlet distribution of component j with its own positive parameters

�αj = (αj1, . . . , αjD), and is defined by:

Dir( �X|�αj) =
Γ(
∑D

l=1 αjl)∏D
l=1 Γ(αjl)

D∏
l=1

X
αjl−1

l (2.2)

where �X = (X1, . . . , XD) and
∑D

l=1 Xl = 1, 0 ≤ Xl ≤ 1 for l = 1, . . . , D. It is noteworthy that

the Dirichlet distribution is used here as a parent distribution to model directly the data and not as

a prior to the multinomial.

Consider a set of N independent identically distributed vectors X = { �X1, . . . , �XN} assumed

to be generated from the mixture distribution in Eq. (2.1), the likelihood function of the Dirichlet

mixture model is given by

p(X|�π, �α) =
N∏
i=1

{ M∑
j=1

πjDir( �Xi|�αj)

}
(2.3)

It is convenient to interpret the finite Dirichlet mixture model in Eq. (2.1) as a latent variable

model. Thus, for each vector �Xi, we introduce a M -dimensional binary random vector �Zi =

{Zi1, . . . , ZiM}, such that Zij ∈ {0, 1},
∑M

j=1 Zij = 1 and Zij = 1 if �Xi belongs to component j

and 0, otherwise. The latent variables Z = {�Z1, . . . , �ZN} are actually hidden variables, so that do

not appear explicitly in the model. The conditional distribution of Z given the mixing coefficients

�π is defined as

p(Z|�π) =
N∏
i=1

M∏
j=1

π
Zij

j (2.4)

Then, the likelihood function with latent variables, which is actually the conditional distribution of

data set X given the class labels Z , can be written as

p(X|Z, �α) =
N∏
i=1

M∏
j=1

Dir( �Xi|�αj)
Zij (2.5)
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Having the data set X , an important problem is the learning of the mixture parameters. By learning,

we mean both the estimation of the parameters and the selection of the number of components M .

In the following, we describe a variational inference approach, for finite Dirichlet mixture models,

that can handle these two issues simultaneously.

2.2 Variational Inference for Finite Dirichlet Mixture Model

2.2.1 Variational Approximation

In order to estimate the parameters of the finite Dirichlet mixture model and to select the number of

components correctly, we adopt the variational inference methodology proposed in [47] for finite

Gaussian mixtures. The main idea of this framework is based on the estimation of the mixing

coefficients �π by maximizing the marginal likelihood p(X|�π) given by

p(X|�π) =
∑
Z

∫
p(X ,Z, �α|�π)d�α (2.6)

where p(X ,Z, �α|�π) is the joint distribution of all the mixture model random variables conditioned

on the mixing coefficients as

p(X ,Z, �α|�π) = p(X|Z, �α)p(Z|�π)p(�α) (2.7)

An important step now is to define a conjugate prior p(�α) over the �α parameters. Since the Dirichlet

belongs to the exponential family of distributions [76], a conjugate prior can be derived as follows

[77]:

p(�αj) = f(ν, λ)

[
Γ(
∑D

l=1 αjl)∏D
l=1 Γ(αjl)

]ν D∏
l=1

e−λl(αjl−1) (2.8)

where f(ν, λ) is a normalization coefficient and (ν, λ) are hyperparameters. Unfortunately, this

formal conjugate prior for the Dirichlet distribution is intractable, mainly because of the diffi-

culty to evaluate the normalization coefficient, and cannot be applied for the variational inference

directly as it shall be clearer later. We decided, faut de mieux, to tackle this problem in a sim-

ilar way as in [78] where the authors proposed a conjugate prior for the Beta distribution (i.e.
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one-dimensional Dirichlet) within a variational framework. Indeed, we assume that the Dirich-

let parameters are statistically independent and for each parameter αjl, the Gamma distribution is

adopted to approximate the conjugate prior as

p(αjl) = G(αjl|ujl, vjl) =
v
ujl

jl

Γ(ujl)
α
ujl−1

jl e−vjlαjl (2.9)

where ujl and vjl are hyperparameters, subject to the constraints ujl > 0 and vjl > 0. Therefore,

we have

p(�α) =
M∏
j=1

D∏
l=1

p(αjl) (2.10)

By substituting Eqs. (2.4), (2.5) and (2.10) into Eq. (2.7), we obtain the joint distribution of all the

random variables, conditioned on the mixing coefficients as

p(X ,Z, �α|�π) =
N∏
i=1

M∏
j=1

[
πj

Γ(
∑D

l=1 αjl)∏D
l=1 Γ(αjl)

D∏
l=1

X
αjl−1

il

]Zij M∏
j=1

D∏
l=1

v
ujl

jl

Γ(ujl)
α
ujl−1

jl e−vjlαjl (2.11)

A directed graphical representation of this model is illustrated in Figure. 2.1.

Figure 2.1: Graphical model representation of the finite Dirichlet mixture. Symbols in circles
denote random variables; otherwise, they denote model parameters. Plates indicate repetition (with
the number of repetitions in the lower right), and arcs describe conditional dependencies between
variables.

Since the marginalization in Eq. (2.6) is intractable, we use the variational inference to find a

tractable lower bound on p(X|�π). To simplify the notation without loss of generality we define

Θ = {Z, �α}. The variational lower bound L of the logarithm of the marginal likelihood p(X|�π)
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can be found as

L(Q) =

∫
Q(Θ) ln

p(X ,Θ|�π)
Q(Θ)

dΘ (2.12)

where Q(Θ) is an approximation to the true posterior distribution p(Θ|X , �π). In this work, we

adopt the factorization assumption for restricting the form of Q(Θ) as mentioned in Section 1.2.

With this factorized approximation, the posterior distribution Q(Θ) can be factorized into disjoint

tractable distributions as follows

Q(Θ) = Q(Z)Q(�α) =
[ N∏
i=1

M∏
j=1

Q(Zij)
][ M∏

j=1

D∏
l=1

Q(αjl)
]

(2.13)

By applying the general variational formula as shown in Eq. (1.9), we obtain the variational solu-

tions for the factors of the variational posterior as (see Appendix A for details)

Q(Z) =
N∏
i=1

M∏
j=1

r
Zij

ij (2.14)

Q(�α) =
M∏
j=1

D∏
l=1

G(αjl|u∗
jl, v

∗
jl) (2.15)

where

rij =
ρij∑M
j=1 ρij

(2.16)

ρij = exp

{
ln πj + R̃j +

D∑
l=1

(ᾱjl − 1) lnXil

}
(2.17)

R̃j = ln
Γ(
∑D

l=1 ᾱjl)∏D
l=1 Γ(ᾱjl)

+
D∑
l=1

ᾱjl

[
Ψ(

D∑
l=1

ᾱjl)−Ψ(ᾱjl)
][〈

lnαjl

〉− ln ᾱjl

]
+

1

2

D∑
l=1

ᾱ2
jl

[
Ψ′(

D∑
l=1

ᾱjl)−Ψ′(ᾱjl)
]〈
(lnαjl − ln ᾱjl)

2
〉

+
1

2

D∑
a=1

D∑
b=1,a �=b

ᾱjaᾱjb

[
Ψ′(

D∑
l=1

ᾱjl)(
〈
lnαja

〉− ln ᾱja)(
〈
lnαjb

〉− ln ᾱjb)

]
(2.18)

u∗
jl = ujl + ϕjl , v∗jl = vjl − ϑjl (2.19)
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ϕjl =
N∑
i=1

〈
Zij

〉
ᾱjl

[
Ψ(

D∑
k=1

ᾱjk)−Ψ(ᾱjl) +
D∑
k �=l

Ψ′(
D∑

k=1

ᾱk)ᾱk(
〈
lnαk

〉− ln ᾱk)

]
(2.20)

ϑjl =
N∑
i=1

〈
Zij

〉
lnXil (2.21)

where Ψ(·) and Ψ′(·) are the digamma and trigamma functions, respectively. The expected values

in the above formulas are 〈
Zij

〉
= rij , ᾱjl =

〈
αjl

〉
=

ujl

vjl
(2.22)〈

lnαjl

〉
= Ψ(u∗

jl)− ln v∗jl (2.23)〈
(lnαjl − ln ᾱjl)

2
〉
= [Ψ(u∗

jl)− lnu∗
jl]

2 +Ψ′(u∗
jl) (2.24)

2.2.2 Determining The Number of Components

Most conventional approaches tackle model selection problems via cross-validation. However, this

approach is computational demanding and wasteful of data. In our work, the mixing coefficients

�π are treated as parameters, and point estimations of their values are evaluated by maximizing the

variational likelihood bound L(Q). Setting the derivative of this lower bound with respect to �π to

zero gives:

πj =
1

N

N∑
i=1

rij (2.25)

Note that this maximization is interleaved with the variational optimizations for Q(Z) and Q(�α).

Indeed, components that provide insufficient contribution to explain the data would have their

mixing coefficients driven to zero during the variational optimization, and so they can be effectively

eliminated from the model through automatic relevance determination [79]. Thus, by starting with

a relatively large initial value of M and then remove the redundant components after convergence,

we can obtain the correct number of components in a single training run. It is also noteworthy

that some works have shown that the variational objective is reduced to the Bayesian information

criterion (BIC) as N → ∞ [39, 40] which justifies the fact that the variational Bayes approach is

more accurate than BIC for model selection (i.e. determination of the optimal number of mixture

components) in practical settings [46].
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2.2.3 Complete Variational Learning Algorithm

In variational learning, it is able to trace the convergence systematically by monitoring the vari-

ational lower bound during the re-estimation step [40]. Indeed, at each step of the iterative re-

estimation procedure, the value of this bound should never decrease. Specifically, we evaluate the

bound L(Q) at each interaction and terminate optimization if the amount of increase from one

iteration to the next is less than a criterion. For the variational Dirichlet mixture model, the lower

bound in Eq. (2.12) is evaluated as

L (Q) =
∑
Z

∫
Q(Z, �α) ln

{
p(X ,Z, �α|�π)
Q(Z, �α)

}
d�α

=
〈
ln p(X|Z, �α)

〉
+
〈
ln p(Z|�π)〉+ 〈

ln p(�α)
〉− 〈

lnQ(Z)
〉− 〈

lnQ(�α)
〉

=
N∑
i=1

M∑
j=1

rij[R̃j +
D∑
l=1

(ᾱjl) lnXil] +
N∑
i=1

M∑
j=1

rij ln πj −
N∑
i=1

M∑
j=1

rij ln rij

+
M∑
j=1

D∑
l=1

{
ujl ln vjl − ln Γ(ujl) + (ujl − 1)

〈
lnαjl

〉− vjlᾱjl

}

−
M∑
j=1

D∑
l=1

{
u∗
jl ln v

∗
jl − ln Γ(u∗

jl) + (u∗
jl − 1)

〈
lnαjl

〉− v∗jlᾱjl

}
(2.26)

Since the solutions for the variational posterior Q and the value of the lower bound depend on

Algorithm 1 Variational Dirichlet mixtures

1: Choose the initial number of components M and the initial values for hyperparameters {ujl}
and {vjl}.

2: Initialize the value of rij by K-Means algorithm.
3: repeat

4: The variational E-step: Update the variational solutions for Q(Z) Eq. (2.14) and Q(�α)
Eq. (2.15).

5: The variational M-step: maximize lower bound L(Q) with respect to the current value of �π
Eq. (2.25).

6: until Convergence criteria is reached.
7: Detect the optimal number of components M by eliminating the components with small mix-

ing coefficients close to 0.
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�π, the optimization of the variational Dirichlet mixture model can be solved using an EM-like

algorithm with a guaranteed convergence (see, for instance, [39] for an empirical study and [48, 80]

for a theoretical one). Indeed, local convergence has been formally and analytically proven in

the case of the exponential family models with missing values [80] to which the finite Dirichlet

mixture belongs. This local convergence is due to the convexity property of the exponential family

of distributions. The complete algorithm can be summarized in in Algorithm 1.

2.3 Experimental Results

In this section, we describe results that evaluate and indicate the effectiveness of the proposed ap-

proach using both synthetic and two real applications namely images categorization and anomaly

intrusion detection. While the goal of the synthetic data is to investigate the accuracy of the varia-

tional approach as compared to the deterministic technique proposed in [75], the target of the real

applications is to compare the performances of finite Dirichlet with finite Gaussian mixture models

both learned in a variational way. In our experiments, we initialize the number of components to

15 with equal mixing coefficients. It is worth mentioning that multiple maxima in the variational

bound may exist and therefore running the optimization several times with different initializations

is helpful for discovering a good maximum in principle [47]. In practice we have perceived that,

for the experiments involved in this chapter, poor initialization values of the hyperparameters {ujl}
and {vjl} will considerably slow down the convergence speed. Based on our experiments, an opti-

mal choice of the initial values of the hyperparameters {ujl} and {vjl} is to set them as 1 and 0.01,

respectively. We have also considered hyperparameters initialization strategy previously proposed

in [81] in the case of finite Gaussian mixture models. This approach is based on estimating the

hyperparameters using maximum likelihood estimation of the parameters that result from succes-

sive runs of the EM algorithm. However, we have not observed, according to our experiments,

significant improvement or influence on the learning process.
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Table 2.1: Parameters of the different generated data sets. N denotes the total number of elements,
nj denotes the number of elements in cluster j. αj1, αj2, αj3 and πj are the real parameters. α̂j1,
α̂j2, α̂j3 and π̂j are the estimated parameters by variational inference. ᾰj1, ᾰj2, ᾰj3 and π̆j are the
estimated parameters using DM. We can observe that both algorithms are able to estimate unknown
parameters, yet the variational algorithm always gives more accurate values.

nj j αj1 αj2 αj3 πj α̂j1 α̂j2 α̂j3 π̂j ᾰj1 ᾰj2 ᾰj3 π̆j

Data set 1 200 1 12 30 45 0.5 12.59 31.29 45.56 0.50 11.08 31.33 45.28 0.482

(N = 400) 200 2 32 50 16 0.5 33.58 50.20 15.64 0.50 31.27 50.64 16.38 0.518

Data set 2 200 1 12 30 45 0.4 13.91 35.40 51.07 0.398 13.96 32.41 48.53 0.327

(N = 500) 200 2 32 50 16 0.4 32.68 51.71 16.81 0.401 32.53 48.96 16.79 0.451

100 3 55 28 35 0.2 50.43 25.99 31.95 0.201 51.66 30.03 37.85 0.222

Data set 3 200 1 12 30 45 0.25 13.07 31.96 46.63 0.247 13.58 28.85 46.54 0.225

(N = 800) 200 2 25 18 90 0.25 24.02 17.76 85.44 0.253 25.96 17.69 93.51 0.231

200 3 55 28 35 0.25 54.89 27.73 34.13 0.249 56.43 29.72 33.93 0.286

200 4 32 50 16 0.25 31.63 48.73 14.45 0.251 34.68 51.34 14.18 0.258

Data set 4 200 1 12 30 45 0.2 11.46 27.97 41.98 0.198 11.28 32.59 46.84 0.231

(N = 1000) 100 2 25 18 90 0.1 25.16 19.23 93.36 0.098 23.13 19.50 87.92 0.145

300 3 55 28 35 0.3 54.45 28.58 34.40 0.300 53.57 29.08 36.77 0.286

200 4 32 50 16 0.2 36.23 55.47 18.04 0.198 35.31 53.09 19.61 0.174

200 5 3 118 60 0.2 3.22 130.15 65.89 0.206 2.84 109.37 63.32 0.164

Data set 5 200 1 12 30 45 0.22 12.21 31.24 47.06 0.223 12.50 28.96 46.89 0.258

(N = 900) 200 2 32 50 16 0.22 36.86 57.47 18.96 0.222 34.58 52.67 18.71 0.204

200 3 55 28 35 0.22 55.83 28.75 34.84 0.221 57.62 27.04 36.18 0.237

100 4 3 118 60 0.11 3.03 124.93 63.46 0.111 3.19 122.75 58.14 0.125

100 5 25 18 90 0.11 25.72 17.96 90.71 0.112 26.15 18.03 88.96 0.092

100 6 75 2 80 0.11 68.48 1.69 74.98 0.111 72.54 2.37 83.28 0.084

Data set 6 200 1 12 30 45 0.2 13.60 33.37 49.51 0.199 11.13 32.66 47.35 0.218

(N = 1000) 200 2 32 50 16 0.2 33.72 53.26 16.67 0.201 35.68 47.52 17.31 0.207

200 3 80 130 5 0.2 86.35 139.96 5.21 0.199 84.93 136.49 3.98 0.179

100 4 3 118 60 0.1 2.98 124.84 64.67 0.100 3.50 115.03 66.37 0.081

100 5 25 18 90 0.1 21.57 15.43 79.37 0.100 22.86 16.71 83.92 0.092

100 6 75 2 80 0.1 64.15 1.69 67.23 0.101 81.63 2.67 70.38 0.135

100 7 6 50 118 0.1 5.84 49.48 115.82 0.100 8.19 53.75 128.17 0.088
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(a) (b) (c)

(d) (e) (f)

Figure 2.2: Mixture densities for the synthetic data sets. (a) Data set 1, (b) Data set 2, (c) Data set
3, (d) Data set 4, (e) Data set 5, (f) Data set 6.

2.3.1 Synthetic Data

We first present the performance of our variational algorithm (varDM) in terms of estimation and

selection, on six three-dimensional synthetic data. Please notice that, here we choose D = 3

purely for ease of representation. We tested the effectiveness of our algorithm for estimating the

mixture’s parameters and selecting the number of components on generated data sets with different

parameters. Table 2.1 shows the real and estimated parameters of each data set using both our

variational algorithm and the deterministic approach (DM) proposed in [75]. Figure 2.2 represents

the resultant mixtures with different shapes (symmetric and asymmetric modes).

In order to estimate the number of components, we apply directly our algorithm on these data

sets (by starting with 15 components). The redundant components have estimated mixing coef-

ficients close to 0 after convergence. By removing these redundant components, we obtain the

correct number of components for each generated data set. Figure 2.3 illustrates the value of the
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(a) (b) (c)

(d) (e) (f)

Figure 2.3: Variational likelihood bound for each iteration for the different generated data sets.
The initial number of components is 15. Vertical dash lines indicate cancelation of components.
(a) Data set 1, (b) Data set 2, (c) Data set 3, (d) Data set 4, (e) Data set 5, (f) Data set 6.

variational likelihood bound in each iteration and shows that the likelihood bound increases at each

iteration and in most cases it increases very fast when one of the mixing coefficients is close to 0

(i.e. shall be removed). We can verify the results of estimating the number of components by per-

forming our variational optimization on a fixed number of components (i.e. without components

elimination). Thus, the variational likelihood bound becomes a model selection score. As shown

in Figure 2.4, we ran our algorithm by varying the number of mixture components from 2 to 15.

According to this figure, it is clear that for each data set, the variational likelihood bound is max-

imum at the correct number of components which indicates that the variational likelihood bound

can be used as an efficient criterion for model selection.

Moreover, we have performed a comparison between the numerical complexity of the proposed

variational algorithm and the DM approach, in terms of overall computation time and number of
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(a) (b) (c)

(d) (e) (f)

Figure 2.4: Variational likelihood bound as a function of the fixed assumed number of mixture
components for the different generated data sets. (a) Data set 1, (b) Data set 2, (c) Data set 3, (d)
Data set 4, (e) Data set 5, (f) Data set 6.

iterations before convergence. The corresponding results are shown in Table 2.2. It is obvious that,

for each data set, the proposed variational algorithm requires less iterations to converge and has a

faster computational time than the deterministic one.

