115 research outputs found

    DeepStore: an interaction-aware Wide&Deep model for store site recommendation with attentional spatial embeddings

    Get PDF
    International audienceStore site recommendation is one of the essential business services in smart cities for brick-and-mortar enterprises. In recent years, the proliferation of multisource data in cities has fostered unprecedented opportunities to the data-driven store site recommendation, which aims at leveraging large-scale user-generated data to analyze and mine users' preferences for identifying the optimal location for a new store. However, most works in store site recommendation pay more attention to a single data source which lacks some significant data (e.g., consumption data and user profile data). In this paper, we aim to study the store site recommendation in a fine-grained manner. Specifically, we predict the consumption level of different users at the store based on multisource data, which can not only help the store placement but also benefit analyzing customer behavior in the store at different time periods. To solve this problem, we design a novel model based on the deep neural network, named DeepStore, which learns low-and high-order feature interactions explicitly and implicitly from dense and sparse features simultaneously. In particular, DeepStore incorporates three modules: 1) the cross network; 2) the deep network; and 3) the linear component. In addition, to learn the latent feature representation from multisource data, we propose two embedding methods for different types of data: 1) the filed embedding and 2) attention-based spatial embedding. Extensive experiments are conducted on a real-world dataset including store data, user data, and point-of-interest data, the results demonstrate that DeepStore outperforms the state-of-the-art models

    Matching algorithms : fundamentals, applications and challenges

    Get PDF
    Matching plays a vital role in the rational allocation of resources in many areas, ranging from market operation to people's daily lives. In economics, the term matching theory is coined for pairing two agents in a specific market to reach a stable or optimal state. In computer science, all branches of matching problems have emerged, such as the question-answer matching in information retrieval, user-item matching in a recommender system, and entity-relation matching in the knowledge graph. A preference list is the core element during a matching process, which can either be obtained directly from the agents or generated indirectly by prediction. Based on the preference list access, matching problems are divided into two categories, i.e., explicit matching and implicit matching. In this paper, we first introduce the matching theory's basic models and algorithms in explicit matching. The existing methods for coping with various matching problems in implicit matching are reviewed, such as retrieval matching, user-item matching, entity-relation matching, and image matching. Furthermore, we look into representative applications in these areas, including marriage and labor markets in explicit matching and several similarity-based matching problems in implicit matching. Finally, this survey paper concludes with a discussion of open issues and promising future directions in the field of matching. © 2017 IEEE. **Please note that there are multiple authors for this article therefore only the name of the first 5 including Federation University Australia affiliate “Jing Ren, Xia Feng, Nargiz Sultanova" is provided in this record*

    Personalized Memory Transfer for Conversational Recommendation Systems

    Get PDF
    Dialogue systems are becoming an increasingly common part of many users\u27 daily routines. Natural language serves as a convenient interface to express our preferences with the underlying systems. In this work, we implement a full-fledged Conversational Recommendation System, mainly focusing on learning user preferences through online conversations. Compared to the traditional collaborative filtering setting where feedback is provided quantitatively, conversational users may only indicate their preferences at a high level with inexact item mentions in the form of natural language chit-chat. This makes it harder for the system to correctly interpret user intent and in turn provide useful recommendations to the user. To tackle the ambiguities in natural language conversations, we propose Personalized Memory Transfer (PMT) which learns a personalized model in an online manner by leveraging a key-value memory structure to distill user feedback directly from conversations. This memory structure enables the integration of prior knowledge to transfer existing item representations/preferences and natural language representations. We also implement a retrieval based response generation module, where the system in addition to recommending items to the user, also responds to the user, either to elicit more information regarding the user intent or just for a casual chit-chat. The experiments were conducted on two public datasets and the results demonstrate the effectiveness of the proposed approach

