257 research outputs found

    Neural Radiance Fields: Past, Present, and Future

    Full text link
    The various aspects like modeling and interpreting 3D environments and surroundings have enticed humans to progress their research in 3D Computer Vision, Computer Graphics, and Machine Learning. An attempt made by Mildenhall et al in their paper about NeRFs (Neural Radiance Fields) led to a boom in Computer Graphics, Robotics, Computer Vision, and the possible scope of High-Resolution Low Storage Augmented Reality and Virtual Reality-based 3D models have gained traction from res with more than 1000 preprints related to NeRFs published. This paper serves as a bridge for people starting to study these fields by building on the basics of Mathematics, Geometry, Computer Vision, and Computer Graphics to the difficulties encountered in Implicit Representations at the intersection of all these disciplines. This survey provides the history of rendering, Implicit Learning, and NeRFs, the progression of research on NeRFs, and the potential applications and implications of NeRFs in today's world. In doing so, this survey categorizes all the NeRF-related research in terms of the datasets used, objective functions, applications solved, and evaluation criteria for these applications.Comment: 413 pages, 9 figures, 277 citation

    {3D} Morphable Face Models -- Past, Present and Future

    No full text
    In this paper, we provide a detailed survey of 3D Morphable Face Models over the 20 years since they were first proposed. The challenges in building and applying these models, namely capture, modeling, image formation, and image analysis, are still active research topics, and we review the state-of-the-art in each of these areas. We also look ahead, identifying unsolved challenges, proposing directions for future research and highlighting the broad range of current and future applications

    Irish Machine Vision and Image Processing Conference Proceedings 2017

    Get PDF

    Storytelling with salient stills

    Get PDF
    Thesis (M.S.)--Massachusetts Institute of Technology, Program in Media Arts & Sciences, 1996.Includes bibliographical references (p. 59-63).Michale J. Massey.M.S

    Pathway to Future Symbiotic Creativity

    Full text link
    This report presents a comprehensive view of our vision on the development path of the human-machine symbiotic art creation. We propose a classification of the creative system with a hierarchy of 5 classes, showing the pathway of creativity evolving from a mimic-human artist (Turing Artists) to a Machine artist in its own right. We begin with an overview of the limitations of the Turing Artists then focus on the top two-level systems, Machine Artists, emphasizing machine-human communication in art creation. In art creation, it is necessary for machines to understand humans' mental states, including desires, appreciation, and emotions, humans also need to understand machines' creative capabilities and limitations. The rapid development of immersive environment and further evolution into the new concept of metaverse enable symbiotic art creation through unprecedented flexibility of bi-directional communication between artists and art manifestation environments. By examining the latest sensor and XR technologies, we illustrate the novel way for art data collection to constitute the base of a new form of human-machine bidirectional communication and understanding in art creation. Based on such communication and understanding mechanisms, we propose a novel framework for building future Machine artists, which comes with the philosophy that a human-compatible AI system should be based on the "human-in-the-loop" principle rather than the traditional "end-to-end" dogma. By proposing a new form of inverse reinforcement learning model, we outline the platform design of machine artists, demonstrate its functions and showcase some examples of technologies we have developed. We also provide a systematic exposition of the ecosystem for AI-based symbiotic art form and community with an economic model built on NFT technology. Ethical issues for the development of machine artists are also discussed

    Change blindness: eradication of gestalt strategies

    Get PDF
    Arrays of eight, texture-defined rectangles were used as stimuli in a one-shot change blindness (CB) task where there was a 50% chance that one rectangle would change orientation between two successive presentations separated by an interval. CB was eliminated by cueing the target rectangle in the first stimulus, reduced by cueing in the interval and unaffected by cueing in the second presentation. This supports the idea that a representation was formed that persisted through the interval before being 'overwritten' by the second presentation (Landman et al, 2003 Vision Research 43149–164]. Another possibility is that participants used some kind of grouping or Gestalt strategy. To test this we changed the spatial position of the rectangles in the second presentation by shifting them along imaginary spokes (by ±1 degree) emanating from the central fixation point. There was no significant difference seen in performance between this and the standard task [F(1,4)=2.565, p=0.185]. This may suggest two things: (i) Gestalt grouping is not used as a strategy in these tasks, and (ii) it gives further weight to the argument that objects may be stored and retrieved from a pre-attentional store during this task

    3D Face Modelling, Analysis and Synthesis

    Get PDF
    Human faces have always been of a special interest to researchers in the computer vision and graphics areas. There has been an explosion in the number of studies around accurately modelling, analysing and synthesising realistic faces for various applications. The importance of human faces emerges from the fact that they are invaluable means of effective communication, recognition, behaviour analysis, conveying emotions, etc. Therefore, addressing the automatic visual perception of human faces efficiently could open up many influential applications in various domains, e.g. virtual/augmented reality, computer-aided surgeries, security and surveillance, entertainment, and many more. However, the vast variability associated with the geometry and appearance of human faces captured in unconstrained videos and images renders their automatic analysis and understanding very challenging even today. The primary objective of this thesis is to develop novel methodologies of 3D computer vision for human faces that go beyond the state of the art and achieve unprecedented quality and robustness. In more detail, this thesis advances the state of the art in 3D facial shape reconstruction and tracking, fine-grained 3D facial motion estimation, expression recognition and facial synthesis with the aid of 3D face modelling. We give a special attention to the case where the input comes from monocular imagery data captured under uncontrolled settings, a.k.a. \textit{in-the-wild} data. This kind of data are available in abundance nowadays on the internet. Analysing these data pushes the boundaries of currently available computer vision algorithms and opens up many new crucial applications in the industry. We define the four targeted vision problems (3D facial reconstruction &\& tracking, fine-grained 3D facial motion estimation, expression recognition, facial synthesis) in this thesis as the four 3D-based essential systems for the automatic facial behaviour understanding and show how they rely on each other. Finally, to aid the research conducted in this thesis, we collect and annotate a large-scale videos dataset of monocular facial performances. All of our proposed methods demonstarte very promising quantitative and qualitative results when compared to the state-of-the-art methods

    Data science for buildings, a multi-scale approach bridging occupants to smart-city energy planning

    Get PDF
    • …
    corecore