2.3.2 Images Categorization

In this part, we consider the problem of images categorization which is a fundamental problem

in vision that has recently drawn considerable interest and seen great progress [82]. Applications

include the automatic understanding of images, object recognition, image databases browsing and

content-based images suggestion, recommendation and retrieval [83–85]. As the majority of com-

puter vision tasks, an important step for accurate images categorization is the extraction of good

descriptors (i.e. discriminative and invariant at the same time) to represent these images. Recently

21



Table 2.2: Rum time (in seconds) and number of iterations required before convergence for varDM
and DM.

VarDM DM

Data set Run time No. iterations Run time No. iterations

1 4.81 278 10.62 364

2 4.73 269 10.85 395

3 4.08 191 10.19 282

4 3.95 189 9.83 257

5 3.64 143 9.17 243

6 4.72 265 10.78 386

Table 2.3: Clustering Accuracies with varDM Model and varGM Model. M∗ denotes the average
number of clusters.

varDM varGM

Data set M∗ Accuracy (%) M∗ Accuracy (%)

A 4.85 ± 0.19 74.93 ± 1.62 4.56 ± 0.31 65.26 ± 1.38

B 4.03 ± 0.14 78.01 ± 1.56 4.41 ± 0.52 68.34 ± 1.29
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(a) (b) (c) (d) (e) (f) (g) (h)

Figure 2.5: Sample images from each group of sports event data set: (a) Rowing. (b) Badminton.
(c) polo. (d) Bocce. (e) Snow Boarding. (f) Croquet. (g) Sailing. (h) Rock climbing.

methods based on the bag-of-features approach have shown to give excellent results [86, 87]. In

this subsection we therefore follow this class of methods and in particular the one proposed in [87].

First, key points in the images are detected using one of the various detectors and local descriptors

which should be invariant to image transformation, occlusions and variations of illumination are

extracted. Then, these local descriptors are grouped into W homogenous clusters, using a cluster-

ing or vector quantization algorithm such as K-Means. Therefore, each cluster center is treated as

a visual word and a visual vocabulary is build with W visual words. Applying the paradigm of

bag-of-words, a W−dimensional histogram representing the frequency of each visual word is cal-

culated for each image. Finally, the Probabilistic Latent Semantic Analysis (pLSA) model [88] is

applied to reduce the dimensionality of the resulting histograms allowing the representation of im-

ages as proportional vectors. Thus, our variational Dirichlet mixture modeling framework provides

a natural setting to address the categorization task.

In our experiments, we have considered the FeiFei’s sports event data set containing 8 cate-

gories of sports scenes: rowing (250 images), badminton (200 images), polo (182 images), bocce

(137 images), snow boarding (190 images), croquet (236 images), sailing (190 images), and rock

climbing (194 images). Thus, the data set contains 1,579 images in total. We normalize each image

into a size of 256× 256 pixels. Examples of images from each categories are shown in Figure 2.5.
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Table 2.4: Average Rounded Confusion Matrix using the varDM Model to categorize Data Set A.
Rowing Badminton Sailing Croquet Rock

Rowing 109 5 28 3 5

Badminton 8 116 0 10 18

Sailing 19 3 122 2 4

Croquet 9 25 1 104 11

Rock 8 18 3 10 111

In our experiments, the key points of each image are detected using the Difference-of-Gaussian

(DoG) interest point detector [89] and described using Scale-Invariant Feature Transform (SIFT)

descriptor, resulting on 128-dimensional vector for each key point [89]. Then, an accelerated ver-

sion of the K-Means algorithm [90] is used to cluster all the SIFT vectors into a visual vocabulary

of 700 visual words. Note that, the number of visual words is user-specified. Based on our experi-

ments, the best results have been obtained when W = [600, 800]. Then, the new representation for

each image is calculated through the pLSA model by considering 35 aspects.

Two data sets are used for testing our algorithm. Data set A consists of 750 images from five

categorizes of the sports event data set: rowing, badminton, sailing, croquet and rock climbing.

Data set B consists of 600 images from four different categorizes of the sports event data set:

rowing, polo, snow boarding and bocce. Table 2.3 shows the average number of clusters and the

average classification accuracies using both varDM and Gaussian mixture (varGM) models learned

by running their respective variational algorithms 20 times. Tables 2.4 and 2.5 show the confusion

matrices when applying varDM for data sets A and B, respectively. According to the obtained

results we can clearly see that the varDM outperforms the varGM in terms of both categorization

accuracy and selection of the optimal number of image categories.

2.3.3 Anomaly Intrusion Detection

Nowadays, intrusion detection systems (IDSs) are becoming more and more important as com-

puter security vulnerabilities and flaws are being discovered everyday [91–94]. The main goal
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Table 2.5: Average Rounded Confusion Matrix using the varDM Model to categorize Data Set B.
Rowing Polo Snow Bocce

Rowing 115 17 8 10

Polo 6 124 13 7

Snow 21 6 109 14

Bocce 5 3 15 127

is to establish approaches which can scan network activities and detect suspicious patterns that

may have been derived from intrusion attacks. Intrusion detection is based on the assumption

that intrusive activities are noticeably diverse from normal system activities and hence detectable.

According to the analysis methods, IDSs can be classified into two main categories: misuse detec-

tion and anomaly detection systems. In misuse detection systems, pre-defined attack patterns and

signatures are used for detecting known attacks. Alternatively, anomaly detection systems detect

unknown attacks by observing deviations from normal activities of the system. Anomaly detection

has the advantage of detecting new types of intrusions. In our work, we first use our mixture model

to learn patterns of normal and intrusive actives from training data. Then, we detect and classify

intrusive activities which are deviated from the normal activities in a testing data set.

Data Set Description

The well-known KDD Cup 1999 Data 1 is used to investigate our mixture model. This data set

(tcpdump file) was collected at MIT Lincoln laboratory for the 1998 DARPA intrusion detection

evaluation program by simulating attacks on a typical U.S. Air Force Lan. Each data instance in

the data set is a connection record obtained from the simulated intrusions with 41 features (such

as duration, dst bytes, etc). A connection is a sequence of TCP packets starting and ending at

some well defined times, between which data flows to and from a source IP address to a target IP

address under some well defined protocol. The training data consists of 494,021 data instances of

which 97,277 are normal and 396,744 are attacks. The testing set contains 311,029 data instances

1http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
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Table 2.6: Confusion Matrix for Intrusion Detection with Variational Dirichlet Mixture Model.
Normal DOS R2L U2R Probe

Normal 49081 1169 9012 1042 289

DOS 38859 181372 562 309 8751

R2L 3617 169 9657 243 95

U2R 185 63 137 2185 66

Probe 401 185 62 149 3369

Table 2.7: Intrusion Detection Results Using different approaches.
Algorithm varDM DM varGM GM

Accuracy (%) 78.75 75.53 73.34 71.29

of which 60,593 are normal and 250,436 are attacks. All of these attacks fall into one of the

following four categories: DOS: denial-of-service (e.g. syn flood); R2L: unauthorized access from

a remote machine (e.g. guessing password); U2R: unauthorized access to local superuser (root)

privileges (e.g. buffer overflow attack) and Probing: surveillance and other probing (e.g. port

scanning).

Results

In our data set, each data instance contains 41 features in which 34 are numeric and 7 are symbolic.

In our experiments, only the 34 numeric features are used (i.e. each data is then represented as a

34-dimensional vector). Since the features are on quite different scales in the data set, we need to

normalize them such that one feature would not dominant the others in our algorithm. Table 2.6

shows the obtained confusion matrix using our varDM. According to this matrix the detection rate

is 78.75%. A summary of the detection results by applying other approaches namely the DM, the

varGM, and the Gaussian mixtures (GM) are given in table 2.7. According to these results, we can

say that the varDM outperforms significantly, according a student’s t-test, the other approaches.
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Chapter 3

Unsupervised Feature Selection for

High-Dimensional Non-Gaussian Data Clustering

with Variational Inference

Clustering has been a subject of extensive research in data mining, pattern recognition and other

areas for several decades. The main goal is to assign samples, which are typically non-Gaussian

and expressed as points in high-dimensional feature spaces, to one of a number of clusters. It is

well-known that in such high-dimensional settings, the existence of irrelevant features generally

compromises modeling capabilities. In this chapter, we propose a variational inference framework

for unsupervised non-Gaussian feature selection, in the context of finite generalized Dirichlet (GD)

mixture-based clustering. Under the proposed principled variational framework, we simultane-

ously estimate, in a closed-form, all the involved parameters and determine the complexity (i.e.

both model an feature selection) of the GD mixture. Extensive simulations using synthetic data

along with an analysis of human action videos demonstrate that our variational approach achieves

better results than comparable techniques.

3.1 Model specification

The GD distribution is the generalization of the Dirichlet distribution. It has a more general co-

variance structure (can be positive or negative) than Dirichlet distribution and offers high flexibility

and ease of use for the approximation of both symmetric and asymmetric distributions. Compared

to the Gaussian distribution, the GD distribution has a smaller number of parameters that makes

the estimation and the selection more accurate.
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A GD distribution of a D-dimensional random vector �Y is defined as

GD(�Y |�αj, �βj) =
D∏
l=1

Γ(αjl + βjl)

Γ(αjl)Γ(βjl)
Y

αjl−1

l

(
1−

l∑
k=1

Yk

)γjl

(3.1)

where
∑D

l=1 Yl < 1 and 0 < Yl < 1 for l = 1, . . . , D. �αj = (αj1, . . . , αjD) and �βj =

(βj1, . . . , βjD) are the parameters of the GD distribution, such that, αjl > 0, βjl > 0, γjl =

βjl−αjl+1−βjl+1 for l = 1, . . . , D−1, and γjD = βjD−1. Assume that we have a set of N indepen-

dent and identically distributed vectors Y = (�Y1, . . . , �YN), where each vector �Yi = (Y1, . . . , YD) is

assumed to be sampled from a finite GD mixture model with M components [17]:

p(�Yi|�π, �α, �β) =
M∑
j=1

πjGD(�Yi|�αj, �βj), (3.2)

where �α = (�α1, . . . , �αM) and �β = (�β1, . . . , �βM). �αj and �βj are the parameters of the GD distri-

bution representing component j. �π = (π1, . . . , πM) represents the mixing coefficients with the

constraints that are positive and sum to one.

According to an interesting mathematical property of the GD thoroughly discussed in [60], the

data point �Yi can be transformed using a geometric transformation into another D-dimensional

data point �Xi with independent features. Then, the finite GD mixture model is equivalent to the

following mixture model

p( �Xi|�π, �α, �β) =
M∑
j=1

πj

D∏
l=1

Beta(Xil|αjl, βjl) (3.3)

where �Xi = (Xi1, . . . , XiD), Xi1 = Yi1 and Xil = Yil/(1−
∑l−1

k=1 Yik) for l > 1, and Beta(Xil|αjl, βjl)

is a Beta distribution defined with parameters (αjl, βjl):

Beta(Xil|αjl, βjl) =
Γ(αjl + βjl)

Γ(αjl)Γ(βjl)
X

αjl−1

il (1−Xil)
βjl−1 (3.4)

Consequently, the estimation of a D-dimensional GD is reduced to D estimations of one-dimensional

Beta distributions which is interesting for multidimensional data. Moreover, the independence be-

tween the features, in the transformed data space, becomes a fact rather than an assumption as
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considered in previous unsupervised feature selection Gaussian mixture-based approaches [54, 57,

59, 65].

Next, we assign a binary latent variable �Zi = (Zi1, . . . , ZiM) to each observation �Xi, such that

Zij ∈ {0, 1},
∑M

j=1 Zij = 1, Zij = 1 if �Xi belongs to component j and equal to 0, otherwise. The

conditional distribution of latent variables Z = (�Z1, . . . , �ZN), given the mixing coefficients �π, is

defined as

p(Z|�π) =
N∏
i=1

M∏
j=1

π
Zij

j . (3.5)

It is noteworthy that the previous model assumes actually that all the features Xil are equally

important for the clustering task which is not realistic in general, since some of the features might

be “noise” and do not contribute to clustering process. In our work, we adopt the unsupervised

feature selection scheme that has been proposed in [60] by approximating the feature distribution

as

p(Xil|Wikl, φil, αjl, βjl, λkl, τkl) �
(
Beta(Xil|αjl, βjl)

)φil
( K∏

k=1

Beta(Xil|λkl, τkl)
Wikl

)1−φil

(3.6)

where φil is a binary latent variable, such that φil = 1 if feature l is relevant (i.e. supposed to follow

a Beta distribution, Beta(Xil|αjl, βjl), that depends on the class labels), and φil = 0 if feature l

is irrelevant and then supposed to follow a mixture of K Beta distributions, Beta(Xil|λkl, τkl),

independent from the class labels. In addition, Wikl is a binary variable such that
∑K

k=1 Wikl = 1.

When Wikl = 1, it indicates that Xil comes from the kth component of the irrelevant Beta mixture

model. Assuming that Wikl represents the elements of W , the marginal distribution of W is defined

as

p(W|�η) =
N∏
i=1

K∏
k=1

D∏
l=1

ηWikl
kl (3.7)

where ηkl represents the prior probability that Xil comes from the kth component of the irrelevant

Beta distribution, and
∑K

k=1 ηkl = 1.

The prior distribution of �φ is defined as

p(�φ|�ε) =
N∏
i=1

D∏
l=1

εφil

l1
ε1−φil

l2
(3.8)
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where each φil is a Bernoulli variable such that p(φil = 1) = εl1 and p(φil = 0) = εl2 . The

vector �ε = (�ε1, . . . ,�εD) represents the features saliencies (i.e. the probabilities that the features are

relevant) such that �εl = (εl1 , εl2) and εl1 + εl2 = 1.

Next, Gamma distributions are adopted to approximate conjugate priors over parameters �α, �β, �λ

and �τ as suggested recently in [78], by assuming that the different model’s parameters are inde-

pendent: p(�α) = G(�α|�u,�v), p(�β) = G(�β|�p, �q), p(�λ) = G(�λ|�g,�h), p(�τ) = G(�τ |�s,�t), where G(·) is

the Gamma distribution and is defined as

G(x|a, b) = ba

Γ(a)
xa−1e−bx. (3.9)

It is noteworthy that�ε, �π and �η will be considered as parameters and not as random variables within

our framework, thus priors shall not be imposed on them as we will explain further in next section.

3.2 Variational Learning of the Model

In order to estimate the parameters of the finite GD mixture model and to select the number of

components correctly, we adopt the variational inference methodology proposed in [47]. We are

mainly motivated by the good results obtained recently using variational learning techniques in

machine learning applications in general [95, 96] and for the unsupervised feature selection prob-

lem in particular [59, 65]. To simplify notation, let us define Θ = {Z,W , �φ, �α, �β, �λ, �τ} as the set

of non-observed random variables and denote Λ = {�π, �η,�ε} as the set of parameters. Our goal is to

optimize the values of Λ by maximizing the marginal likelihood p(X|Λ). Since this marginaliza-

tion is intractable, variational inference is then adopted to find a tractable lower bound on p(X|Λ).
By applying Jensen’s inequality, the lower bound L of the logarithm of p(X|Λ) can be found as

ln p(X|Λ) ≥
∫

Q(Θ) ln
p(X ,Θ|Λ)
Q(Θ)

dΘ = L(Q), (3.10)

where Q(Θ) is an approximation to the true posterior distribution p(Θ|X , �π).

Then, we adopt the factorization assumptions for restricting the form of Q(Θ), such that

Q(Θ) = Q(Z)Q(�φ)Q(W)Q(�α)Q(�β)Q(�λ)Q(�τ) . (3.11)
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In order to maximize the lower bound L(Q), we need to make a variational optimization of L(Q)

with respect to each of the factors in turn. For a specific factor Qm(Θm), the general expression

for its optimal solution can be found by

Qm(Θm) =
exp

〈
ln p(X ,Θ|Λ)〉 �=m∫

exp
〈
ln p(X ,Θ|Λ)〉�=m

dΘ
, (3.12)

where 〈·〉 �=m is the expectation with respect to all the factors except for Qm(Θm). By applying

Eq. (3.12) to each variational factor, we obtain the optimal solutions for the factors of the varia-

tional posterior as:

Q(Z) =
N∏
i=1

M∏
j=1

r
Zij

ij , Q(�φ) =
N∏
i=1

D∏
l=1

fφil

il (1− fil)
(1−φil) , Q(W) =

N∏
i=1

D∏
l=1

K∏
k=1

mWikl
ikl

(3.13)

Q(�α) =
M∏
j=1

D∏
l=1

G(αjl|u∗
jl, v

∗
jl) , Q(�β) =

M∏
j=1

D∏
l=1

G(βjl|p∗jl, q∗jl) (3.14)

Q(�λ) =
K∏
k=1

D∏
l=1

G(λkl|g∗kl, h∗
kl) , Q(�τ) =

K∏
k=1

D∏
l=1

G(τkl|s∗kl, t∗kl) (3.15)

where we define

rij =
ρij∑M
d=1 ρid

, fil =
δ
(φil)
il

δ
(φil)
il + δ

(1−φil)
il

, mikl =
ϕikl∑K
d=1 ϕild

ρij = exp

{
lnπj +

D∑
l=1

〈
φil

〉
[R̃jl + (ᾱjl − 1) lnXil + (β̄jl − 1) ln(1−Xil)]

}

δ
(φil)
il = exp

{ M∑
j=1

〈
Zij

〉[R̃jl + (ᾱjl − 1) lnXil + (β̄jl − 1) ln(1−Xil)
]
+ ln εl

}

δ
(1−φil)
il = exp

{ K∑
k=1

〈
Wikl

〉
[F̃kl + (λ̄kl − 1) lnXil + (τ̄kl − 1) ln(1−Xil)] + ln(1− εl)

}

ϕikl = exp

{〈
1− φil

〉[F̃kl + (λ̄kl − 1) lnXil + (τ̄kl − 1) ln(1−Xil)
]
+ ln ηkl

}

u∗jl = ujl +

N∑
i=1

〈
Zij

〉〈
φil

〉
ᾱjl

[
ψ(ᾱjl + β̄jl)− ψ(ᾱjl) + β̄jlψ

′(ᾱjl + β̄jl)(〈lnβjl〉 − ln β̄jl)
]
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v∗jl = vjl −
N∑
i=1

〈
Zij

〉〈
φil

〉
lnXil , q∗jl = qjl −

N∑
i=1

〈
Zij〉

〈
φil〉 ln(1−Xil)

p∗jl = pjl +

N∑
i=1

〈
Zij

〉〈
φil

〉
β̄jl
[
ψ(ᾱjl + β̄jl)− ψ(β̄jl) + ᾱjlψ

′(ᾱjl + β̄jl)(
〈
lnαjl

〉− ln ᾱjl)
]

g∗kl = gkl +
N∑
i=1

〈
1− φil

〉〈
Wikl

〉
λ̄kl

[
ψ(λ̄kl + τ̄kl)− ψ(λ̄kl) + τ̄klψ

′(λ̄kl + τ̄kl)(
〈
ln τkl

〉− ln τ̄kl)
]

h∗kl = hkl −
N∑
i=1

〈
1− φil

〉〈
Wikl

〉
lnXil , t∗kl = tkl −

N∑
i=1

〈
1− φil

〉〈
Wikl

〉
ln(1−Xil)

s∗kl = skl +

N∑
i=1

〈
1− φil

〉〈
Wikl

〉
τ̄kl
[
ψ(λ̄kl + τ̄kl)− ψ(τ̄kl) + λ̄klψ

′(λ̄kl + τ̄kl)(
〈
lnλkl

〉− ln λ̄kl)
]

ᾱjl =
〈
αjl

〉
=

u∗jl
v∗jl

, β̄jl =
〈
βjl
〉
=

p∗jl
q∗jl

, λ̄kl =
〈
λkl

〉
=

g∗kl
h∗kl

, τ̄kl =
〈
τkl
〉
=

s∗kl
t∗kl

where
〈 · 〉 represents an expected value, the ψ(·) is the digamma function and defined as: ψ(a) =

d ln Γ(a)/da. Notice that, R̃ and F̃ are the lower bound approximations of R =
〈
ln Γ(α+β)

Γ(α)Γ(β)

〉
and

F =
〈
ln Γ(λ+τ)

Γ(λ)Γ(τ)

〉
, respectively. Since these expectations are intractable, we use the second-order

Taylor series expansion to find their lower bounds as proposed in [78]. The expected values in the

above formulas are given by

〈
Zij

〉
= rij ,

〈
Wilk

〉
= mikl,

〈
φil

〉
= fil,

〈
1− φil

〉
= 1− fil〈

lnα
〉
= ψ(u∗)− ln v∗,

〈
lnβ

〉
= ψ(p∗)− ln q∗,

〈
lnλ

〉
= ψ(g∗)− lnh∗,

〈
ln τ

〉
= ψ(s∗)− ln t∗

Now, we can obtain a variational lower bound L(Q) which approximates the true marginal log

likelihood ln p(X|Λ) by using the variational solutions to each factor. The model parameters Λ can

be estimated by maximizing L(Q) with respect to �π, �η and �ε. Thus, by setting the derivative of the

lower bound with respect to πj, ηlk and εl to zero, we get

πj =
1

N

N∑
i=1

rij , ηlk =
1

N

N∑
i=1

milk , εl =
1

N

N∑
i=1

fil (3.16)

Since the solutions for the variational posterior Q and the value of the lower bound depend on

the values of �π, �η and �ε, the optimization of the model can be solved in a way analogous to the
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Algorithm 2 Variational GD mixture with feature selection
Choose the initial number of components M and K.
Initialize the values for hyper-parameters �u, �v, �p, �q, �g, �h, �s and �t.
Initialize the values of rij and mikl by K-Means algorithm.
repeat

The variational E-step: Update the variational solutions through Eq. (3.13) to Eq. (3.15).
The variational M-step: maximize lower bound L(Q) with respect to the current values of
�π, �η and �ε using Eq. (3.16).

until Convergence criteria is reached.
Detect the optimal number of components M and K by eliminating the components with small
mixing coefficients close to 0.

