
Santa Clara University Santa Clara University 

Scholar Commons Scholar Commons 

Engineering Ph.D. Theses Student Scholarship 

5-2022 

Personalized Memory Transfer for Conversational Personalized Memory Transfer for Conversational 

Recommendation Systems Recommendation Systems 

Naga Archana Godavarthy 

Follow this and additional works at: https://scholarcommons.scu.edu/eng_phd_theses 

 Part of the Computer Engineering Commons 

https://scholarcommons.scu.edu/
https://scholarcommons.scu.edu/eng_phd_theses
https://scholarcommons.scu.edu/student_scholar
https://scholarcommons.scu.edu/eng_phd_theses?utm_source=scholarcommons.scu.edu%2Feng_phd_theses%2F39&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/258?utm_source=scholarcommons.scu.edu%2Feng_phd_theses%2F39&utm_medium=PDF&utm_campaign=PDFCoverPages


SANTA CLARA UNIVERSITY 
Department of Computer Science and Engineering 

Date: t\fay 2022 

I HERE13Y REC0Iv1NIEND THAT THE THESIS PREPARED UNDER 

DR. YI FANG 

I3Y 

NagaArchana Godavarthy 

ENTITLED 

Personalized Memory Transfer for Conversational 
Recmnmendation Systems 

BE ACCEPTED IN PARTIAL FULFILLMENT OF THE REQUIIlEivlENTS FOR TH8 DEGHEE 

OF 

DOCTOR OF PHILOSOPHY IN COMPUTER SCIENCE AND 

ENGINEERING 

Yi Fang (May24,202214:17 PDT) 

Thesis Advisor 
Dr. Yi Fang 

7, 2022 09:26 PDT) 

Chairman of Department 
Dr. Nam Ling 

Ahmed Amer (May 27, 2022 09:10 POT) 

Thesis Reader 
Dr. Ahmed Amer 

\ ,-···· 

h /;·1/\ 1'1 b --~ . 
Thesis Reader 

Dr. Silvia Figueira 

Thesis Reader 
Dr. Weijia Shang 

Thesis Reader 
Dr. Nicholas Tra.n 



Personalized Memory Transfer for Conversational 
Recommendation Systems 

by 

NagaArchana Godavarthy 

Dissertation 

Submitted in Partial Fulfillment of the Requirements 

for the Degree of Doctor of Philosophy 

in Computer Science and Engineering 

in the School of Engineering at Santa Clara University, 2022 

Santa Clara, California 



To my Late Mother Smt.K.Sai Leela. 

iii 



Acknowledgements 

I would like to acknowledge several people who supported the creation of this work. 

First and foremost, I would like to express my sincere gratitude for my advisor Dr.Yi 

Fang for accepting me as his Ph.D. student. He always believed in me and gently pushed 

me to do better at every step. He has supported me through many tough times in my 

Ph.D. journey. He has been a great mentor and role model not only in academics, 

but also in life in general. He gracefully demonstrated many wonderful qualities like 

perseverance, curiosity, kindness, hard-work. I hope to integrate and incorporate those 

qualities myself. 

It was my husband, Syam who first broached this idea of working towards Ph.D. He 

believed in me and supported me throughout the journey and believed it would be a 

great example for our daughters, Lasya and Lahari. Many thanks and much love to 

my daughters who patiently allowed me to continue working on my Ph.D. I am also 

immensely grateful to my parents, Sai Leela, Sri Hari and my in-laws Visalakshi, Surya 

Bhagavanulu for supporting us in this endeavour. Thanks to my siblings Aparna and 

Abishek for their support. 

I would like to thank my lab mates, Travis, Yuan, Suthee, Xuyang to name a few who 

helped and supported me at various stages of the process. 

I also thank Late Dr.Joanne Holiday, Dr.Ahmed Amer, Dr.Nicolas Tran and Dr.Christopher 

Kitts for giving me time and letting me explore and expand my interests. 

iv 



I would like to thank my doctoral committee Dr.Silvia Figueira, Dr.Ahmed Amer, 

Dr.Nicholas Tran, Dr.Weija Shang for their time. I would also like to thank the Dean 

for giving multiple chances for my journey. 

Finally I am grateful to all the people who wished me best. I have to acknowledge the 

life lessons I have learned during the entire PhD journey along with life experiences. 