    Predictive Accuracy of Recommender Algorithms

    Get PDF
    Recommender systems present a customized list of items based upon user or item characteristics with the objective of reducing a large number of possible choices to a smaller ranked set most likely to appeal to the user. A variety of algorithms for recommender systems have been developed and refined including applications of deep learning neural networks. Recent research reports point to a need to perform carefully controlled experiments to gain insights about the relative accuracy of different recommender algorithms, because studies evaluating different methods have not used a common set of benchmark data sets, baseline models, and evaluation metrics. The dissertation used publicly available sources of ratings data with a suite of three conventional recommender algorithms and two deep learning (DL) algorithms in controlled experiments to assess their comparative accuracy. Results for the non-DL algorithms conformed well to published results and benchmarks. The two DL algorithms did not perform as well and illuminated known challenges implementing DL recommender algorithms as reported in the literature. Model overfitting is discussed as a potential explanation for the weaker performance of the DL algorithms and several regularization strategies are reviewed as possible approaches to improve predictive error. Findings justify the need for further research in the use of deep learning models for recommender systems

    Metric Optimization and Mainstream Bias Mitigation in Recommender Systems

    Full text link
    The first part of this thesis focuses on maximizing the overall recommendation accuracy. This accuracy is usually evaluated with some user-oriented metric tailored to the recommendation scenario, but because recommendation is usually treated as a machine learning problem, recommendation models are trained to maximize some other generic criteria that does not necessarily align with the criteria ultimately captured by the user-oriented evaluation metric. Recent research aims at bridging this gap between training and evaluation via direct ranking optimization, but still assumes that the metric used for evaluation should also be the metric used for training. We challenge this assumption, mainly because some metrics are more informative than others. Indeed, we show that models trained via the optimization of a loss inspired by Rank-Biased Precision (RBP) tend to yield higher accuracy, even when accuracy is measured with metrics other than RBP. However, the superiority of this RBP-inspired loss stems from further benefiting users who are already well-served, rather than helping those who are not. This observation inspires the second part of this thesis, where our focus turns to helping non-mainstream users. These are users who are difficult to recommend to either because there is not enough data to model them, or because they have niche taste and thus few similar users to look at when recommending in a collaborative way. These differences in mainstreamness introduce a bias reflected in an accuracy gap between users or user groups, which we try to narrow.Comment: PhD Thesis defended on Nov 14, 202

    Representation Learning for Natural Language Processing

    Get PDF
    This open access book provides an overview of the recent advances in representation learning theory, algorithms and applications for natural language processing (NLP). It is divided into three parts. Part I presents the representation learning techniques for multiple language entries, including words, phrases, sentences and documents. Part II then introduces the representation techniques for those objects that are closely related to NLP, including entity-based world knowledge, sememe-based linguistic knowledge, networks, and cross-modal entries. Lastly, Part III provides open resource tools for representation learning techniques, and discusses the remaining challenges and future research directions. The theories and algorithms of representation learning presented can also benefit other related domains such as machine learning, social network analysis, semantic Web, information retrieval, data mining and computational biology. This book is intended for advanced undergraduate and graduate students, post-doctoral fellows, researchers, lecturers, and industrial engineers, as well as anyone interested in representation learning and natural language processing

    Computational Technologies for Fashion Recommendation: A Survey

    Full text link
    Fashion recommendation is a key research field in computational fashion research and has attracted considerable interest in the computer vision, multimedia, and information retrieval communities in recent years. Due to the great demand for applications, various fashion recommendation tasks, such as personalized fashion product recommendation, complementary (mix-and-match) recommendation, and outfit recommendation, have been posed and explored in the literature. The continuing research attention and advances impel us to look back and in-depth into the field for a better understanding. In this paper, we comprehensively review recent research efforts on fashion recommendation from a technological perspective. We first introduce fashion recommendation at a macro level and analyse its characteristics and differences with general recommendation tasks. We then clearly categorize different fashion recommendation efforts into several sub-tasks and focus on each sub-task in terms of its problem formulation, research focus, state-of-the-art methods, and limitations. We also summarize the datasets proposed in the literature for use in fashion recommendation studies to give readers a brief illustration. Finally, we discuss several promising directions for future research in this field. Overall, this survey systematically reviews the development of fashion recommendation research. It also discusses the current limitations and gaps between academic research and the real needs of the fashion industry. In the process, we offer a deep insight into how the fashion industry could benefit from fashion recommendation technologies. the computational technologies of fashion recommendation
    • …
    corecore