EM algorithm. The complete algorithm can be summarized in Algorithm 2. It is noteworthy that

the proposed algorithm allows implicitly and simultaneously model selection with parameter es-

timation and feature selection. This is different from classic approaches which perform model

selection using model selection rules, derived generally under asymptotical assumption and in-

formation theoretic reasoning, such as MML, MDL and AIC [11]. A major drawback of these

traditional approaches is that they require the entire learning process to be repeated for different

models (i.e. different values of M and K in our case).

3.3 Experimental Results

In this section, we shall illustrate our results with a collection of simulation studies involving both

synthetic data and a real-life challenging application namely human action videos categorization.

The goal of the synthetic data is to investigate the accuracy of the variational approach. The real

application has two main goals. The first goal is to compare our approach which we refer to as

varFsGD to the MML-based unsupervised feature selection approach (MMLFsGD) previously pro-

posed in [60]. The second goal is to compare varFsGD with the GD mixture learned in a variational

way without feature selection (we refer to this approach as varGD). We have also compared our

results with the variational Gaussian mixture-based unsupervised feature selection approach (we

shall refer to as varFsGau) proposed in [59]. In all our experiments, we initialize the number of

components M and K with large values (15 and 10, respectively) with equal mixing coefficients,
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Table 3.1: Parameters of the different generated data sets. N denotes the total number of elements,
nj denotes the number of elements in cluster j for the relevant features. αj1, βj1, αj2, βj2, αj3, βj3

and πj are the real parameters of the mixture models of relevant features. α̂j1, β̂j1, α̂j2, β̂j2, α̂j3,
β̂j3 and π̂j are the estimated parameters from variational inference.

nj j αj1 βj1 αj2 βj2 αj3 βj3 πj α̂j1 β̂j1 α̂j2 β̂j2 α̂j3 β̂j3 π̂j

Data set 1 300 1 30 15 20 40 33 18 0.33 27.94 14.32 18.65 41.27 32.13 17.52 0.32

(N = 900) 300 2 25 33 30 50 14 62 0.33 23.71 31.15 28.16 48.88 13.57 59.93 0.34

300 3 40 30 35 26 27 12 0.34 39.54 29.36 36.22 24.51 25.33 11.89 0.34

Data set 2 200 1 30 15 20 20 33 18 0.23 28.68 14.14 19.01 19.55 31.76 17.54 0.24

(N = 900) 300 2 25 33 30 50 14 62 0.34 25.03 32.72 28.11 48.39 14.58 64.39 0.34

400 3 40 30 19 21 15 10 0.43 35.57 26.34 18.73 20.58 15.77 9.81 0.42

Data set 3 800 1 45 55 62 47 54 39 0.53 46.01 57.86 60.15 45.29 51.04 41.68 0.54

(N = 1500) 700 2 59 60 50 65 35 45 0.47 58.10 58.16 48.43 61.89 34.51 47.84 0.46

Data set 4 200 1 15 16 20 15 17 36 0.16 15.31 17.09 19.23 15.21 16.33 38.19 0.16

(N = 1200) 200 2 18 35 10 25 20 13 0.16 18.95 37.17 10.15 23.94 22.18 12.57 0.15

400 3 40 28 33 46 18 40 0.33 39.30 27.65 31.17 47.56 19.22 43.83 0.33

400 4 30 44 25 40 35 22 0.35 30.24 45.79 23.61 38.39 33.37 24.15 0.36

and the feature saliency values are initialized at 0.5. In order to provide broad non-informative

prior distributions, the initial value of u, p, g and s for the conjugate priors are set to 1, and v, q, h,

t are set to 0.01.

3.3.1 Synthetic Data

First, the performance of the proposed varFsGD algorithm was evaluated in terms of estimation and

selection, through quantitative analysis on four 11-dimensional (three relevant features and eight

irrelevant features) synthetic data sets. The relevant features were generated in the transformed

space from mixtures of Beta distributions with well-separated components, while irrelevant ones

were from mixtures of overlapped components. Table 3.1 illustrates the real and estimated param-

eters of the distributions representing the relevant features for each data set using the proposed

variational algorithm. According to this table, the parameters of the model, representing relevant

features, and its mixing coefficients are accurately estimated. Although we do not show the es-

timated values of the parameters of the mixture models representing irrelevant features (the eight

remaining features), accurate results were obtained by adopting the proposed algorithm as well.

The feature saliencies of all the 11 features for each generated data set are shown in Figure 3.1.
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Figure 3.1: Feature saliency for synthetic data sets with one standard deviation over ten runs. (a)
Data set 1, (b) Data set 2, (c) Data set 3, (d) Data set 4.

It is clear that features 1, 2 and 3 have been assigned a high degree of relevance which is consistent

with the ground-truth. Therefore, we can conclude that, for synthetic data sets, the proposed

algorithm successfully detects the true number of components and correctly assigns the importance

of features.

3.3.2 Human Action Videos Categorization

With the rapid development of digital technologies, the increase in the availability of multime-

dia data such as images and videos is tremendous. With thousands of videos on hand, grouping

them according to their contents is highly important for a variety of visual tasks such as event

analysis [97], video indexing, browsing and retrieval, and digital libraries organization [98]. How
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to provide efficient videos categorization approaches has attracted many research efforts and has

been addressed by several researchers in the past (see, for instance, [99–101]). Videos catego-

rization remains, however, an extremely challenging task due to several typical scenarios such as

unconstrained motions, cluttered scenes, moving backgrounds, object occlusions, non-stationary

camera, geometric changes and deformation of objects and variations of illumination conditions

and viewpoints. In this section, we present an unsupervised learning method, based on our varia-

tional algorithm, for categorizing human action videos. The performance of the proposed method

is evaluated on a challenging video data set namely the KTH [102] human action data set.

walking jogging running boxing hand waving hand clapping

Figure 3.2: Examples of frames, representing different human actions in different scenarios, from
video sequences in the KTH data set.
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Experimental Methodology

Several studies have been conducted to provide models and visual features in order to consistently

(i.e. regardless changes in viewpoint angles, position, distance, size, orientation, or deformation)

categorize objects and visual scenes. These studies have shown that a good model is required,

and it must be able to select relevant visual features to improve categorization performance [103,

104]. Recently several works have been based on the notion of visual vocabulary constructed

via a quantization process, according to a coding rule such as K-Means, of local features (spatio-

temporal features in the case of videos) extracted from a set of detected interest points (space-time

interest points in the case of videos). This approach allows the representation of images and videos

as histograms of visual words and have convincingly proven its effectiveness in several applications

(see, for instance, [86]).

Our methodology for unsupervised videos categorization can be summarized as the following.

First, local spatio-temporal features from each video sequence are extracted from their detected

space-time interest points. Among many of the existing space-time interest points detectors and

local spatio-temporal features [99, 105], we employ the space-time interest point detector proposed

in [101] 1, which is actually a space-time extension of the well-known Harris operator, and his-

tograms of optic flow (HoF) as proposed in [105]. Next, a visual vocabulary is constructed by

quantizing these spatio-temporal features into visual words using K-means algorithm and each

video is then represented as a frequency histogram over the visual words. Then, we apply the

pLSA model [88] to the obtained histograms as done in [87] in the case of still images. As a result

each video is represented now by a D-dimensional proportional vector where D is the number

of latent aspects. Finally, we employ our varFsGD model as a classifier to categorize videos by

assigning the video sequence to the group which has the highest posterior probability according to

Bayes’ decision rule.

1We have also tested another popular feature detector namely the Cuboid detector proposed in [99]. However, we
have not noticed a significant improvement according to our experiments.
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KTH Human Action Data Set

The KTH human action data set is one of the largest available video sequences data sets of human

actions [102]. It contains six types of human action classes including: walking, jogging, running,

boxing, hand waving and hand clapping. Each action class is performed several times by 25

subjects in four different scenarios: outdoors (S1), outdoors with scale variation (S2), outdoors

with different clothes (S3) and indoors (S4). This data set contains 2391 video sequences and

all sequences were taken over homogenous backgrounds with a static camera with 25ftps frame

rate. All video samples were downsampled to the spatial resolution of 160×120 pixels and have

a length of four seconds in average. Examples of frames from video sequences of each category

are shown in Figure 3.2. In this experiment, we considered a training set composed of actions

related to 16 subjects to construct the visual vocabulary, by setting the number of clusters in the

K-Means algorithm (i.e. number of visual words) to 1000, as explained in the previous section.

The pLSA model was applied by considering 40 aspects and each video in the database was then

represented by a 40-dimensional vector of proportions. Last, the resulting vectors were clustered

by our varFsGD model. The entire procedure was repeated 30 times for evaluating the performance

of our approach. The optimal number of components was estimated as around 6 while the number

of irrelevant Beta components was identified as K = 2. The confusion matrix for the KTH data

set is shown in Figure 3.3. We note that, most of the confusion takes place between “walking” and

“jogging”, “jogging” and “running”, as well as between “hand clapping” and “boxing”. This is

due to the fact that similar actions contain similar types of local space-time events.

Table 3.2 shows the average classification accuracy and the average number of relevant compo-

nents obtained by varFsGD, MMLFsGD, varGD and varFsGau. It clearly shows that our algorithm

outperforms the other approaches for clustering KTH human action videos. For instance, the fact

that the varFsGD performs better than the varFsGau is actually expected since videos are repre-

sented by vectors of proportions for which the GD mixture is one of the best modeling choices

unlike the Gaussian mixture which implicitly assumes that the features vectors are Gaussian which

is far from the case.

We have also tested the effect of different sizes of visual vocabulary on classification accuracy

for varFsGD, MMLFsGD, varGD and varFsGau, as illustrated in Figure 3.4(a). As we can see,
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Figure 3.3: Confusion matrix for the KTH data set.

Table 3.2: The average classification accuracy and the number of components (M̂ ) computed on
the KTH data set using varFsGD, MMLFsGD, varGD and varFsGau over 30 random runs.

Algorithm M̂ Accuracy (%)

varFsGD 5.96 78.17

MMLFsGD 5.87 76.69

varGD 5.53 71.34

varFsGau 5.67 72.06

the classification rate peaks around 1000. The choice of the number of aspects also influences

the accuracy of classification. As shown in Figure 3.4(b), the optimal accuracy can be obtained

when the number of aspects is set to 40. These aspects may contribute with different degrees in

discriminating among image categories. The corresponding feature saliency of the 40-dimensional

aspects together with their standard deviations (error bars) can be viewed in Figure 3.5. As illus-

trated in this figure, the features have different relevance degrees and then contribute differently

to clustering. For instance, there are seven features (features number 1, 8, 11, 14, 16, 22, 29) that

have saliencies lower than 0.5, and then provide less contribution in clustering. This is because

these aspects are associated to all categories and have less discrimination power. By contrast, eight
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Figure 3.4: (a) Classification accuracy vs. vocabulary size for the KTH data set; (b) Classification
accuracy vs. the number of aspects for the KTH data set.

features (features number 2, 10, 13, 25, 28, 33, 36 and 37) have high relevance degrees with fea-

ture saliencies greater than 0.9 which can be explained by the fact that these features are mainly

associated with specific action categories.
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Chapter 4

Variational Learning of a Dirichlet Process of

Generalized Dirichlet Distributions for Simultaneous

Clustering and Feature Selection

This chapter introduces a novel enhancement for unsupervised feature selection based on general-

ized Dirichlet mixture models. Our proposal is based on the extension of the finite mixture model

previously developed in [60] to the infinite case, via the consideration of Dirichlet process mix-

tures, which can be viewed actually as a purely nonparametric model since the number of mixture

components can increase as data are introduced. The infinite assumption is used to avoid problems

related to model selection (i.e. determination of the number of clusters) and allows simultaneous

separation of data into similar clusters and selection of relevant features. Our resulting model is

learned within a principled variational Bayesian framework that we have developed. The experi-

mental results reported for both synthetic data and real-world challenging applications involving

image categorization, automatic semantic annotation and retrieval show the ability of our approach

to provide accurate models by distinguishing between relevant and irrelevant features without over-

or under-fitting the data.

4.1 The Infinite GD Mixture Model with Feature Selection

In this section, we describe our main unsupervised infinite feature selection model. We start by a

brief overview of the finite GD mixture model. Then, the extension of this model to the infinite

case and the integration of feature selection are proposed. Finally, we present the conjugate priors

that we will consider for the resulting model learning.
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4.1.1 The Finite GD Mixture Model

Consider a random vector �Y = (Y1, . . . , YD), drawn from a finite mixture of generalized Dirichlet

(GD) Distributions with M components [106] as

p(�Y |�π, �α, �β) =
M∑
j=1

πjGD(�Y |�αj, �βj) (4.1)

where �α = {�α1, . . . , �αM}, �β = {�β1, . . . , �βM}, �αj and �βj are the parameters of the GD dis-

tribution representing component j with �αj = {αj1, . . . , αjD} and �βj = {βj1, . . . , βjD}, and

�π = {π1, . . . , πM} represents the mixing coefficients which are positive and sum to one. A GD

distribution is defined as

GD(�Y |�αj, �βj) =
D∏
l=1

Γ(αjl + βjl)

Γ(αjl)Γ(βjl)
Y

αjl−1

l

(
1−

l∑
k=1

Yk

)γjl

(4.2)

where
∑D

l=1 Yl < 1 and 0 < Yl < 1 for l = 1, . . . , D, αjl > 0, βjl > 0, γjl = βjl − αjl+1 − βjl+1

for l = 1, . . . , D − 1, and γjD = βjD − 1.

Now, let us consider a set of N independent identically distributed vectors Y = (�Y1, . . . , �YN)

assumed to arise from a finite GD mixture. Following the Bayes’ theorem, the probability that

vector i is in cluster j conditional on having observed �Yi (also known as responsibilities) can be

written as

p(j|�Yi) ∝ πjGD(�Yi|�αj, �βj) (4.3)

In this work, we exploit an interesting mathematical property of the GD distribution previously

discussed in [60, 106] to redefine the responsibilities as

p(j|�Yi) ∝ πj

D∏
l=1

Beta(Xil|αjl, βjl) (4.4)

where Xi1 = Yi1 and Xil = Yil/(1 −∑l−1
k=1 Yik) for l > 1 and Beta(Xil|αjl, βjl) is a Beta dis-

tribution defined with parameters (αjl, βjl). Thus, the clustering structure for a finite GD mixture

model underlying data set Y can be represented by a new data set X = ( �X1, . . . �XN) using the

following mixture model with conditionally independent features

p( �Xi|�π, �α, �β) =
M∑
j=1

πj

D∏
l=1

Beta(Xil|αjl, βjl) (4.5)
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4.1.2 Infinite GD Mixture Model With Feature Selection

A conventional finite mixture model can be extended to have an infinite number of components us-

ing the Dirichlet process mixture model with a stick-breaking representation. The Dirichlet process

(DP) [107, 108] is a stochastic process whose sample paths are probability measures with proba-

bility one. It can be considered as a distribution over distributions. The infinite GD mixture model

with feature selection proposed in this chapter is constructed using the DP with a stick-breaking

representation. Stick-breaking representation is an intuitive and straightforward constructive defi-

nition of the DP [109–111]. It is defined as follows: given a random distribution G, it is distributed

according to a DP G ∼ DP (ψ,H) if the following conditions are satisfied:

λj ∼ Beta(1, ψ), Ωj ∼ H, πj = λj

j−1∏
s=1

(1− λs), G =
∞∑
j=1

πjδΩj
(4.6)

where δΩj
denotes the Dirac delta measure centered at Ωj , and ψ is a positive real number. The

mixing weights πj are obtained by recursively breaking an unit length stick into an infinite number

of pieces.

Assuming now that the observed data set is generated from a GD mixture model with a count-

ably infinite number of components. Thus, Eq. (4.5) can be rewritten as

p( �Xi|�π, �α, �β) =
∞∑
j=1

πj

D∏
l=1

Beta(Xil|αjl, βjl) . (4.7)

Then, for each vector �Xi, we introduce a binary latent variable �Zi = (Zi1, Zi2, . . .), such Zij ∈
{0, 1} and Zij = 1 if �Xi belongs to component j and 0, otherwise. Therefore, the likelihood func-

tion of the infinite GD mixtures with latent variables, which is actually the conditional distribution

of data set X given the class labels Z = (�Z1, . . . , �ZN) can be written as

p(X|Z, �α, �β) =
N∏
i=1

∞∏
j=1

( D∏
l=1

Beta(Xil|αjl, βjl)

)Zij

(4.8)

According to Chapter 3, we know that some of the features in a high-dimensional data set may

be irrelevant and not contribute to the clustering process. In order to take this fact into account

the authors in [54] have supposed that a given feature Xil is generated from a mixture of two
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univariate distributions: The first one is assumed to generate relevant features and is different for

each cluster; the second one is common to all clusters (i.e. independent from class labels) and

assumed to generate irrelevant features. This idea has been extended in [60] where the irrelevant

features is modeled as a finite mixture of distributions rather than a usual single distribution. In this

work, we go a step further by modeling the irrelevant features with an infinite mixture model in

order to bypass the difficulty of estimating the appropriate number of components for the mixture

model representing irrelevant features. Therefore, each feature Xil can be approximated as

p(Xil) �
(
Beta(Xil|αjl, βjl)

)φil
( ∞∏

k=1

Beta(Xil|σkl, τkl)
Wikl

)1−φil

(4.9)

where Wikl is a binary variable such that Wikl = 1 if Xil comes from the kth component of the

infinite Beta mixture for the irrelevant features. φil is a binary latent variable, such that φil = 1

indicates that feature l is relevant and follows a Beta distribution Beta(Xil|αjl, βjl), and φil = 0

denotes that feature l is irrelevant and supposed to follow an infinite mixture of Beta distributions

independent from the class labels:

p(Xil) =
∞∑
k=1

ηkBeta(Xil|σkl, τkl) (4.10)

where ηk denotes the mixing probability and also implies the prior probability that Xil is generated

from the kth component of the infinite Beta mixture representing irrelevant features.