With an open mindset, all experiences in life can turned into opportunities to learn 

something useful, which makes life is a life-long journey. Multiple factors play role 

towards success of any great accomplishment. Although intelligence play a major role 

in academic success, that by itself is not sufficient. Hard-work and humility are also 

equally important if not more. "Never Give Up", although sounds like a cliched quote, 

it has deep meaning. Many life situations force people to give-up. But if "Never Give 

Up" attitude is adopted even at the level of intention, I believe, sooner or later nature 

will make things happen. 

My Mother has been a great example and Role model throughout her life showing me 

"Never Give Up" attitude by example till the very end. I believe and J. that the efforts 

are never wasted. 

I sincerely hope I can pay forward all the lessons I have learned and have an open-mind 

to continue learning from my successors. 

Sincerely, 



Personalized Memory Transfer for Conversational 

Recommendation Systems 

N agaArchana Godavarthy 

Department of Computer Science and Engineering 
Santa Clara University 
Santa Clara, California 

2022 

ABSTRACT 

Dialogue systems are becoming an increasingly common part of many users' daily rou-

tines. Natural language serves as a convenient interface to express our preferences 

with the underlying systems. In this work, we implement a full-fledged Conversational 

Recommendation System, mainly focusing on learning user preferences through online 

conversations. Compared to the traditional collaborative filtering setting where feed-

back is provided quantitatively, conversational users may only indicate their preferences 

at a high level with inexact item mentions in the form of natural language chit-chat. 

This makes it harder for the system to correctly interpret user intent and in turn pro­

vide useful recommendations to the user. To tackle the ambiguities in natural language 

conversations, we propose Personalized Memory Transfer (PMT) which learns a per­

sonalized model in an online manner by leveraging a key-value memory structure to 

distill user feedback directly from conversations. This memory structure enables the 

integration of prior knowledge to transfer existing item representations/preferences and 

natural language representations. We also implement a retrieval based response gener­

ation module, where the system in addition to recommending items to the user, also 



responds to the user, either to elicit more information regarding the user intent or just 

for a casual chit-chat. The experiments were conducted on two public datasets and the 

results demonstrate the effectiveness of the proposed approach. 
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Chapter 1 

Introduction 

1.1 Introduction 

Virtual assistants such as Amazon Alexa, Apple Siri, Google Assistant, and Microsoft 

Cortana are becoming an increasingly common part of many users' daily routines. Con­

versational agents are being quickly adopted in industry to handle customer service 

requests at banks, set up travel accommodations, and make product recommendations 

to online retailers. Natural language serves as a convenient interface to computing 

systems and is a natural form to express our preferences to others. Consequently, con­

versational recommendation systems have emerged to elicit the dynamic preferences of 

users through multi-turn interactions in natural language. 

In the setting of conversational recommendations, two parties are interacting with one 

another centered around discussing items, e.g., movies [47]. The first party (seeker) 

11 
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expresses his /her preferences and asks for relevant movie suggestions from the second 

party who acts as the recommender. This recommender's goal is to understand the 

seeker and provide personalized movie recommendations based on the conversation. An 

example dialogue is shown in Figure 1.1. The conversational recommendation setting 

poses ambiguity where the user expresses feedback in the form of natural language, 

in contrast to the traditional collaborative filtering setting where feedback is typically 

provided in explicit (ratings) or implicit (clicks/views) form. The seeker may not specify 

which item(s) he or she likes but rather describes it at a high level such as "I would like to 

watch a suspenseful, but clean family friendly movie" in Figure 1. 1. Even when the user 

makes specific references, items or movies mentioned in the dialogue may not be exactly 

accurate. For example, A Space Odyssey and Star Wars: The Last Jedi are not the full 

names of the movies (which should be 2001: A Space Odyssey {1968) and Star Wars: 

Episode VIII - The Last Jedi (2017) respectively based on the IMDB database). Also, 

the Star Wars that the seeker mentioned is a movie franchise and cannot be mapped to 

a specific movie. Some prior work on conversational recommendations used synthetic 

data [22, 84, 44] or assumed an entity tagger mapping movie mentions in the dialogue 

to unique identifiers [4 7] which may not be available in practice. 