Thus, we can write the likelihood of the observed data set X following the infinite GD mixture

model with feature selection as

p(X|Z,W , �φ, �α, �β, �σ, �τ) =
N∏
i=1

∞∏
j=1

[
D∏
l=1

Beta(Xil|αjl, βjl)
φil×

( ∞∏
k=1

Beta(Xil|σkl, τkl)
Wikl

)1−φil

]Zij

(4.11)

where W = ( �W1, . . . , �WN) with �Wi = ( �Wi1, �Wi2, . . .) and �Wik = (Wik1, . . . ,WikD). �φ =

(�φ1, . . . , �φN) contains elements �φi = (φi1, . . . , φiD). �σ = (�σ1, �σ2, . . .) and �τ = (�τ1, �τ2, . . .)

are the parameters of the Beta mixture representing irrelevant features which comprise elements

�σk = (σk1, . . . , σkD) and �τk = (τk1, . . . , τkD), respectively.
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4.1.3 Prior Distributions of The Proposed Model

We shall follow the variational inference framework for learning our model. Thus, each unknown

parameter is given a prior distribution. Since the analysis is considerably simplified if we exploit

conjugate prior distributions, conjugate priors are therefore chosen for the unknown random vari-

ables Z,W , �φ, �α, �β, �σ and �τ . The prior distributions of Z and W given the mixing coefficients �π

and �η can be specified as

p(Z|�π) =
N∏
i=1

∞∏
j=1

π
Zij

j (4.12)

p(W|�η) =
N∏
i=1

∞∏
k=1

D∏
l=1

ηWikl
k (4.13)

According to the stick-breaking construction of DP as stated in Eq. (4.6), �π is a function of �λ. We

rewrite it here for the sake of clarity

πj = λj

j=1∏
s=1

(1− λs) (4.14)

Similarly, �η can be defined as a function of �γ, such that

ηk = γk

k−1∏
s=1

(1− γs) (4.15)

Therefore, we can rewrite Eq. (4.12) and Eq. (4.13) as

p(Z|�λ) =
N∏
i=1

∞∏
j=1

[
λj

j−1∏
s=1

(1− λs)
]Zij (4.16)

p(W|�γ) =
N∏
i=1

∞∏
k=1

D∏
l=1

[γk

k−1∏
s=1

(1− γs)]
Wikl (4.17)

where �λ = (λ1, λ2, . . .) and �γ = (γ1, γ2, . . .). The prior distributions of �λ and �γ follow the specific

Beta distribution given in Eq. (4.6) as

p(�λ|�ψ) =
∞∏
j=1

Beta(1, ψj) =
∞∏
j=1

ψj(1− λj)
ψj−1 (4.18)
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p(�γ|�ϕ) =
∞∏
k=1

Beta(1, ϕk) =
∞∏
k=1

ϕk(1− γk)
ϕk−1 (4.19)

To add more flexibility, another layer is added to the Bayesian hierarchy by introducing prior

distributions over the hyperparameters �ψ = (ψ1, ψ2, . . .) and �ϕ = (ϕ1, ϕ2, . . .). Motivated by the

fact that that the Gamma distribution is conjugate to the stick lengths [112], Gamma priors are

placed over �ψ and �ϕ as

p(�ψ) = G(�ψ|�a,�b) =
∞∏
j=1

b
aj
j

Γ(aj)
ψ

aj−1
j e−bjψj (4.20)

p(�ϕ) = G(�ϕ|�c, �d) =
∞∏
k=1

dckk
Γ(ck)

ϕck−1
k e−dkϕk (4.21)

where hyperparameters �a = (a1, a2, . . .), �b = (b1, b2, . . .), �c = (c1, c2, . . .) and �d = (d1, d2, . . .)

are subject to the constraints aj > 0, bj > 0, ck > 0 and dk > 0 to ensure that these two prior

distributions can be normalized. The prior distribution for the feature relevance indicator variable
�φ is defined as

p(�φ|�ε) =
N∏
i=1

D∏
l=1

εφil

l1
ε1−φil

l2
(4.22)

where each φil is a Bernoulli variable such that p(φil = 1) = εl1 and p(φil = 0) = εl2 . The

vector �ε = (�ε1, . . . ,�εD) represents the features saliencies (i.e. the probabilities that the features are

relevant) such that �εl = (εl1 , εl2) and εl1 + εl2 = 1. Furthermore, a Dirichlet distribution is chosen

over �ε as [113]

p(�ε) =
D∏
l=1

Dir(�εl|�ξ) =
D∏
l=1

Γ(ξ1 + ξ2)

Γ(ξ1)Γ(ξ2)
εξ1−1
l1

εξ2−1
l2

(4.23)

where the hyperparameter �ξ = (ξ1, ξ2) is subject to the constraint (ξ1, ξ2) > 0 in order to ensure

that the distribution can be normalized.

Next, we need to define the prior distributions for parameters �α, �β, �σ and �τ of Beta distributions.

Although Beta distribution belongs to the exponential family and has a formal conjugate prior, it

is analytically intractable and cannot be used within a variational framework as shown for instance

in [78]. Thus, the Gamma distribution is adopted to approximate the conjugate prior, as suggested
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in [78], by assuming that parameters of Beta distributions are statistically independent:

p(�α) = G(�α|�u,�v) =
∞∏
j=1

D∏
l=1

v
ujl

jl

Γ(ujl)
α
ujl−1

jl e−vjlαjl (4.24)

p(�β) = G(�β|�p, �q) =
∞∏
j=1

D∏
l=1

q
pjl
jl

Γ(pjl)
βpjl−1e−qjlβjl (4.25)

p(�σ) = G(�σ|�g,�h) =
∞∏
k=1

D∏
l=1

hgkl
kl

Γ(gkl)
σgkl−1e−hklσkl (4.26)

p(�τ) = G(�τ |�s,�t) =
∞∏
k=1

D∏
l=1

tsklkl

Γ(skl)
τ skl−1e−tklτkl (4.27)

where all the hyperparameters �u = {ujl}, �v = {vjl}, �p = {pjl}, �q = {qjl}, �g = {gkl}, �h = {hkl},

�s = {skl} and �t = {tkl} of the above conjugate priors are positive.

A directed graphical representation of the infinite GD mixture model with feature selection is

illustrated in Figure 4.1.

Figure 4.1: Graphical model representation of the infinite GD mixture model with feature selec-
tion. Symbols in circles denote random variables; otherwise, they denote model parameters. Plates
indicate repetition (with the number of repetitions in the lower right), and arcs describe conditional
dependencies between variables.
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4.2 Variational Inference

In this section, a variational framework for learning the infinite GD mixture model with feature

selection is proposed. In our work, we define Θ = {Z,W , �φ, �α, �β, �σ, �τ , �λ, �ψ,�γ, �ϕ,�ε} as the set

of unknown random variables. The main idea in variational learning is to find an approximation

Q(Θ) for the true posterior distribution p(Θ|X ) [40].

Motivated from the work in [112], we truncate the stick-breaking representation for the infinite

GD mixture model at a value of M as

λM = 1 , πj = 0 when j > M ,
M∑
j=1

πj = 1 (4.28)

Moreover, the infinite Beta mixture model for the irrelevant features is truncated at a value of K

such that

γK = 1 , ηk = 0 when k > K ,
K∑
k=1

ηk = 1 (4.29)

Please notice that, the truncation levels M and K are variational parameters which can be freely

initialized and will be optimized automatically during the learning process.

By employing the factorization assumption and the truncated stick-breaking representation for

the proposed model, we then obtain

Q(Θ) =

[
N∏
i=1

M∏
j=1

Q(Zij)

][
M∏
j=1

Q(λj)Q(ψj)

][
N∏
i=1

K∏
k=1

D∏
l=1

Q(Wikl)

]

×
[

K∏
k=1

Q(γk)Q(ϕk)

][
N∏
i=1

D∏
l=1

Q(φil)

][
D∏
l=1

Q(�εl)

]

×
[

M∏
j=1

D∏
l=1

Q(αjl)Q(βjl)

][
K∏
k=1

D∏
l=1

Q(σkl)Q(τkl)

]
(4.30)

In this work, the general expression for the optimal solution of each variational factor is given

by

Qs(Θs) =
exp〈ln p(X ,Θ)〉i �=s∫
exp〈ln p(X ,Θ)〉i �=sdΘ

(4.31)

where 〈·〉i �=s denotes an expectation with respect to all the distributions Qi(Θi) except for i = s.

49



By applying Eq. (4.31) to each factor of the variational posterior, we then acquire the following

optimal solutions

Q(Z) =

N∏
i=1

M∏
j=1

r
Zij

ij , Q(�λ) =

M∏
j=1

Beta(λj |θj , ϑj) (4.32)

Q(�ψ) =

M∏
j=1

G(ψj |a∗j , b∗j ) , Q(W) =

N∏
i=1

K∏
k=1

D∏
l=1

(mWikl
ikl ) (4.33)

Q(�γ) =
K∏
k=1

Beta(γk|ρk, �k) , Q(�ϕ) =
K∏
k=1

G(ϕk|c∗k, d∗k) (4.34)

Q(�φ) =
N∏
i=1

D∏
l=1

fφil
il (1− fil)

(1−φil) , Q(�ε) =
D∏
l=1

Dir(�εl|�ξ∗) (4.35)

Q(�α) =
M∏
j=1

D∏
l=1

G(αjl|u∗jl, v∗jl) , Q(�β) =
M∏
j=1

D∏
l=1

G(βjl|p∗jl, q∗jl) (4.36)

Q(�σ) =

K∏
k=1

D∏
l=1

G(σkl|g∗kl, h∗kl) , Q(�τ) =

K∏
k=1

D∏
l=1

G(τkl|s∗kl, t∗kl) (4.37)

where we have defined

rij =
r̃ij∑M
j=1 r̃ij

, fil =
f
(φil)
il

f
(φil)
il + f

(1−φil)
il

, mikl =
m̃ikl∑K
k=1 m̃ikl

(4.38)

r̃ij = exp
{ D∑
l=1

〈
φil

〉
[R̃jl + (ᾱjl − 1) lnXil + (β̄jl − 1) ln(1−Xil)] + 〈lnλj〉+

j−1∑
s=1

〈ln(1− λs)〉
}

(4.39)

m̃ikl = exp
{〈

1−φil

〉[F̃kl+(σ̄kl−1) lnXil+(τ̄kl−1) ln(1−Xil)
]
+ 〈ln γk〉+

k−1∑
s=1

〈ln(1−γs)〉
}

(4.40)

f
(φil)
il = exp

{ M∑
j=1

〈
Zij

〉[R̃jl + (ᾱjl − 1) lnXil + (β̄jl − 1) ln(1−Xil)
]
+ 〈ln εl1〉

}
(4.41)

f
(1−φil)
il = exp

{ K∑
k=1

〈
Wikl

〉
[F̃kl + (σ̄kl − 1) lnXil + (τ̄kl − 1) ln(1−Xil)] + 〈ln εl2〉

}
(4.42)

u∗jl = ujl +
N∑
i=1

〈
Zij

〉〈
φil

〉
ᾱjl

[
ψ(ᾱjl + β̄jl)− ψ(ᾱjl) + β̄jlψ

′(ᾱjl + β̄jl)(〈lnβjl〉 − ln β̄jl)
]

(4.43)
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p∗jl = pjl +

N∑
i=1

〈
Zij

〉〈
φil

〉
β̄jl
[
ψ(ᾱjl + β̄jl)− ψ(β̄jl) + ᾱjlψ

′(ᾱjl + β̄jl)(
〈
lnαjl

〉− ln ᾱjl)
]

(4.44)

g∗kl = gkl +

N∑
i=1

〈
1− φil

〉〈
Wikl

〉
σ̄kl
[
ψ(σ̄kl + τ̄kl)− ψ(σ̄kl) + τ̄klψ

′(σ̄kl + τ̄kl)(
〈
ln τkl

〉− ln τ̄kl)
]

(4.45)

s∗kl = skl +

N∑
i=1

〈
1− φil

〉〈
Wikl

〉
τ̄kl
[
ψ(σ̄kl + τ̄kl)− ψ(τ̄kl) + σ̄klψ

′(σ̄kl + τ̄kl)(
〈
lnσkl

〉− ln σ̄kl)
]

(4.46)

v∗jl = vjl −
N∑
i=1

〈
Zij

〉〈
φil

〉
lnXil , q∗jl = qjl −

N∑
i=1

〈
Zij〉

〈
φil〉 ln(1−Xil) (4.47)

h∗kl = hlk −
N∑
i=1

〈
1− φil

〉〈
Wikl

〉
lnXil, t∗kl = tkl −

N∑
i=1

〈
1− φil

〉〈
Wikl

〉
ln(1−Xil) (4.48)

θj = 1 +

N∑
i=1

〈Zij〉 , ϑj = 〈ψj〉+
N∑
i=1

M∑
s=j+1

〈Zis〉 , a∗j = aj + 1 (4.49)

b∗j = bj − 〈ln(1− λj)〉 , ρk = 1 +

N∑
i=1

D∑
l=1

〈Wikl〉 , c∗k = ck + 1 (4.50)

�k = 〈ϕk〉+
N∑
i=1

K∑
s=k+1

D∑
l=1

〈Wisl〉 , d∗k = dk − 〈ln(1− γk)〉 (4.51)

ξ∗1 = ξ1 +
N∑
i=1

〈φil〉 , ξ∗2 = ξ2 +
N∑
i=1

〈1− φil〉 (4.52)

where ψ(·) is the digamma function and defined as: ψ(a) = d ln Γ(a)/da. R̃ and F̃ are the lower

bound approximations of R =
〈
ln Γ(α+β)

Γ(α)Γ(β)

〉
and F =

〈
ln Γ(λ+τ)

Γ(λ)Γ(τ)

〉
, respectively. The expected

values in the above formulas are given by

ᾱjl =
u∗jl
v∗jl

, β̄jl =
p∗jl
q∗jl

, σ̄kl =
g∗kl
h∗kl

, τ̄kl =
s∗kl
t∗kl

(4.53)

〈ψj〉 =
a∗j
b∗j

, 〈ϕk〉 = c∗k
d∗k

, 〈Zij〉 = rij , 〈Wikl〉 = mikl (4.54)〈
φil

〉
= fil ,

〈
1− φil

〉
= 1− fil ,

〈
lnα

〉
= ψ(u∗)− ln v∗ (4.55)

〈lnβ〉 = ψ(p∗)− ln q∗ , 〈lnσ〉 = ψ(g∗)− lnh∗ , 〈ln τ〉 = ψ(s∗)− ln t∗ (4.56)〈
lnλj

〉
= ψ(θj)− ψ(θj + ϑj) ,

〈
ln(1− λj)

〉
= ψ(ϑj)− ψ(θj + ϑj) (4.57)
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〈
ln γk

〉
= ψ(ρk)− ψ(ρk +�k) ,

〈
ln(1− γk)

〉
= ψ(�k)− ψ(ρk +�k) (4.58)〈

ln εl1
〉
= ψ(ξ∗1)− ψ(ξ∗1 + ξ∗2) ,

〈
ln εl2

〉
= ψ(ξ∗2)− ψ(ξ∗1 + ξ∗2) (4.59)

The complete algorithm can be summarized in Algorithm 3.

Algorithm 3 Variational learning of infinite GD mixtures with feature selection
Choose the initial truncation levels M and K.
Initialize the values for hyper-parameters ujl, vjl, pjl, qjl, gkl, hkl, skl, tkl, aj , bj , ck, dk, ξ1 and
ξ2.
Initialize the values of rij and mikl by K-Means algorithm.
repeat

The variational E-step: Estimate the expected values in Eqs. (4.53)∼(4.59), use the current
distributions over the model parameters.
The variational M-step: Update the variational solutions for each factor by Eqs. (4.32)∼(4.37)
using the current values of the moments.

until Convergence criteria is reached.
Compute the expected value of λj as 〈λj〉 = θj/(θj + ϑj) and substitute it into Eq. (4.14) to
obtain the estimated values of the mixing coefficients πj .
Compute the expected value of γk as 〈γk〉 = ρk/(ρk + �k) and substitute it into Eq. (4.15) to
obtain the estimated values of the mixing coefficients ηk.
Calculate the expected values of the features saliencies by 〈εl〉 = ξ∗1/(ξ

∗
1 + ξ∗2) = (ξ1 +∑N

i=1〈φil〉)/(ξ1 + ξ2 +N).
Detect the optimal number of components M and K by eliminating the components with small
mixing coefficients close to 0.

4.3 Experimental Results

In this section, we evaluate the effectiveness of the proposed variational infinite GD mixture model

with feature selection (InFsGD) through synthetic data and two challenging applications namely

unsupervised image categorization and image annotation and retrieval. In all our experiments,

we initialize the truncation levels M and K as 15 and 10, respectively. The initial values of

hyperparameters u, p, g and s of the Gamma priors are set to 1, and v, q, h, t are set to 0.01. The

hyperparameters a, b, c and d are set to 1, while ξ1 and ξ2 are set to 0.1. Our simulations have

supported these specific choices.
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Table 4.1: Parameters of the generated data sets. N denotes the total number of elements, Nj

denotes the number of elements in cluster j. αj1, αj2, βj1, βj2 and πj are the real parameters. α̂j1,
α̂j2, β̂j1, β̂j2 and π̂j are the estimated parameters by the proposed algorithm.

Nj j αj1 βj1 αj2 βj2 πj α̂j1 β̂j1 α̂j2 β̂j2 π̂j

Data set 1 200 1 10 15 21 12 0.50 10.12 14.59 20.38 11.73 0.501

(N = 400) 200 2 25 18 35 40 0.50 23.67 18.65 36.18 41.26 0.499

Data set 2 200 1 10 15 21 12 0.25 9.81 15.89 20.51 12.10 0.253

(N = 800) 200 2 25 18 35 40 0.25 25.77 18.32 36.03 41.68 0.249

400 3 18 35 10 25 0.50 17.35 34.29 10.72 26.65 0.498

Data set 3 200 1 10 15 21 12 0.25 10.09 15.57 21.33 11.54 0.247

(N = 800) 200 2 25 18 35 40 0.25 24.13 17.28 35.15 38.66 0.251

200 3 18 35 10 25 0.25 18.61 34.19 9.71 25.08 0.248

200 4 33 27 45 13 0.25 31.95 26.83 43.89 12.27 0.254

Data set 4 200 1 10 15 21 12 0.20 9.34 14.50 20.18 12.35 0.197

(N = 1000) 200 2 25 18 35 40 0.20 26.07 18.16 34.49 39.12 0.199

200 3 18 35 10 25 0.20 17.31 36.53 10.76 24.22 0.203

200 4 33 27 45 13 0.20 31.52 26.35 47.03 13.98 0.204

200 5 20 10 42 38 0.20 19.88 10.94 41.14 36.67 0.197
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4.3.1 Synthetic data

The purpose of the synthetic data is to investigate the accuracy of the proposed algorithm in terms

of parameters estimation and model selection. The performance of the InFsGD was evaluated

through quantitative analysis on four ten-dimensional (two relevant features and eight irrelevant

features) synthetic data. The relevant features were generated in the transformed space from mix-

tures of Beta distributions with well-separated components, while irrelevant ones were from mix-

tures of overlapped components. Table 4.1 illustrates the real and estimated parameters of the

distributions representing the relevant features for each data set using the proposed algorithm. Ac-

cording to this table, the parameters of the model, representing relevant features, and its mixing

coefficients are accurately estimated by the InFsGD. Similarly, the values of the parameters of the

mixture models representing irrelevant features (the eight remaining features) were also correctly

obtained (in terms of both parameters estimation and model selection) by adopting the proposed

algorithm.

Figure 4.2 shows the estimated mixing coefficients of the mixture components, in each data

set, after convergence. By removing the components with very small mixing coefficients (close

to 0) in each data set, we obtain the correct number of components for the mixtures representing

relevant features. Furthermore, we present the results of the features saliencies of all the 10 features

for each data set over ten runs in Figure 4.3. It obviously shows that features 1 and 2 have been

assigned a high degree of relevance, which matches the ground-truth.

4.3.2 Visual Scenes Categorization

In this experiment, a challenging problem namely image categorization is highlighted. It is a fun-

damental task in vision and has recently drawn considerable interest and has been successfully

applied in various applications such as the automatic understanding of images, object recognition,

image databases browsing and content-based images suggestion and retrieval [114]. As the ma-

jority of computer vision tasks, a central step for accurate images categorization is the extraction

of good descriptors (i.e. discriminative and invariant at the same time) to represent these im-

ages. Recently local descriptors have been widely and successfully used [115, 116] mainly via the
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Figure 4.2: Mixing probabilities of components, πj , found for each synthetic data set after con-
vergence. (a) Data set 1, (b) Data set 2, (c) Data set 3, (d) Data set 4.

bag-of-visual words approach [86, 87, 117] which has allowed the development of many models

inspired from text analysis such as the pLSA model [88]. Recently, it has been shown that the

performance of visual words-based approaches to images categorization can be significantly im-

proved by adopting multiple image segmentations instead of considering the entire image as a way

to utilize visual grouping cues to generate groups of related visual words [117, 118].

The methodology that we have adopted for categorizing images can be summarized as fol-

lows: First, we compute multiple candidate segmentations for each image in the collection using

Normalized Cuts [119] 1. Following that, Gradient location-orientation histogram (GLOH) de-

scriptors [120] are extracted from each image using the Hessian-Laplace region detector [121]2.

1Source code: http://www.seas.upenn.edu/ timothee/software/ncut/ncut.html
2Source code: http://www.robots.ox.ac.uk/∼vgg/research/affine/
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Figure 4.3: Features saliencies for synthetic data sets with one standard deviation over ten runs.
(a) Data set 1, (b) Data set 2, (c) Data set 3, (d) Data set 4.

Note that, the GLOH descriptor is an extension of the SIFT descriptor, and is shown to outperform

SIFT [120]. Principal component analysis (PCA) is then used to reduce the dimensionality to 128.

Next, a visual vocabulary V is constructed by quantizing these feature vectors into visual words

using K-means algorithm and each image is then represented as a frequency histogram over the

visual words. Based on our experiments, the optimal performance can be obtained when V = 800.

Then, we apply the pLSA model to the bag-of-visual words representation which allows the de-

scription of each image as a D-dimensional vector of proportions where D is the number of aspects

(or learned topics). Finally, we employ the proposed InFsGD as a classifier to categorize images

by assigning each test image to the class which has the highest posterior probability according to

Bayes’ decision rule.

In our experiment, we adopted a subset of the challenging Caltech data set [122] to evaluate the
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effectiveness of the proposed approach. Specifically, we considered four object classes from the

Caltech data set [122] which include: “airplane”, “face”, “car”, and “motorbike”. Sample images

from this data set is displayed in Figure 4.4. This data set is randomly divided into two halves: one

for training (constructing the visual words) and the other for testing. We evaluated the performance

of the proposed algorithm by running it 20 times.

Face Airplane Car Motorbike

Figure 4.4: Sample images from the four categories of the Caltech data set.

For comparison, we have also applied four other models with the same experimental setting:

the finite GD mixture model with feature selection (FsGD), the infinite GD mixture model without

feature selection (InGD), the infinite Gaussian mixture model (InGau) proposed in [112] and the

Gaussian mixture model with feature selection (FsGau) as learned in [59]. To make a fair com-

parison, all of these models are learned in a variational way. In our experiment, first, multiple

segmentations for each image is computed. Some sample segments for images from each category
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Face Airplane Car Motorbike

Figure 4.5: Sample segmentation results from the four categories of the Caltech data sets

in this data set are shown in Figure 4.5. The categorizing accuracy using the different tested ap-

proaches are presented in Table 4.2. According to the results in this table, the proposed InFsGD

provides the best performance among the tested algorithms in terms of the highest classification

rate and the most accurately estimation of the number of categories. Additionally, the number of

components for the mixture model representing irrelevant features was estimated as 2. Further-

more, we have tested the evolution of the classification accuracy with different number of aspects

as shown in Figure. 4.6 (a). Based on this figure, the highest classification accuracy can be obtained

when we set the number of aspects to 40. The corresponding feature saliencies of the 40 aspects

obtained by InFsGD are illustrated in Figure. 4.6 (b). As shown in this figure, it is clear that the

features have different relevance degrees and then contribute differently to images categorization.
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Table 4.2: The average classification accuracy and the number of categories (M̂ ) computed by
different algorithms for the Caltech data set.

InFsGD FsGD InGD InGau FsGau

M̂ 3.9 3.75 3.85 3.8 3.7

Accuracy (%) 90.21 88.64 88.03 84.19 81.75
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Figure 4.6: (a) Classification accuracy vs. the number of aspects; (b) Feature saliency for each
aspect.

4.3.3 Image Auto-Annotation

Methodology

Many images carrying extremely rich information are now archived in large databases. A challeng-

ing problem is then to automatically analyze, organize, index, browse and retrieve these images.

A lot of approaches have been proposed to address this problem. In particular, semantic image

understanding and auto-annotation have been the topic of extensive research in the past [123–128].

The main goal is to extract high-level semantic features in addition to low level features to bridge

the gap between them and to enhance visual scenes interpretation abilities [129–131]. Automatic

annotation approaches can be divided into two main groups of approaches [132, 133]. The first

group deals directly with the annotation problem by providing labels to the complete image or its
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different regions (see, for instance, [129, 130]). The second group tackles this problem via two

independent steps where the first step categorizes the images and the second one attaches labels

to them using the top ranked categories (see, for instance, [125, 133]). Approaches in this second

group have shown promising results recently. Thus, the goal of this subsection is to develop an

annotation-driven image retrieval approach, based on the work in [133], via categorization results

obtained with the proposed InFsGD in a bag-of-visual key words representation. Our aim is to

build an efficient annotation-retrieval approach to handle the problem of image search under three

challenging scenarios as stated in [133]: 1) use a tagged image or a set of keywords as query to

search images on the untagged portion of a partially tagged image database; 2) use an untagged

image as query to search images on the tagged portion of a partially tagged image database; 3) use

an untagged image as query to search images on an untagged image database. The methodology

that we have adopted for this experiment can be divided into three sequential steps namely: images

categorization, annotation, and retrieval.

In the categorization stage, the proposed InFsGD is integrated with the pLSA model to catego-

rize images through a bag-of-key visual words representation. First, interest points are detected us-

ing the Difference-of-Gaussian (DoG) detector [121]. Then, we use PCA-SIFT descriptor1 [134],

computed on detected keypoints of all images and resulting on 36-dimensional vector for each

keypoint. Subsequently, the K-Means algorithm is used to construct a visual vocabulary by quan-

tizing these PCA-SIFT vectors into visual words. In our experiments, we set the vocabulary size

to 1000. Each image is then represented as a frequency histogram over the visual words. Then, the

pLSA model is applied to the obtained histograms to represent each image by a 50-dimensional

proportional vector where 50 is the number of latent aspects. Finally, our InFsGD is deployed to

cluster the images.

The categorization results in the previous stage are exploited to perform image annotation.

Here, we follow an approach proposed in [133] which considers the problem of image annotation

from three phases: 1) the frequency of occurrence of potential tags based on the categorization

results; 2) saliency of the given tags; 3) the congruity of a word among all the candidate tags.

Assume that we have a training image data set that contains several categories. Each category is

1Source code of PCA-SIFT: http://www.cs.cmu.edu/∼yke/pcasift
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annotated by 4 to 5 tags where common tags may appear in different categories. At the beginning,

we collect all the tags from each category. The total number of categories in the data set is denoted

as C and the number of categories that have each unique tag t is represented as F (t). Then,

tag saliency can be evaluated similarly as for inverse document frequency in the field of document

retrieval. For a test image, a ranked list of predicted categories is generated according to the Bayes’

decision rule in the classification. Then, the top 5 predicted categories are chosen and the union of

all involved unique tags denoted as U(I) forms the set of candidate tags. Thus, we define f(t|I)
as the frequency of the occurrence of each unique tag t among the top 5 predicted categories. We

follow the idea proposed in [133] to determine the word congruity using WordNet [135] with the

Leacock and Chowdrow measure [136]. WordNet is a large lexical database of English which

groups English words into sets of cognitive synonyms called synsets. Hence, the congruity for a

candidate tag t can be calculated by [133]:

G(t|I) = dtot(I)

dtot(I) + |U(I)|∑x∈U(I) dLCH(x, t)
(4.60)

We adopt the same settings for dLCH and rLCH as in [133], such that the distance between two

tags t1 and t2 is: dLCH(t1, t2) = exp(−rLCH(t1, t2)+3.584)− 1. In addition, dtot(I) evaluates the

pairwise semantic distance among all candidate tags and is defined as:

dtot(I) =
∑

x∈U(I)

∑
y∈U(I)

dLCH(x, y) (4.61)

By having all the three annotation factors on hand, we can compute the overall score for a candidate

tag as

A(t|I) = a1f(t|I) + a2
lnC

ln(
C

1 + F (t)
) + a3G(t|I) (4.62)

where a1 + a2 + a3 = 1 represents the degree of importance of the three factors. Then, a tag

t is chosen for annotation only if its score is within the top ε percentile among the candidate

tags. According to our experimental results, we set a1 = 0.5, a2 = 0.2, a3 = 0.3, and ε =

0.7. For retrieving images, we use automatic annotation and the WordNet-based bag-of-words

distances as introduced in [133]. The core idea is that if tags were missing in the query image or

in our database, automatic annotation is then performed and the bag-of-words distances between
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Table 4.3: The average classification accuracy computed by different algorithms.
Method Accuracy (%)

InFsGD 75.1

InGD 74.7

InGau 73.6

SC-GM 71.8

FsGau 70.2

query image tags and the database tags are calculated. This distance is used to rank the degree

of relevance of the images in the database and then to perform images search accordingly (more

details and discussions can be found in [133]).

Results

We test out approach using a subset of LabelMe data set [137] which contains both class labels and

annotations. First, we use the LabelMe Matlab toolbox2 to obtain images online from 8 outdoor

scene classes: “highway”, “inside city”, “tall building”, “street”, “forest”, “coast”, “mountain”

and “open country”. We randomly choose 200 images from each category. Thus, we have 1600

images in total. Each category is associated with 4-5 tags. We randomly divide the data set into

two partitions: one for training, the other for testing. First, we have performed categorization

using the proposed InFsGD with bag-of-visual key words representation as described previously.

We compare our approach with other four well-defined approaches: the infinite GD mixture model

without feature selection (InGD), the variational infinite Gaussian mixture model (InGau), the

combination of a structure-composition model and a Gaussian mixture model (we denote it as SC-

GM) as proposed in [133] and the Gaussian mixture model with feature selection (FsGau). The

categorization result of the 8 outdoor scene images is illustrated in Table 4.3. According to this

table, we can observe that the proposed InFsGD outperforms other four approaches in terms of the

highest classification accuracy rate (75.1%).

The obtained result from the categorization is then exploited by the annotation stage. The

performance of annotation is evaluated by precision and recall which are defined in the standard

2http://labelme.csail.mit.edu/
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Table 4.4: Performance evaluation on the automatic annotation system based on different catego-
rization methods.

Method Mean Precision (%) Mean Recall (%)

InFsGD 31.5 43.6

InGD 30.4 42.3

InGau 29.8 40.2

SC-GM 27.1 38.7

FsGau 26.3 36.8

way: the annotation precision for a keyword is defined as the number of tags correctly predicted

divided by the total number of predicted tags. The annotation recall is defined as the number of

tags correctly predicted, divided by the number of tags in the ground-truth annotation. In our

experiments, the average number of tags generated for each test image is 4.05. Table 4.4 shows

the performance evaluation of the automatic annotation approach according to the categorization

result obtained by using different methods. It is clear that, annotation with the categorization result

obtained by InFsGD provides the best performance. Table 4.5 presents some examples of the

annotations produced by using InFsGD categorization method.

In the last step, we perform image retrieval under the three scenarios as described in the previ-

ous subsection. For the first scenario in which the database is not tagged and query may either be

keywords or tagged image, the retrieval is performed by first automatically annotating the database

through categorization and annotation steps. Then, image retrieval is performed according to the

bag-of-words distances between query tags and our annotation. In this experiment, we use 40 pairs

of query words that are randomly chosen from all the candidate tags. In the second scenario, the

database is tagged and the query is an untagged image. Thus, the first step to automatically an-

notate the query image. Then, the database is ranked according to the bag-of-words distances. In

the third scenario, neither the image database nor the query is tagged. Therefore, both the image

database and the query images have to be annotated automatically first. Subsequently, image re-

trieval is applied once again using the bag-of-words distance evaluation. We choose 100 images

randomly as the set of query images in this experiment. The performance of semantic retrieval was
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Table 4.5: Sample annotation results by using InFsGD classification method.

Our la-

bels

car, road, mountain car, sidewalk, win-
dow

sky, building, tree human, car, tree

LabelMe

labels

truck, car, sky, road,
mountain

building, car, win-
dow, sidewalk, hu-
man

building, tree, car,
sky

person, car, side-
walk, building,
tree

Our la-

bels

sea water, tree, sky sand, tree, sea water forest, sky, cloud cloud, field, moun-
tain, tree

LabelMe

labels

tree, forest, moun-
tain, cloud, sky

sea water, sand, sky,
cloud

mountain, sky, field,
tree

sky, sand, field,
mountain, car

Table 4.6: The comparison of image retrieval performance.
Scenario 1 Scenario 2 Scenario 3

Method Precision (%) Recall (%) Precision (%) Recall (%) Precision (%) Recall (%)

InFsGD 51.5 58.9 45.3 50.2 47.5 56.6

InGD 49.7 56.6 42.5 49.3 46.6 54.1

InGau 48.6 56.3 41.4 48.7 45.9 52.8

SC-GM 46.2 55.7 38.6 45.6 41.7 53.5

FsGau 43.8 52.1 37.1 43.4 38.3 51.0
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evaluated by measuring precision and recall. In this case, precision is defined as the proportion

of retrieved images that are relevant, and recall denotes the proportion of relevant images that are

retrieved. An image is considered relevant if there is an overlap between the original tags of the

query image or query word and the original tags of the retrieved image. Since categorization is

the baseline of our annotation-driven image retrieval approach. We have also tested the impact

of using different categorization algorithms on annotation-driven image retrieval performance and

illustrates the corresponding result in Table 4.6 on retrieving the top 10 relevant images. As we can

observe form this table, using InFsGD as the categorization method provides the best performance

for all three scenarios which indicates that the categorization algorithm is a significant influence

factor for the annotation-driven image retrieval scheme that we have applied.
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Chapter 5

Online Learning of a Dirichlet Process Mixture of

Beta-Liouville Distributions via Variational

Inference

A large class of problems can be formulated in terms of clustering process. Mixture models are an

increasingly important tool in statistical pattern recognition and for analyzing and clustering com-

plex data. Two challenging aspects that should be addressed when considering mixture models

are: how to choose between a set of plausible models and how to estimate the model’s parameters.

In this chapter, we address both problems simultaneously within a unified online nonparametric

Bayesian framework that we develop to learn a Dirichlet process mixture of Beta-Liouville distri-

butions (i.e. an infinite Beta-Liouville mixture model). The proposed infinite model is used for

the online modeling and clustering of proportional data for which the Beta-Liouville mixture has

been shown to be effective. We propose a principled approach for approximating the intractable

model’s posterior distribution by a tractable one, such that all the involved mixture’s parameters

can be estimated simultaneously and effectively in a closed form. This is done through variational

inference that enjoys important advantages, such as handling of unobserved attributes and prevent-

ing under- or over-fitting, and that we explain in details. The effectiveness of the proposed work

is evaluated on three challenging real applications namely facial expression recognition, behavior

modeling and recognition, and dynamic textures clustering.
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5.1 Beta-Liouville Mixture Model

Recently, Beta-Liouville mixture models have drawn considerable attention and have been suc-

cessfully applied in many applications [24]. The Beta-Liouville distribution contains the Dirichlet

distribution as a special case and has a smaller number of parameters than the generalized Dirich-

let. Furthermore, Beta-Liouville mixture models have shown better performance than both the

Dirichlet and the generalized Dirichlet mixtures as detailed in [24]. More properties and discus-

sions about the Beta-Liouville can be viewed in [138, 139]. In this section, first we introduce

the finite Beta-Liouville mixture model. Then, we present its extension to the infinite case via a

stick-breaking construction of Dirichlet process framework.

5.1.1 Finite Beta-Liouville Mixture Model

Given a D-dimensional vector �X = (X1, . . . , XD) which follows the Beta-Liouville distribution

with positive parameters θ = (α1, . . . , αD, α, β), then the probability density function of �X is

given by [138]

BL( �X|θ) = Γ(
∑D

d=1 αd)Γ(α + β)

Γ(α)Γ(β)

D∏
d=1

Xαd−1
d

Γ(αd)

( D∑
d=1

Xd

)α−∑D
d=1 αd

(
1−

D∑
d=1

Xd

)β−1

(5.1)

Assume that we have observed a set of N vectors X = { �X1, . . . , �XN}, where each vector �Xi =

(Xi1, . . . , XiD) is represented in a D-dimensional space and assumed to be generated from a finite

Beta-Liouville mixture model with M components, then [24]

p( �Xi|�π, �θ) =
M∑
j=1

πjBL( �Xi|θj) (5.2)

where BL( �Xi|θj) is a Beta-Liouville distribution corresponding to component j with parameters

θj = (αj1, . . . , αjD, αj, βj). In addition, �θ = (θ1, . . . , θM), and �π = (π1, . . . , πM) denotes the

vector of mixing coefficients which are positive and sum to one.
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5.1.2 Infinite Beta-Liouville Mixture Model

Stick-breaking Construction

In this subsection, we extend the finite Beta-Liouville mixture model to the infinite case by exploit-

ing a Dirichlet process formulation. In our work, the Dirichlet process is constructed by adopting

a stick-breaking framework, which is defined as follows [109]: given a random distribution G, it

is Dirichlet process distributed with a base distribution H and concentration parameter ψ (denoted

as G ∼ DP(ψ,H)), if the following conditions are satisfied:

λj ∼ Beta(1, ψ), Ωj ∼ H, πj = λj

j−1∏
s=1

(1− λs), G =
∞∑
j=1

πjδΩj
(5.3)

where δΩj
denotes the Dirac delta measure centered at Ωj , and πj is the mixing proportion in terms

of mixture modeling terminology and is defined by recursively breaking a unit length stick into

an infinite number of pieces. The Dirichlet process can be translated to a mixture model with a

countably infinite number of components by its nonparametric nature [140]. In the case of Dirichlet

process mixture model, the actual number of components is not fixed, and can be automatically

inferred from the data using Bayesian posterior inference framework.