An ideal conversational recommendation system would learn to adapt to user's pref­

erences as the conversation progresses. Inspired by key-value memory networks [61] 

originally proposed for question answering and the successful application of memory 

networks to the recommender domain [24, 34], we propose Personalized Memory Trans­

fer (PMT) to learn user preferences in a natural chit-chat conversational setting. To 
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Seeker: Hi 
Rec: Hello 
Seeker: How are you? I would like to watch a suspenseful, 

but clean family friendly movie. 
Rec: Oh! I love suspenseful movies. Have you seen The Illusionist, it is 

pg-13 however 
Seeker: We have not seen that. We enjoyed A Space Odyssey 
Rec: If you like A Space Odyssey, you can also try Star Wars: The Last 

Jedi for something G Rated 
Seeker: Honestly I'm not a big fan of Star Wars. I mean they are great 

movies but for some reason i just don't like it 
Rec: You can try Planet of the Apes the older one is quite suspenseful 

and family friendly. 
Seeker: Those sound good! I'm going to look into those movies. 
Rec: I hope you enjoy, have a nice one. 
Seeker: Thank you for your help! Have a great night! Good bye 

FIGURE 1.1: Example dialogue between the Seeker asking for recommendations and 
the Recommender providing suggestions. Movie mentions are in bold. 

13 

tackle the ambiguity in natural language, we treat each conversation as a virtual item 

by combining the known item representations. As the conversation progresses, PMT 

updates the user representation based on the observed virtual items. Since collecting 

large amounts of conversational data with labels may be cost prohibitive or infeasible 

due to privacy concerns, we propose to leverage two forms of transfer learning to address 

data sparsity. 

First, we learn an interaction function measuring the user's level of interest in a given 

item from a large-scale collaborative filtering dataset (e.g. MovieLens [31]) and transfer 

the learned movie representations to the conversational recommendation domain. It is 

worth noting that the set of users in the interaction function are specific to the MovieLens 

dataset, different from the users for the Conversational Recommendation task. Next, 

each movie is represented by a memory slot with a corresponding pair of key and value 
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memory in the key-value memory structure. This memory structure is tailored such that 

the model uses the keys to address relevant memories with respect to the current user's 

utterance (query) followed by a reading phase which returns the final output memory 

using the value memory which serves as a virtual item. A pre-trained natural language 

encoder maps each movie's plot to a low-dimensional representation and the learned 

item preferences act as the basis for the key and value memories, respectively. During 

the conversation the user's utterance is mapped to a low-dimensional semantic vector 

with the natural language encoder which addresses the key memories by identifying 

relevant movies for the user. For each conversation we learn a new user representation 

in an online manner by leveraging the virtual item as a positive instance along with 

considering user's satisfaction to evaluate the pairwise objective. As the conversation 

progresses PMT updates the user representation with standard backpropagation via 

stochastic gradient descent guided by the virtual item extracted and sentiment from the 

user's utterance permitting personalized movie recommendations. 

It is worth noting that a full-fledged conversational recommendation system should in­

clude a response generation component, which is to generate human-understandable 

responses for communicating with users and making recommendations. There exist 

multiple strategies and active research on how to generate readable, fluent, and consis­

tent natural language responses [28]. In this work, in addition to learning user prefer­

ences over conversations, we also implement response generation using retrieval based 

model[58]. Our contributions can be summarized as follows: 
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• To the best of our knowledge, this is the first work that learns user preferences in 

an online fashion from conversations where there may only exist high level user 

feedback or inexact item mentions. 

• We propose a novel memory network named Personalized Memory Transfer (PMT) 

to distill user feedback directly from user's utterances by integrating prior knowl­

edge of existing item representations/preferences and pre-trained language models, 

which allows the learning of a new user representation over conversations. 

• We implement two simple retrieval-based response generation modules. This 

makes our implementation, a complete conversational recommendation system. 

• Experimental results on two public conversational datasets demonstrate the effec­

tiveness of PMT to learn a personalized user representations with two interaction 

functions and natural language encoders in an online setting. We made the source 

code publicly available on GitHub1 . 

The remainder of the paper is organized as follows: Section 2 introduces the research 

status and related work. Section 3 lays the foundation for the main concepts used in 

our implementation. Section 4 presents the proposed approach. Section 5 demonstrates 

and analyzes our experimental results. Finally, Section 6 concludes the paper with a 

discussion on future work. 