The Infinite Model

Assume now that we have observed X which is generated from a Beta-Liouville mixture model

with a countably infinite number of components. Then, the infinite Beta-Liouville mixture model

can be written as

p( �Xi|�π, �θ) =
∞∑
j=1

πjBL( �Xi|θj) (5.4)

In mixture modeling, we generally use auxiliary variables to allocate each vector to a specific

cluster. Thus, we introduce a M -dimensional binary random vector �Zi = {Zi1, . . . , ZiM} for each

observed vector �Xi, such that Zij ∈ {0, 1},
∑M

j=1 Zij = 1 and Zij = 1 if �Xi belongs to component

j and 0, otherwise. Z = {�Z1, . . . , �ZN} is known as the set of “membership vectors” of the mixture
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model and its distribution is specified in terms of the mixing coefficients �π, such that

p(Z|�π) =
N∏
i=1

∞∏
j=1

π
Zij

j (5.5)

Notice that, �π is a function of �λ according to the stick-breaking construction of Dirichlet process

as shown in Eq. (5.3). Then, we can write

p(Z|�λ) =
N∏
i=1

∞∏
j=1

[
λj

j−1∏
s=1

(1− λs)
]Zij (5.6)

The prior distribution of �λ is the specific Beta distribution as shown in Eq. (5.3):

p(�λ|�ψ) =
∞∏
j=1

Beta(1, ψj) =
∞∏
j=1

ψj(1− λj)
ψj−1 (5.7)

The primary difficulty when adopting variational learning approach lies with the choice of conju-

gate priors. In our case, since αd, α and β are positive, Gamma distributions G(·) are adopted to

approximate conjugate priors for these parameters: p(αd) = G(αd|ud, vd), p(α) = G(α|g, h) and

p(β) = G(β|s, k).

5.2 Online Variational Model Learning

In this section, we first develop a batch variational inference framework for learning infinite Beta-

Liouville mixture models. Subsequently, an online extension is proposed. To summarize, the

main goal is to develop a variational approach that learns an infinite Beta-Liouville mixture model

by simultaneously optimizing both its parameters and its structure (i.e. complexity or number of

mixture components) in both batch and online settings. To simplify the notation, in the following

sections we define Θ = {Z,Λ} as the set of latent and unknown random variables where Λ =

{�λ, �θ}.

5.2.1 Batch Variational Learning

The main idea of variational inference to find an approximation Q(Θ) for the true posterior dis-

tribution p(Θ|X ). This is done by maximizing the lower bound on the model evidence ln p(X ),
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which is defined by

L(Q) =

∫
Q(Θ) ln[p(X ,Θ)/Q(Θ)]dΘ (5.8)

In this work, we adopt a truncation technique proposed in [112] to truncate the variational distri-

butions at a value M , such that λM = 1,
∑M

j=1 πj = 1, and πj = 0 when j > M . Notice that the

truncation level M is a variational parameter which can be freely initialized and will be optimized

automatically during the learning process. By adopting the truncated stick-breaking representation

and the factorization assumption, we obtain

Q(Θ) =

[ N∏
i=1

Q(Zi)

][ M∏
j=1

D∏
d=1

Q(αjd)

][ M∏
j=1

Q(λj)Q(αj)Q(βj)

]
(5.9)

Two alternative approaches with equivalent results can be applied for variational inference.

In the first approach, a general solution for optimizing each variational factor exists and is given

by [66, chapter 10]

Qs(Θs) =
exp

〈
ln p(X ,Θ)

〉
�=s∫

exp
〈
ln p(X ,Θ)

〉
�=s
dΘ

(5.10)

where 〈·〉 �=s denotes the expectation with respect to the Q distributions over all variables except

for Θs. We have adopted this approach in previous Chapters to learn finite Dirichlet , GD and

ininite GD mixture models. The second approach for deriving optimization solutions in variational

inference is based on a gradient method [141]. Since this gradient-based approach can be easily

adapted to online learning, it is adopted here to learn infinite Beta-Liouville mixtures in a batch

manner and then will be extended into an online version in the next subsection. The major idea of

the gradient-based variational learning approach is that, since the model has conjugate priors, the

functional form of the factors in the variational posterior distribution is known. Thus, by taking

general parametric forms for these distributions, the lower bound can be considered as a function

of the parameters of these distributions. The optimization of variational factors is then achieved

by maximizing the lower bound with respect to these parameters. In our case, the functional form

for each variational factor is the same as its conjugate prior distribution, namely Discrete for Z ,

Beta for �λ, and Gamma for �αd, �α and �β. Therefore, we can define the parametric forms for these
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variational posterior distributions as the following

Q(Z) =
N∏
i=1

M∏
j=1

r
Zij

ij , Q(�λ) =
M∏
j=1

Beta(λj|cj, dj) (5.11)

Q(�αd) =
M∏
j=1

D∏
d=1

G(αjd|u∗
jd, v

∗
jd) (5.12)

Q(�α) =
M∏
j=1

G(αj|g∗j , h∗
j), Q(�β) =

M∏
j=1

G(βj|s∗j , k∗
j ) (5.13)

Consequently, the parameterized lower bound L(Q) can be obtained by substituting Eqs. (5.11),

(5.12) and (5.13) into Eq. (5.8) (See Appendix C.1). Maximizing this bound with respect to these

parameters then gives the required re-estimation equations (Details of the variational inference

procedure are given in Appendices C.2 to C.4). Thus, we can obtain

rij =
r̃ij∑M
j=1 r̃ij

, cj = 1 +
N∑
i=1

〈Zij〉, dj = ψj +
N∑
i=1

N∑
s=j+1

〈Zis〉 (5.14)

r̃ij = exp
[Sj +Hj + (ᾱj −

D∑
d=1

ᾱjd) ln(
D∑

d=1

Xid) + (β̄j − 1) ln(1−
D∑

d=1

Xid) +
D∑

d=1

(ᾱjd − 1) lnXid

+〈lnλj〉+
j−1∑
s=1

〈ln(1− λs)〉
]

(5.15)

where Sj and Hj are given by Eq. (C.4) and Eq. (C.3), respectively.

u∗jd = ujd +

N∑
i=1

〈Zij〉ᾱjd

[
Ψ(

D∑
d=1

ᾱjd) + Ψ′(
D∑

d=1

ᾱjd)

D∑
l �=d

(〈lnαjl〉 − ln ᾱjl)ᾱjl −Ψ(ᾱjd)

]
(5.16)

v∗jd = vjd −
N∑
i=1

〈Zij〉
[
lnXid − ln(

D∑
d=1

Xid)
]

(5.17)

g∗j = gj +

N∑
i=1

〈Zij〉
[
β̄jΨ

′(ᾱj + β̄j)(〈lnβj〉 − ln β̄j)−Ψ(ᾱj) + Ψ(ᾱj + β̄j)
]
ᾱj (5.18)

h∗j = hj −
N∑
i=1

〈Zij〉 ln(
D∑

d=1

Xid), k∗j = kj −
N∑
i=1

〈Zij〉 ln(1−
D∑

d=1

Xid) (5.19)
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s∗j = sj +

N∑
i=1

〈Zij〉
[
ᾱjΨ

′(ᾱj + β̄j)(〈lnαj〉 − ln ᾱj) + Ψ(ᾱj + β̄j)−Ψ(β̄j)
]
β̄j (5.20)

where Ψ(·) is the digamma function. The expected values in the above formulas are defined as

ᾱjd =
u∗jd
v∗jd

, ᾱj =
g∗j
h∗j

, β̄j =
s∗j
k∗j

, 〈Zij〉 = rij (5.21)

〈
lnαjd

〉
= Ψ(u∗jd)− ln v∗jd (5.22)〈

lnαj

〉
= Ψ(g∗j )− lnh∗j ,

〈
lnβj

〉
= Ψ(s∗j )− ln k∗j (5.23)〈

lnλj

〉
= Ψ(cj)−Ψ(cj + dj),

〈
ln(1− λj)

〉
= Ψ(dj)−Ψ(cj + dj) (5.24)

The batch variational inference for infinite Beta-Liouville mixture model can be approached via

an EM-like framework and is summarized in Algorithm 4. The convergence of this batch learning

algorithm can be monitored through inspection of the variational bound. After convergence, we

may notice that the expected values of the mixing coefficients of some components are numerically

distinguishable from their prior values while others are close 0. This effect can be explained

qualitatively in terms of the automatic trade-off in a Bayesian model between fitting the data and

the complexity of the model, in which the complexity penalty stems from components whose

parameters are pushed away from their prior values [66].

5.2.2 Online Variational Inference

In this subsection, we extend the batch variational inference approach for learning infinite Beta-

Liouville mixture model to online settings by adopting the framework proposed in [141]. Since in

many real-world applications data points are continuously arriving over time in an online manner,

it is desirable to estimate the variational lower bound corresponding to a fixed amount of data. In

our case, let t denotes the actual amount of observed data. Then, the current lower bound for the

observed data is given by

L(t)(Q) =
N

t

t∑
i=1

∫
Q(Λ)dΛ

∑
�Zi

Q(�Zi) ln

[
p( �Xi, �Zi|Λ)

Q(�Zi)

]
+

∫
Q(Λ) ln

[
p(Λ)

Q(Λ)

]
dΛ (5.25)
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Algorithm 4 Batch variational learning of infinite Beta-Liouville mixture.
1: Choose the initial truncation level M .
2: Initialize the values for hyper-parameters ψj , ujd, vjd, gj , hj , sj and kj .
3: Initialize the values of rij by K-Means algorithm.
4: repeat

5: The variational E-step:
6: Estimate the expected values in Eqs. (5.21)∼(5.24), use the current distributions over the

model parameters.
7: The variational M-step:
8: Update the variational solutions for each factor using Eqs. (5.11), (5.12) and (5.13) and the

current values of the moments.
9: until Convergence criterion is reached.

10: Compute the expected value of λj as 〈λj〉 = cj/(cj + dj) and substitute it into Eq. (5.3) to
obtain the estimated values of the mixing coefficients πj .

11: Detect the optimal number of components M by eliminating the components with small mix-
ing coefficients close to 0 (less than 10−5).

where Λ = {�λ, �θ}. The key idea of the online variational learning algorithm is to successively

maximize the current variational lower bound Eq. (5.25). Assume that we have already observed

a data set {X1, . . . X(t−1)}. For a new observation Xt, we can maximize the current lower bound

L(t)(Q) with respect to Q(�Zt), while other variational factors are fixed to Q(t−1)(�λ), Q(t−1)(�αd),

Q(t−1)(�α) and Q(t−1)(�β). Thus, the variational solution to Q(�Zt) is given by

Q(�Zt) =
M∏
j=1

r
Ztj

tj (5.26)

where

rtj =
r̃tj∑M
j=1 r̃tj

(5.27)

and

r̃tj = exp

{
S(t−1)
j +H(t−1)

j + (ᾱ
(t−1)
j −

D∑
d=1

ᾱ
(t−1)
jd ) ln(

D∑
d=1

Xtd) + (β̄
(t−1)
j − 1) ln(1−

D∑
d=1

Xtd)

+

D∑
d=1

(ᾱ
(t−1)
jd − 1) lnXtd + 〈lnλ(t−1)

j 〉+
j−1∑
s=1

〈ln(1− λ(t−1)
s )〉

}
(5.28)
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Next, the current lower bound L(t)(Q) is maximized with respect to Q(t)(�λ), while Q(�Zt) is

fixed and other variational factors remain at their (t − 1)th values. Therefore, we can obtain the

variational solution to Q(t)(�λ):

Q(t)(�λ) =
M∏
j=1

Beta(λ
(t)
j |c(t)j , d

(t)
j ) (5.29)

where the hyperparameters are defined by

c
(t)
j = c

(t−1)
j + ρtΔc

(t)
j , d

(t)
j = d

(t−1)
j + ρtΔd

(t)
j (5.30)

where ρt is the learning rate which is used to reduce the earlier inaccurate estimation effects that

contributed to the lower bound and accelerate the convergence of the learning process. In this

work, we adopt a learning rate function introduced in [142], such that ρt = (η0+t)−a, subject to the

constraints a ∈ (0.5, 1] and η0 ≥ 0. In Eq. (5.30), Δc
(t)
j and Δd

(t)
j are the natural gradients of the

corresponding hyperparameters. The natural gradient of a parameter is obtained by multiplying the

gradient by the inverse of Riemannian metric, which cancels the coefficient matrix for the posterior

parameter distribution. Thus, we can obtain the following natural gradients as

Δc
(t)
j = c

(t)
j − c

(t−1)
j = 1 +Nrtj − c

(t−1)
j (5.31)

Δd
(t)
j = d

(t)
j − d

(t−1)
j = ψj +N

M∑
s=j+1

rts − d
(t−1)
j (5.32)

Subsequently, the current lower bound L(t)(Q) is maximized with respect to Q(t)(�αd) and the

corresponding variational solution is given by

Q(t)(�αd) =
M∏
j=1

D∏
d=1

G(α(t)
jd |u∗(t)

jd , v
∗(t)
jd ) (5.33)

where

u
∗(t)
jd = u

∗(t−1)
jd + ρtΔu

∗(t)
jd , v

∗(t)
jd = v

∗(t−1)
jd + ρtΔv

∗(t)
jd (5.34)

The corresponding natural gradients are defined by

Δu
∗(t)
jd = ujd +Nrtjᾱjd

[
Ψ(

D∑
d=1

ᾱjd) + Ψ′(
D∑

d=1

ᾱjd)
D∑
l �=d

(〈lnαjl〉 − ln ᾱjl)ᾱjl −Ψ(ᾱjd)
]− u

∗(t−1)
jd

(5.35)
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Δv
∗(t)
jd = vjd −Nrtj

[
lnXtd − ln(

D∑
d=1

Xtd)
]− v

∗(t−1)
jd (5.36)

The solutions to the hyperparameters of Q(t)(�α) and Q(t)(�β) can be computed similarly. This

online variational inference procedure is repeated until all the variational factors are updated with

respect to the new observation. The computational complexity for the proposed online variational

infinite Beta-Liouville mixture is O(MD) in contrast to O(NMD) for its batch version in each

iteration. This is because the batch algorithm updates the variational solutions by using the whole

data set in each iteration. Thus, the proposed online algorithm is much more computationally

efficient since the estimation quality of the batch algorithm is improved more slowly than in the

case of the online one. The total computational time depends on the number of iterations required

for convergence. The online variational inference for infinite Beta-Liouville mixture model is

summarized in Algorithm 5.

Algorithm 5 Online variational learning of infinite Beta-Liouville mixture.
Choose the initial truncation level M .
Initialize the values for hyper-parameters ψj , ujd, vjd, gj , hj , sj and kj .
for t = 1 → N do

The variational E-step:
Update the variational solution to Q(�Zt) using Eq. (5.26).
The variational M-step:
Compute learning rate ρt = (η0 + t)−a.
Calculate the following natural gradients: Δc

(t)
j , Δd

(t)
j , Δu

∗(t)
jd , Δv

∗(t)
jd , Δg

∗(t)
j , Δh

∗(t)
j , Δs

∗(t)
j

and Δk
∗(t)
j .

Update the variational solutions to Q(t)(�λ), Q(t)(�αd), Q(t)(�α) and Q(t)(�β).
Repeat the variational E-step and M-step until new data is observed.

end for
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5.3 Experimental Results

5.3.1 Design of Experiments

In this section, the effectiveness of the proposed online infinite Beta-Liouville mixture model (re-

ferred to as OIBLM) is evaluated through three challenging applications involving facial expression

recognition, behavior modeling and recognition, and dynamic textures clustering. The first goal

of these applications is to evaluate the performance of OIBLM in terms of estimation (estimating

the model’s parameters) and selection (selecting the number of components of the mixture model).

The second goal is to show that our algorithm works well on diverse types of digital data. Three

types of digital media namely images, videos and dynamic textures are considered in our experi-

ments where each kind of media is used in one application. The third goal is to demonstrate the

merits of Beta-Liouville mixtures by comparing the performance of the proposed OIBLM to three

other online infinite mixture models including the infinite generalized Dirichlet (OIGDM), infinite

Dirichlet (OIDM) and infinite Gaussian (OIGM) mixtures. To make a fair comparison, all these

models are learned using online variational inference. It is also noteworthy that in all our real

applications, the testing data are supposed to arrive sequentially in an online fashion. In our exper-

iments, we initialize the truncation level M and the hyperparameter ψ to 15 and 0.1, respectively.

The initial values of hyperparameters u, g and s of the Gamma priors are set to 1, and v, h, k are

set to 0.01. The parameters a and η0 of the learning rate are set to 0.75 and 64, respectively. Our

simulations have supported these specific choices. It is worth mentioning that we have evaluated

the sensitivity of our model to the initialization specification by repeating our algorithm several

times with different initial values of hyperparameters. However, no significant improvement or

influence on the learning process has been observed according to our experiments.

5.3.2 Facial Expression Recognition

Problem statement

Facial expression recognition is a crucial step to understand human emotion and paralinguistic

communication. It provides clues about affective state, cognitive activity and psychopathology
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and then may have important applications in human-computer interaction [143]. This problem

is challenging and far from straightforward especially under variable illumination conditions and

head motion [144, 145]. The majority of the research efforts on vision-based facial expression

analysis and recognition rely on the well-known Ekman’s emotional categorization referred to as

the basic emotions [146] including happiness, sadness, surprise, fear, anger, and disgust, that are

widely discussed in a series of interesting books [147–149]. The development of methodologies

to tackle this problem is still an active area of research with several promising approaches pro-

posed in the literature [150–156]. Although different, these approaches have been mainly based

on solving two sub-problems namely feature extraction and facial expression categorization. In

this experiment, we follow these approaches by applying our OIBLM for categorization in con-

junction with Local Binary Pattern (LBP) [157] features-based representation. The choice of LBP

features is motivated by the fact that they have shown recently promising results in facial image

analysis [157, 158]. In contrast to other proposed facial expression features, LBP features are more

robust against illumination changes and are more computationally efficient [158]. It is noteworthy

that we shall focus on static face images, without regard to temporal information, in this subsec-

tion. Temporal behaviors of facial expression in image sequences will be considered in the set of

experiments in subsection 5.3.3.

(a) (b) (c) (d) (e) (f) (g)

Figure 5.1: Sample images from the JAFFE data set: (a) Anger, (b) Disgust, (c) Fear, (d) Happi-
ness, (e) Sadness, (f) Surprise, (g) Neutral.

Methodology and Results

We use the same preprocessing step suggested in [159] by cropping original images into 110×150

pixels to reduce the influence of background. As a result, the cropped images remain the central
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Table 5.1: The average recognition accuracy (%) and the number of categories (M̂ ) computed by
different algorithms for the JAFFE data set. The numbers in parenthesis are the standard deviations
of the corresponding quantities.

OIBLM OIGDM OIDM OIGM

M̂ 6.71 (0.25) 6.64 (0.29) 6.52 (0.35) 6.43 (0.38)

Accuracy 88.28 (1.09) 86.17 (1.33) 84.52 (1.18) 81.37 (1.41)

part of facial expression. Next, we extract LBP features from face images. More specifically,

each cropped face image is first divided into small regions from which LBP histograms are then

extracted and concatenated into a single feature histogram representing the face image [158]. We

use the same experimental settings for extracting LBP features as in [158]: we adopt a 59-bin LBP

operator in the (8,2) neighborhood (which means 8 sampling points on a circle of radius of 2) and

divide each image (110×150) into 18×21 pixels regions. Therefore, face images are divided into

42 (6×7) regions and are then represented by LBP histograms with length of 2478 (59×42). Then,

we apply the pLSA model [88] as a dimensionality reduction technique to the LBP feature vectors.

Each image is then represented as a 40-dimensional vector of proportions. Finally, we employ the

proposed OIBLM to cluster the sequentially arriving images.

In our experiment, we have adopted the Japanese Female Facial Expression (JAFFE) data set1

which is a benchmark in the filed of facial expression recognition. It contains 213 images of 7 facial

expressions (neutral plus six basic facial expressions: anger, disgust, fear, happiness, sadness and

surprise) posed by 10 Japanese female models aged from 20 to 40. Each image size is of 256×256

pixels and each expresser has 2∼4 samples for each expression. Sample images from this data set

with different facial expressions are shown in Figure 5.1.

We evaluated the performance of the proposed algorithm by running it 30 times. The confusion

matrix for the JAFFE data set provided by OIBLM is shown in Figure 5.2. Furthermore, we

have tested three other algorithms (OIGDM, OIDM and OIGM) for comparison. The average

recognition accuracy and the average estimated number of categories obtained by each algorithm

are shown in Table 5.1. According to this table, it is obvious that the proposed OIBLM outperforms

1This data set is available at: http://www.kasrl.org/jaffe.html

78



0.90

0.06

0.00

0.00

0.00

0.02

0.00

0.00

0.83

0.05

0.00

0.00

0.00

0.00

0.00

0.00

0.81

0.00

0.00

0.08

0.00

0.00

0.00

0.00

0.96

0.00

0.00

0.05

0.00

0.00

0.00

0.00

0.91

0.00

0.08

0.10

0.11

0.14

0.00

0.09

0.90

0.00

0.00

0.00

0.00

0.04

0.00

0.00

0.87

Anger
Disgust

Fear
Happiness

Neutral

Sadness

Surprise

Anger

Disgust

Fear

Happiness

Neutral

Sadness

Surprise

Figure 5.2: Confusion matrix obtained by OIBLM for the JAFFE data set.

Table 5.2: The average recognition accuracy rate (Acc) and the average estimated number of
categories (M̂ ) computed using different algorithms on the three data sets: facial expression (face),
mouse behavior (mouse) and human activity (UCF11).

OIBLM OIGDM OIDM OIGM

Data set Acc (%) M̂ Acc (%) M̂ Acc (%) M̂ Acc (%) M̂

Face 87.18 (1.19) 5.72 (0.23) 85.94 (1.26) 5.63 (0.28) 82.71 (1.43) 5.56 (0.31) 80.25 (1.71) 5.52 (0.37)

Mouse 75.68 (0.98) 4.67 (0.29) 74.09 (1.02) 4.61 (0.32) 71.33 (1.57) 4.55 (0.31) 69.54 (1.49) 4.49 (0.35)

UCF11 81.27 (1.34) 10.46 (0.45) 79.13 (1.67) 10.35 (0.52) 77.45 (1.82) 10.29 (0.61) 74.39 (1.75) 10.25 (0.58)

the other three algorithms by providing the highest recognition accuracy rate (88.28%) and the

most accurate estimated number of categories (6.71).

5.3.3 Behavior Modeling and Recognition

Learning object, event and behavior classes is an important problem in computer vision which has

several applications [160–162]. Recent popular methods have been based on the representation

of images and videos as collections of local visual descriptors extracted from patches or interest

points. Various interest points (space-time interest points in the case of videos) detectors and local
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visual descriptors exist. The usual way to use the resulting visual descriptors is to quantize them,

using a certain clustering process such as K-Means or randomized forests [163, 164], to produce

the so-called visual words. In this experiment, we present an unsupervised learning method, based

on our online variational algorithm with the bag-of-visual words representation, for recognizing

various kinds of behaviors in video sequences. Among many of the existing space-time interest

points detectors and local spatio-temporal features, we adopt the so-called cuboid detector [99]

which has shown its effectiveness in behavior modeling. The Cuboid detector is based on temporal

Gabor filters and a histogram of the cuboid types and shall be used here as our behavior descriptor.

(a) (b) (c)

Figure 5.3: Sample frames from the each data set. (a): facial expression; (b): mouse behavior; (c):
human action.

The methodology of our unsupervised behavior recognition approach is summarized as fol-

lows. First, we extract local spatio-temporal features known as cuboids using the cuboid detector

as proposed in [99] from the already observed video sequences. In our work, we use the same

settings as in [99] for extracting cuboids and constructing the behavior descriptors. Next, a visual

vocabulary is constructed by quantizing these spatio-temporal features into visual words using

K-means algorithm and each video is then represented as a frequency histogram over the visual

words. Then, we apply the pLSA model as a dimensionality reduction technique to represent each

video as a D-dimensional proportional vector where D is the number of latent aspects. In this

experiment, according to our experimental results, the optimal number of aspects was around 45.

Lastly, the testing videos are clustered using the proposed OIBLM algorithm.

We conducted our experiments on three representative domains: temporal behaviors of facial
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expressions [165], mouse behavior and human action. we use the same facial expression and mouse

behavior data sets provided by [99]. The facial expression video data set contains about 192 video

clips which are collected from 2 individuals under 2 lighting conditions. Each individual was asked

to repeatedly perform 6 expressions (anger, disgust, fear, joy, sadness and surprise) 8 times. The

mouse data includes 406 clips with 5 behaviors performed by the same mouse: drinking, eating,

exploring, grooming and sleeping. The human action video data that we adopted in this experiment

is the UCF11 data sets [166] 2. It contains 1168 video sequences in total with 11 action categories:

cycling, diving, golf swinging, soccer juggling, trampoline jumping, horse-back riding, basketball

shooting, volleyball spiking, swinging, tennis swinging, and walking with a dog. Sample frames

from each data set are shown in Figure 5.3.

Each data set is randomly divided into two halves: one for constructing the visual vocabulary,

the other for testing. The results are obtained over 30 runs. Table 5.2 shows the average number

of clusters and the average recognition accuracies using OIBLM, OIGDM, OIDM and OIGM al-

gorithms. The average performance of these different algorithms is also illustrated in Figure 5.4.

According to these results, we can clearly see that the OIBLM outweighs the other algorithms by

providing the best performance on all testing data sets. Given the difficulty of the considered data

sets, these results are rather encouraging.

5.3.4 Dynamic Textures Clustering

Dynamic texture, which is an extension of texture to the temporal domain, can be defined as a

video sequence of moving scenes that exhibit some stationarity characteristics in time (e.g., fire,

sea waves, smoke, swinging flag in the wind, foliage, etc.) [167]. Dynamic textures have attracted

growing attention during the last decade since they can be used in various applications such as

facial expressions recognition, video surveillance, development of screen savers, personalized web

pages, and video games [168–170].

In this experiment, we address the problem of clustering dynamic textures using the proposed

OIBLM algorithm. Given a video sequence of a single dynamic texture, our goal is to recognize

2This data set is available at: http://vision.eecs.ucf.edu/datasetsActions.html
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Figure 5.4: Performance comparison on the three data sets: facial expression, mouse behavior and
human activity using different algorithms.

which class the video sequence belongs to. We adopt a dynamic texture modeling framework

previously proposed in [170]. This framework is based on modeling a video sequence by a collec-

tion of linear dynamical systems (LDSs) where each one describes a small spatio-temporal patch

extracted from the video. In particular, we use the so-called bag-of-systems (BoS) representation

which is able to explicitly capture the dynamics of dynamic textures. The first step of this approach

consists of extracting LDS descriptors from the available video sequences using the dense sampling

approach [170]. More specifically, given a video sequence, first we divide it into non-overlapping

spatio-temporal volumes with size a × b × c, where a and b denote the spatial size while c is the

temporal size. In this experiment, we used a patch-size of 20 × 20 × 25 which has provided us

the optimal performance according to our results. Then, each spatio-temporal volume is modeled

using a LDS of order 3 to form a feature descriptor. After extracting all the features from the video

sequences, we build a visual vocabulary using the K-Medoid approach [2] to quantize these fea-

tures into visual words. Next, we reduce the dimensionality of these feature vectors via the pLSA

model by considering 35 topics. Then, each dynamic texture is represented as a 35-dimensional

proportional vector. Finally, we apply the proposed OIBLM to cluster our dynamic textures.
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candle flag flower fountain

grass sea smoke tree

Figure 5.5: Sample fames from the DynTex data set.

Table 5.3: The average accuracy and the number of categories (M̂ ) computed by different algo-
rithms when clustering the DynTex data set.

OIBLM OIGDM OIDM OIGM

M̂ 6.75 (0.41) 6.69 (0.38) 6.46 (0.49) 6.37 (0.52)

Accuracy 83.37 (1.72) 80.62 (1.96) 77.75 (2.34) 74.87(2.28)

A challenging dynamic textures data set, which is known as the DynTex database [171] 3, is

considered in this experiment. This data set contains around 650 dynamic texture video sequences

from various categories. In our case, we use a subset of this data set which contains 8 categories

of dynamic textures: candle, flag, flower, fountain, grass, sea, smoke and tree. Each category has

20 video sequences with a size of 352× 288. As a preprocessing step, we re-sampled all the video

sequences into a size of 360 × 300 to avoid extracting overlapping patches and in order to not

disregard any region. We have used half the data to construct the visual vocabulary and the rest for

testing. Sample frames from each category are shown in Figure 5.5. We run the proposed OIBLM

30 times for evaluating its performance. For comparison, we have also tested OIGDM, OIDM

3This data set is available at: http://projects.cwi.nl/dyntex/index.html
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Figure 5.6: Confusion matrix obtained by OIBLM for the DynTex data set.

and OIGM algorithms using the same experimental methodology. Figure 5.6 shows the confusion

matrix for the DynTex data set using OIBLM. The average results of the clustering accuracy and

the estimated number of categories are illustrated in Table 5.3. Although the number of categories

is underestimated (6.75) by our algorithm, it is clear that it outperforms the rest of the algorithms

in terms of the highest categorization accuracy rate (83.37%) as shown in Figure 5.7.
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Figure 5.7: Performance comparison in terms of classification accuracy provided different algo-
rithms for the DynTex data set.
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Chapter 6

Conclusions

Clustering is an important problem in several fields, such as signal and image processing. In this

thesis, we have developed several approaches for high-dimensional non-Gaussian data clustering.

Our approaches are based on variational learning of various mixture models such as Dirichlet, gen-

eralized Dirichlet and Beta-Liouville. We are mainly motivated by the promising results obtained

by using these mixtures to model non-Gaussian data, especially those involving normalized count

data (i.e., proportional vectors) which naturally appear in many applications such as text, image

and video modeling.

In Chapter 2, we have presented an efficient attractive procedure for the variational learning of

finite Dirichlet mixture models. Our procedure is based on the construction and the optimization

of a lower bound on the model’s likelihood by choosing completely factorized conditional distribu-

tions over the model’s variables. The proposed framework can be viewed as a compromise between

ML estimation which prefers complex models and then causes over-fitting and pure Bayesian tech-

niques which penalizes complex models, but unfortunately require intensive computations and are

generally intractable. Indeed, unlike pure Bayesian methods which require sampling, the pro-

posed variational approach approximates posterior distributions over model parameters analyti-

cally thanks to the accurate choice of specific conjugate priors. Through extensive experiments we

have shown that proposed variational framework allows the automatic and simultaneous adjusting

of the mixture parameters and the number of components. It is noteworthy that the ability of our

variational approach to lead to a model with the correct number of components has been based

solely on empirical evidence via our experiments. These experiments have involved both synthetic

and real challenging problems such as image databases categorization and intrusion detection.

Most of the feature selection algorithms based on mixture models assume that the data in
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each component follow Gaussian distribution, which is seldom the case in real-life applications.

Unlike these approaches, we have proposed in Chapter 3 a principled variational framework for

unsupervised feature selection in the case of non-Gaussian data which naturally appear in many

applications from different domains and disciplines. Variational frameworks offer a determinis-

tic alternative for Bayesian approximate inference by maximizing a lower bound on the marginal

likelihood which main advantage is computational efficiency and guaranteed convergence that can

be easily assessed as compared to MCMC-based approaches which make posterior approximation

in a stochastic sense. We have shown that the variational approach can be used to obtain a closed

form parameters posteriors for our model. The proposed approach has been applied to both syn-

thetic data and to a challenging application which concerns human action videos categorization,

with encouraging results. It is noteworthy that the proposed selection model is also applicable to

many other challenging problems involving non-Gaussian proportional data such as text mining

and compression, and protein sequences modeling in biology.

Until recently, feature selection approaches based on mixture models were almost exclusively

considered in the finite case. The work proposed in Chapter 4 is motivated by an attempt to over-

come this limitation via the extension of the simultaneous clustering and feature selection approach

based on finite generalized Dirichlet mixture models, to the infinite case via Dirichlet processes

with a stick-breaking representation. The proposed technique drives much of its power from the

flexibility of the generalized Dirichlet mixture, the high generalization accuracy of Dirichlet pro-

cesses, and the advantages of the variational Bayesian framework that we have developed to learn

our model. Our method has been successfully tested in several scenarios and our experimen-

tal results using synthetic data and real-world applications namely visual scenes categorization,

image annotation and retrieval have shown advantages derived from its adoption. The model de-

veloped in this chapter is also applicable to many other problems which involve high-dimensional

data clustering such as gene microarray data sets analysis, text clustering and retrieval, and object

recognition.

In Chapter 5, we have presented a coherent statistical framework based on the newly introduced

Beta-Liouville mixture which has been shown to outperform both the Dirichlet and the general-

ized Dirichlet mixtures for proportional data clustering. The proposed framework uses Dirichlet
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process formalism with a truncated stick-breaking representation which results in an infinite Beta-

Liouville mixture model. The learning of this infinite model has been tackled via an efficient

attractive procedure, based on online variational inference, that we have developed. Within this

learning framework, we have developed a variational lower bound on the likelihood of the pro-

posed infinite model which optimization results in a deterministic EM-like algorithm. Extensive

empirical results have shown the merits and effectiveness of the proposed approach. These ex-

periments have involved real challenging problems namely facial expression recognition, behavior

modeling and recognition, and dynamic textures categorization.

In conclusion, variational frameworks offer a deterministic alternative for Bayesian approxi-

mate inference by maximizing a lower bound on the marginal likelihood which main advantage is

computational efficiency and guaranteed convergence that can be easily assessed as compared to

MCMC-based approaches which make posterior approximation in a stochastic sense. Like pure

Bayesian learning, variational learning provides good generalization capabilities, but at a signif-

icant lower computational cost since it does not need calculations of high-dimensional integrals

using MCMC methods. The variational approach allows analytical calculations of posterior distri-

butions over the mixture hidden variables, parameters and structure. In other words it allows simul-

taneous inference on both model and parameter space. It is our hope that the proposed approaches

will serve to inspire more interesting applications and learning techniques since proportional data

arise in many other problems such as protein sequence modeling in molecular biology, text mining,

images annotation, user profiling, collaborative filtering and recommendation.

There are a number of potential future directions that we are going to pursue. These directions

are towards extending the approaches we have currently proposed to more general domains. For

instance, we can integrate hierarchies into our approaches through hierarchical Bayesian nonpara-

metric frameworks such as hierarchical Dirichlet process (HDP) [172] and hierarchical Pitman-Yor

process (HPYP) [173]. Indeed, both HDP and HPYP are extensions to the conventional Dirichlet

process where hierarchical model structures are employed. Specifically, HDP possesses a Bayesian

hierarchy where the base measure for a set of Dirichlet processes is itself distributed according to a

Dirichlet process, while HPYP is a hierarchical Bayesian model based on a two-parameters gener-

alization of the Dirichlet process. We are mainly motivated by the fact that hierarchies can help to
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unify statistics, providing a Bayesian interpretation of frequentist concepts such as shrinkage and

random effects [174]. Thus, by taking the building blocks provided by simple stochastic processes

such as the Dirichlet process, it is possible to construct models that exhibit richer kinds of proba-

bilistic structure. In addition, we may go a step further by extending these hierarchical Bayesian

nonparametric frameworks to online settings to make them more efficient and more easily applica-

ble to massive and streaming data.
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Appendix A

Proof of Equations (2.14) and (2.15)

According to Eq. (1.8), the general expression for the variational solution Qs(Θs) can be written

as

lnQs(Θs) =
〈
ln p(X ,Θ)

〉
j �=s

+ const. (A.1)

where any terms that are independent of Qs(Θs) are absorbed into the additive constant. Using the

previous equation and the logarithm of joint distribution in Eq. (2.11), we develop the following

variational solutions for Q(Z) and Q(�α).

A.1 Proof of Equation (2.14):Variational Solution to Q(Z)

lnQ(Zij) = Zij[ln πj +Rj +
D∑
l=1

(ᾱjl − 1) lnXil] + const. (A.2)

where

Rj =

〈
ln

Γ(
∑D

l=1 αjl)∏D
l=1 Γ(αjl)

〉
αj1,...,αjD

, ᾱjl =
〈
αjl

〉
=

ujl

vjl
(A.3)

Unfortunately, a closed-form expression cannot be found for Rj , so the standard variational infer-

ence can not be applied directly. Therefore, we need to propose a lower bound approximation to

obtain a closed-form expression. The second-order Taylor series expansion has been successfully

applied in variational inference for providing tractable approximations [78, 175] and we shall use

it here. Indeed, we approximate the function Rj using a second-order Taylor expansion about the

expected values of the parameters �αj . Let us define R̃j to denote the approximation of Rj , and

(ᾱj1, . . . , ᾱjD) to represent the expected values of �αj . This lower bound approximation is given
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by Eq. (2.18) and is proved in Appendix B. Then, the optimization in Eq. (A.2) becomes tractable

after replacing Rj by R̃j .

From Eq. (A.2), it is straightforward to see that the optimal solution to Z has the logarithmic

form of Eq. (2.4) except for the normalization constant. Thus, lnQ(Z) can be written as

lnQ(Z) =
N∑
i=1

M∑
j=1

zij ln ρij + const. (A.4)

ln ρij = ln πj + R̃j +
D∑
l=1

(ᾱjl − 1) lnXil (A.5)

Note that, any terms that do not depend on Zij can be absorbed into the constant part. If we take

the exponential of both sides in Eq. (A.4), we obtain

Q(Z) ∝
N∏
i=1

M∏
j=1

ρ
Zij

ij (A.6)

This distribution needs to be normalized which can be performed as following

Q(Z) =
N∏
i=1

M∏
j=1

r
Zij

ij , rij =
ρij∑M
j=1 ρij

(A.7)

Note that the {rij} are nonnegative and sum to one. Therefore, we can obtain the standard result

for Q(Z) as 〈
Zij

〉
= rij (A.8)

where {rij} are playing the role of responsibilities as in the conventional EM algorithm.

A.2 Proof of Equation (2.15): Variational Solution to Q(�α)

Since there are M components in the mixture model by considering the assumption that the pa-

rameters αjl are independent, Q(�α) can be factorized as

Q(�α) =
M∏
j=1

D∏
l=1

Q(αjl) (A.9)
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Let us consider the variational optimization regarding the specific factor Q(αjs). The logarithm of

the optimized factor is given by

lnQ(αjs) =
N∑
i=1

rijJ (αjs) + αjs

N∑
i=1

rij lnXis + (ujs − 1) lnαjs − vjsαjs + const. (A.10)

where

J (αjs) =

〈
ln

Γ(αs +
∑D

l �=s αjl)

Γ(αs)
∏D

l �=s Γ(αjl)

〉
Θ�=αjs

(A.11)

where J (αjs) is defined as a function of αjs and is unfortunately analytically intractable. There-

fore, similar to Rj in the previous subsection, we need to find a lower bound to approximate J (αjs)

which we obtain via a first-order Taylor expansion [78] [66, chapter 10] about ᾱjs (the expected

value of αjs) (see Appendix B):

J (αjs)≥ᾱjs lnαjs

{
Ψ(

D∑
l=1

ᾱjl)−Ψ(ᾱjs) +
D∑
l �=s

ᾱjlΨ
′(

D∑
l=1

ᾱjl)(
〈
lnαjl

〉− ln ᾱjl)

}
+ const.

(A.12)

If we substitute this lower bound back into Eq. (A.10), we obtain a new optimal solution to αjs as

lnQ(αjs)=
N∑
i=1

rijᾱjs lnαjs

[
Ψ(

D∑
l=1

ᾱjl)−Ψ(ᾱjs) +
D∑
l �=s

Ψ′(
D∑
l=1

ᾱjl)ᾱjl(
〈
lnαjl

〉− ln ᾱjl)

]

+αjs

N∑
i=1

rij lnXis + (ujs − 1) lnαjs − vjsαjs + const.

=lnαjs(ujs + ϕjs − 1)− αjs(vjs − ϑjs) + const.

(A.13)

where

ϕjs=
N∑
i=1

rijᾱjs

[
Ψ(

D∑
l=1

ᾱjl)−Ψ(ᾱjs) +
D∑
l �=s

Ψ′(
D∑
l=1

ᾱjl)ᾱjl(
〈
lnαjl

〉− ln ᾱjl)

]
(A.14)

ϑjs =
N∑
i=1

rij lnXis (A.15)
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We can see that Eq. (A.13) has the logarithmic form of a Gamma distribution. Taking the expo-

nential of its both sides, we obtain

Q(αjs) ∝ α
ujs+ϕjs−1
js e−(vjs−ϑjs)αjs (A.16)

Therefore, we can obtain the optimal solutions to the hyper-parameters ujs and vjs as

u∗
js = ujs + ϕjs , v∗js = vjs − ϑjs (A.17)

where ϕjs and ϑjs are given by Eqs. (2.20) and (2.21), respectively.

112



Appendix B

Proof of Equations (2.18) and (A.12)

B.1 Lower Bound of Rj: Proof of Equation (2.18)

The function Rj in Eq. (A.3) is analytically intractable, a non-linear approximation of the lower

bound can be obtained by using the second order Taylor expansion as done in [78] where the au-

thors have used the first and second Taylor expansions to approximate lower bounds for variational

Beta mixture model. In our work, first, we define the following function

H(�αj) = H(αj1, . . . , αjD) = ln
Γ(
∑D

l=1 αjl)∏D
l=1 Γ(αjl)

(B.1)

where αjl > 1. The lower bound of H(�αj) can be obtained by using the second order Taylor

expansion for ln �αj = (lnαj1, . . . , lnαjD) at ln �αj,0 = (lnαj1,0, . . . , lnαjD,0) as

H(�αj)≥H(�αj,0) + (ln �αj − ln �αj,0)
T∇H(�αj,0) (B.2)

+
1

2!
(ln �αj − ln �αj,0)

T∇2H(�αj,0)(ln �αj − ln �αj,0)

where ∇H(�αj,0) represents the gradient of H evaluated at �αj = �αj,0 and ∇2H(�αj,0) is the Hessian

matrix. This gives

H(�αj)≥H(�αj,0) +
D∑
l=1

∂H(�αj)

∂ lnαjl

|�αj=�αj,0
(lnαjl − lnαjl,0)

+
1

2

D∑
a=1

D∑
b=1

∂2H(�αj)

∂ lnαja∂ lnαjb

|�αj=�αj,0
(lnαja − lnαja,0)(lnαjb − lnαjb,0) (B.3)
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Then, the lower bound of the function Rj can be obtained by taking the expectation of Eq. (B.3)

with respect to �αj as

Rj≥R̃j = ln
Γ(
∑D

l=1 αjl,0)∏D
l=1 Γ(αjl,0)

+

D∑
l=1

αjl,0

[
Ψ(

D∑
l=1

αjl,0)−Ψ(αjl,0)
][〈

lnαjl

〉− lnαjl,0

]
+
1

2

D∑
l=1

α2
jl,0

[
Ψ′(

D∑
l=1

αjl,0)−Ψ′(αjl,0)
]〈
(lnαjl − lnαjl,0)

2
〉

+
1

2

∑D
a=1

∑D
b=1(a �=b)

{
αja,0αjb,0Ψ

′(
∑D

l=1 αjl,0)(
〈
lnαja

〉− lnαja,0)(
〈
lnαjb

〉− lnαjb,0)

}
(B.4)

In order to prove that the second order Taylor expansion of H(�αj) is indeed a lower bound of

H(�αj), we need to show that ΔH(�αj) ≥ 0, where ΔH(�αj) denotes the difference between H(�αj)

and its second order Taylor expansion. The Hessian of ΔH(�αj) with respect to (lnαj1, . . . , lnαjD)

is given by Eq.( B.5). By substituting (lnαj1, . . . , lnαjD) with the critical point (lnαj1,0, . . . , lnαjD,0),

Hess =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

αj1[Ψ(
∑D

l=1 αjl)−Ψ(αj1)]

+α2
j1[Ψ

′(
∑D

l=1 αjl)−Ψ′(αj1)] · · ·αj1αjDΨ
′(
∑D

l=1 αjl)− ᾱj1ᾱjDΨ
′(
∑D

l=1 ᾱjl)

−ᾱ2
j1[Ψ

′(
∑D

l=1 ᾱjl)−Ψ′(ᾱj1)]
...

. . .
...

αjD[Ψ(
∑D

l=1 αjl)−Ψ(αjD)]

αj1αjDΨ
′(
∑D

l=1 αjl)− ᾱj1ᾱjDΨ
′(
∑D

l=1 ᾱjl)· · · +α2
jD[Ψ

′(
∑D

l=1 αjl)−Ψ′(αjD)]

−ᾱ2
jD[Ψ

′(
∑D

l=1 ᾱjl)−Ψ′(ᾱjD)]

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(B.5)

Eq. (B.5) is reduced to a positive definite diagonal matrix. Since (lnαj1,0, . . . , lnαjD,0) is the only

critical point and ΔH(�αj) is continuous and differentiable through all αjl (for αjl > 1), the critical

point (lnαj1,0, . . . , lnαjD,0) is also the global minimum of ΔH(�αj). The global minimum value 0

is reached when (lnαj1, . . . , lnαjD) = (lnαj1,0, . . . , lnαjD,0). Therefore, the second order Taylor

expansion is indeed a lower bound.
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B.2 Lower Bound of J (αjs): Proof of Equation (A.12)

Since the first order Taylor expansion of a convex function is a tangent line of that function at a

specific value, the lower bound of J (αjs) in Eq. (A.11) can be approximated by a first order Taylor

expansion. In [78], the authors evaluate the lower bound of the Log-inverse-Beta function by using

the first order Taylor expansion. In our work, we extent this idea to the multivariate case. Let us

define the function F(αjs) as

F(αjs) = ln
Γ(αjs +

∑D
l �=s αjl)

Γ(αjs)
∏D

l �=s
Γ(αjl)

(B.6)

B.2.1 Convexity of F(αjs)

It is not straightforward to show directly that F(αjs) is a convex function of αjs. Yet, by adopting

the relative convexity as in [78], we can show that F(αjs) is convex relative to lnαjs. A function

is considered to be convex on an interval if and only if its second derivative is non-negative there.

The first derivative of F(αjs) with respect to lnαjs is

∂F(αjs)

∂ lnαjs

=

[
Ψ(αjs +

D∑
l �=s

αjl)− ψ(αjs)

]
αjs (B.7)

Then, the second derivative with respect to lnαjs is

∂2F(αjs)

∂(lnαjs)2
=

[
Ψ(αjs +

D∑
l �=s

αjl)−Ψ(αjs)

]
αjs +

[
Ψ′(αjs +

D∑
l �=s

αjl)−Ψ′(αjs)

]
α2
js

=αjs

∫ ∞

0

1− e−
(∑D

l �=s αjl

)
t

1− e−t
e−αjst(1− αjst)dt (B.8)

where the integral representations of Ψ(x) and Ψ′(x) are defined by

Ψ(x) =

∫ ∞

0

(
e−t

t
− e−xt

1− e−t

)
dt (B.9)

and

Ψ′(x) =
∫ ∞

0

te−xt

1− e−t
dt (B.10)
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We can re-write Eq. (B.8) as

∂2F(αjs)

∂(lnαjs)2
= αjs

∫ ∞

0

f1(t)f2(t)dt (B.11)

where

f1(t) =
1− e−

(∑D
l �=s αjl

)
t

1− e−t
(B.12)

f2(t) = e−αjst(1− αjst) (B.13)

By analyzing Eqs. (B.12) and (B.13), we can find that when
∑D

l �=s αjl > 1: if t > 1/αjs, then

f1(t) < f1(1/αs) and f2(t) < 0; if t < 1/αjs, then f1(t) > f1(1/αjs) and f2(t) > 0. Hence, we

can rewrite Eq. (B.11) as

∂2F(αjs)

∂(lnαjs)2
=αjs

{∫ 1
αjs

0

f1(t)f2(t)dt+

∫ ∞

1
αjs

f1(t)f2(t)dt

}

> αjs

{∫ 1
αjs

0

f1(
1

αjs

)f2(t)dt+

∫ ∞

1
αjs

f1(
1

αjs

)f2(t)dt

}
= αjsf1(

1

αjs

)

∫ ∞

0

f2(t)dt

= αjsf1(
1

αjs

) lim
t→∞

te−αjst = 0 (B.14)

Therefore, when
∑D

l �=s αjl > 1, the convexity of F(αjs) relative to lnαjs is proved.

B.2.2 Evaluating Lower Bound by The First Order Taylor Expansion

Since F(αjs) is a convex function relative to lnαjs, its lower bound can be obtained by applying

the first order Taylor expansion of F(αjs) for lnαjs at lnαjs,0 as following

F(αjs)≥F(αjs,0) +
∂F(αjs)

∂ lnαjs

|αjs=αjs,0
(lnαjs − lnαjs,0)

=F(αjs,0) +
∂F(αjs)

∂αjs

∂αjs

∂ lnαjs

|αjs=αjs,0
(lnαjs − lnαjs,0)

=ln
Γ(αjs,0 +

∑D
l �=s αjl)

Γ(αjs,0)
∏D

l �=s
Γ(αjl)

+
[
Ψ(αjs,0 +

D∑
l �=s

αjl)−Ψ(αjs,0)
]
αjs,0(lnαjs − lnαjs,0)

(B.15)
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Note that we reach the equality when αjs = ᾱjs. By substituting Eq. (B.15) into Eq. (A.11), we

obtain

J (αjs)≥
〈
ln

Γ(αjs,0 +
∑D

l �=s αjl)

Γ(αjs,0)
∏D

l �=s
Γ(αjl)

+

[
Ψ
(
αjs,0 +

D∑
l �=s

αjl

)−Ψ(αjs,0)

]
αjs,0

(
lnαjs − lnαjs,0

)〉
�α�=αjs

=lnαjsαjs,0

{〈
Ψ
(
αjs,0 +

D∑
l �=s

αjl

)〉
�α �=αjs

−Ψ(αjs,0)

}
+ const. (B.16)

We can notice that in Eq. (B.16), the calculation of the expectation
〈
Ψ(αjs,0 +

∑D
l �=s αjl)

〉
�α�=αjs

is also analytically intractable. Using a similar proof as shown in Appendix B.2.1, it is straight-

forward to conclude that Ψ(αjs,0 +
∑D

l �=s αjl) is a convex function relative to lnαjl,0, for l =

{1, · · · , D} and l �= s. We can apply a first order Taylor expansion for the function Ψ(
∑n

i=1 xi+y)

at ln x̂, where x̂ = (x̂1, · · · , x̂n), to obtain its lower bound as

Ψ(
n∑

i=1

xi + y) ≥ ψ(
n∑

i=1

x̂i + y) +
n∑

i=1

(ln xi − ln x̂i)Ψ
′(

n∑
i=1

x̂i + y)x̂i (B.17)

Using the previous equation, the approximation lower bound of expectation
〈
Ψ(αjl,0+

∑D
l �=s αjl)

〉
�α �=αjs

is given by

〈
Ψ(

D∑
l �=s

αjl + αjs,0)
〉
�α �=αjs

≥ Ψ(
D∑
l=1

αjl,0) +
D∑
l �=s

αjl,0Ψ
′( D∑

l=1

αjl,0

)
(
〈
lnαjl

〉− lnαjl,0) (B.18)

Finally, the lower bound of J (αjs) can be calculated by substituting Eq. (B.18) back into Eq. (B.16):

J (αjs) ≥ lnαjsαjs,0

{
Ψ(

D∑
l=1

αjl,0)−Ψ(αjs,0)+
D∑
l �=s

αjl,0Ψ
′(

D∑
l=1

αjl,0)(
〈
lnαjl

〉−lnαjl,0)

}
+const.

(B.19)
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Appendix C

Variational Learning of Online Infinite

Beta-Liouville Mixture

C.1 Variational lower bound L(Q)

By substituting Eqs. (5.11), (5.12) and (5.13) into Eq. (5.8), we can obtain the parameterized form

of the lower bound L(Q) as

L(Q)=
∑
Z

∫
Q(Z,Λ) ln

{
p(X ,Z,Λ)

Q(Z,Λ)

}
dΛ

=
〈
ln p(X|Z, �λ, �αd, �α, �β)

〉
+
〈
ln p(Z|�λ)〉+ 〈

ln p(�λ)
〉

+
〈
ln p(�αd)

〉
+
〈
ln p(�α)

〉
+
〈
ln p(�β)

〉− 〈
lnQ(Z)

〉
−〈lnQ(�λ)

〉− 〈
lnQ(�αd)

〉− 〈
lnQ(�α)

〉− 〈
lnQ(�β)

〉
(C.1)

C.2 Variational solution to Q(Z)

We calculate the variational parameter rij by setting the derivative of L(Q) in Eq. (C.1) with

respect to rij to 0. Notice that we must take account of the constraint that
∑M

j=1 rij = 1. This can

be achieved by adding a Lagrange multiplier ϕ to L(Q). Taking the derivative with respect to rij
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and setting the result to zero, we get

∂L(Q)

∂rij
=(ᾱj −

D∑
d=1

ᾱjd) ln(
D∑

d=1

Xid) +
D∑

d=1

(ᾱjd − 1) lnXid

+(β̄j − 1) ln(1−
D∑

d=1

Xid) +

j−1∑
s=1

〈ln(1− λs)〉 − (ln rij + 1) + ϕ

+Sj +Hj + 〈lnλj〉 (C.2)

where Sj =
〈
ln

Γ
(∑D

d=1 αjd

)
∏D

d=1 Γ(αjd)

〉
, and Hj =

〈
ln

Γ(αj+βj)

Γ(αj)Γ(βj)

〉
. Since Sj and Hj are analytically in-

tractable, we apply Taylor expansion to calculate lower bound approximations to these terms to

obtain closed-form expressions. This is motivated by the fact that the first-order and second-order

Taylor series expansion techniques have been successfully applied in variational inference for pro-

viding tractable approximations in many works [71, 78]. Thus, the second-order Taylor expansion

technique is used to approximate the function Sj about ᾱjd (the expected value of αjd), and to

approximate Hj about ᾱj and β̄j (the expected values of αj and βj) as

Hj=ln
Γ(ᾱj + β̄j)

Γ(ᾱj)Γ(β̄j)
+ ᾱj[ψ(ᾱj + β̄j)− ψ(ᾱj)](〈lnαj〉 − ln ᾱj)

+β̄j[ψ(ᾱj + β̄j)− ψ(β̄j)](〈ln βj〉 − ln β̄j)

+
1

2
ᾱ2
j [ψ

′(ᾱj + β̄j)− ψ′(ᾱj)]〈(lnαj − ln ᾱj)
2〉

+
1

2
β̄2
j [ψ

′(ᾱj + β̄j)− ψ′(β̄j)]〈(ln βj − ln β̄j)
2〉

+ᾱjβ̄jψ
′(ᾱj + β̄j)(〈lnαj〉 − ln ᾱj)(〈ln βj〉 − ln β̄j) (C.3)

Sj=ln
Γ(
∑D

d=1 ᾱjd)∏D
d=1 Γ(ᾱjd)

+
D∑

d=1

ᾱjd

[
Ψ(

D∑
d=1

ᾱjd)−Ψ(ᾱjd)
][〈

lnαjd

〉− ln ᾱjd

]
+
1

2

D∑
d=1

ᾱ2
jd

[
Ψ′(

D∑
l=1

ᾱjl)−Ψ′(ᾱjl)
]〈
(lnαjd − ln ᾱjd)

2
〉

+
1

2

D∑
a=1

D∑
b=1
(b �=a)

[
ᾱjaᾱjbΨ

′(
D∑

d=1

ᾱjd)
(〈lnαja〉 − ln ᾱja

)(〈lnαjb〉 − ln ᾱjb

)]
(C.4)
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By substituting Eq. (C.4) and Eq. (C.3) back into Eq. (C.2), we then have

ϕ=1− ln
M∑
j=1

exp

{
Sj +Hj + (ᾱj −

D∑
d=1

ᾱjd) ln(
D∑

d=1

Xid)

+(β̄j − 1) ln(1−
D∑

d=1

Xid) +
D∑

d=1

(ᾱjd − 1) lnXid

+〈lnλj〉+
j−1∑
s=1

〈ln(1− λs)〉
}

(C.5)

Then, by substituting Eq. (C.5) back into Eq. (C.2), we can obtain the variational solution to rij as

shown in Eq. (5.14).

C.3 Variational solution to Q(�λ)

For the variational factor Q(�λ), instead of using the gradient method, it is more straightforward to

use Eq. (5.10) to compute the variational solution. Notice that these two method have equivalent

results for variational inference. Therefore, the logarithm of Q(�λ) is given by

lnQ(λj) = lnλj

N∑
i=1

〈
Zij

〉
+ ln(1− λj)

( N∑
i=1

M∑
s=j+1

〈Zis〉+ 〈ψj〉 − 1
)
+Const. (C.6)

It is obvious that Eq. (C.6) has the logarithmic form of a Beta distribution as its conjugatae prior

distribution Eq. (5.7). By taking the exponential of its both sides, we obtain the variational solution

to Q(�λ) as in Eq. (5.11).

C.4 Variational solutions to Q(�αd), Q(�α) and Q(�β)

The logarithm form of the variational factor Q(�αd) is given by

lnQ(αjd) =
N∑
i=1

〈Zij〉
[Bjd−αjd ln(

D∑
d=1

Xid)+αjd lnXid

]
+(ujd−1) lnαjd−vjdαjd+const. (C.7)

Since the term Bjd =
〈
ln

Γ(αjd+
∑D

l �=d αjl)

Γ(αjd)
∏D

l �=d Γ(αjl)

〉
�=αjd

is analytically intractable, we can not perform the

variational inference directly and Eq. (C.7) does not have the same form as the logarithm of a
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Gamma distribution as its conjugate prior. Thus, we approximate it using the first-order Taylor

expansion as

Bjd � lnαjdᾱjd

[
Ψ(

D∑
d=1

ᾱjd)−Ψ(ᾱjd) + Ψ′(
D∑

d=1

ᾱjd)
D∑
l �=d

(〈lnαjl〉 − ln ᾱjl

)
ᾱjl

]
+ const. (C.8)

By substituting Eq. (C.8) back into Eq. (C.7), we have

lnQ(αjd)≈lnαjd

{ N∑
i=1

〈Zij〉ᾱjd

[
Ψ(

D∑
d=1

ᾱjd)−Ψ(ᾱjd)

+Ψ′(
D∑

d=1

ᾱjd)
D∑
l �=d

(〈lnαjl〉 − ln ᾱjl)ᾱjl

]
+ ujd − 1

}
−αjd

{
vjd −

N∑
i=1

〈Zij〉
[
lnXid − ln(

D∑
d=1

Xid)
]}

+ const. (C.9)

We can see that Eq. (C.9) has the logarithmic form of a Gamma distribution. By taking the expo-

nential of both sides of Eq. (C.9), we then have the variational solutions to Q(�αd) in Eq. (5.12).

Since �α and �β also have Gamma prior, it is straightforward to obtain the variational solutions

to Q(�α) and Q(�β) in a similar way as for Q(�αd).
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