1https://github.com/agodavarthy/PMT 



Chapter 2 

Related Work 

2.1 Conversational Recommendation Systems 

Recommendation systems are vital to keeping users engaged and satisfied with per­

sonalized recommendations in the age of information explosion. Modern E-commerce, 

entertainment and social media platforms provide personalized content by analyzing 

user preferences based on explicit and/ or implicit feedback and infer their potentially 

preferred items. Based on the type of input data, the recommender systems can be 

summarized into collaborative filtering systems, content-based recommender systems, 

and hybrid recommender systems [102]. Early researches in collaborative filtering for­

mulated the recommendation task as predicting the user rating score on the candidate 

items [82]. The rating-based recommendation models did not perform well in top-n rec­

ommendation, which motivated the ranking-based recommendation by learning a model 

16 
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based on the relative preference of a user over pairs of items [76]. Content-based rec­

ommendation utilizes item or user features (such as item description, user profiles, and 

attributes) to find similar items or users for recommendations [54]. 

Most conventional recommender systems highly rely on users' historical trajectories to 

generate personalized recommendation. It lacks the capability of capturing users' dy­

namic intentions/demands. This intrinsic limitation motivates online recommendation 

with its goal to adapt the recommendation results with the user's online actions [48]. 

Much existing work models it as a multi-arm bandit problem [92, 97]. While achieving 

remarkable progress, the bandit-based solutions are still insufficient especially in the 

warm start scenarios [44]. In the recent years, conversational recommender systems 

have attracted an increased attention in the research community as they enable a sys­

tem to interact with users using natural language. The general idea of such systems is 

to support a task-oriented, multi-turn dialogue with their users. 

Sun and Zhang [85] represented a dialogue vector as a set of facet-value pairs and fuses 

the vector with user and item ratings via a factorization machine. Li et al. [47] assumed 

that movies mentioned in the conversation are known in advance. The model encodes 

the incoming utterances and progressively constructs the input vector to the user-based 

autoencoder to predict ratings. Our work differs from the existing works as our model 

does not need any prior knowledge of movies. Unlike [47], our work does not need to 

tag a movie directly in the conversation. A similar but related approach is interactive 

recommendation which elicits specific questions to the user regarding their preferences 

but may diminish user experience [14, 15, 107]. [64] estimates the value for each question 
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in the conversation to make sure that questions asked by the agent are relevant to the 

target item using actor-critic framework. [4] proposes a conversational paradigm for 

product search driven by non-relevant items, based on which fine-grained feedback is 

collected and utilized to show better results in the next iteration. [45] propose an 

interactive path reasoning algorithm on a heterogeneous graph on which users, items, 

and attributes are represented as nodes and an edge connected two nodes represented a 

relationship between two nodes, e.g., a user purchased an item, or an item has a certain 

value for an attribute. With the help of the graph, a conversation can be converted to 

a path on the graph. 

There are many scenarios in the CRS, where the recommender has to respond appro­

priately to the user utterance. Some user utterance require preference refinement e.g., 

I like Pulp Fiction, but not Quentin Tarantino [67], while others require systems opin­

ion about a particular item, How about Huawei P9 [98]. In [72] the system responses 

are pooled from a Q&A knowledge base, which then are ranked to determine an ap­

propriate response. In case of absence of suitable response, it is then generated by the 

sequence-to-sequence model. Another related work for response generation [69] trained 

two different RNNs, one to respond with general greetings or chit-chat and the other to 

respond to more specific user questions. When the system is unable to comprehend user 

intent, certain approaches like politeness, apology strategy,repetition/ clarification are 

adopted [l]. For a comprehensive literature review on conversational recommendation 

systems, readers can refer to two recent survey articles [36, 28]. 
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2.2 Task-Oriented Dialog System 

A task-oriented dialog system's intent is to assist users with a given task through nat­

ural language such as hotel booking, travel or online shopping. Task-oriented dialogue 

systems is one important branch in dialogue system research. Though conversational 

recommendation is an emerging research topic, many of the basic concepts and model 

designs were originated from task-oriented dialogue systems. Pioneering work by [98] 

leveraged natural language processing and crowdsourcing to build a dialog system for 

E-commerce. Bordes et al. [5] used a memory network to store user utterances and 

predicts the response for a restaurant reservation task. Wen et al. [95] modeled a task­

oriented conversation as a sequence-to-sequence mapping problem while augmenting 

the model with the dialogue history. Mo et al. [63] learned a personalized dialogue 

agent by transferring relevant knowledge from conversations via reinforcement learning 

framework. For non-textual utterance such as images, Cui et al. [17] proposed a multi­

modal encoder which is a combination of image and text encoders to jointly transform 

an utterance into a dialog vector. Zhang et al. [104] proposed the "systems ask, users 

respond" paradigm for conversational recommendation in e-commerce. A system agent 

is designed to ask users different questions to obtain clarified demands continuously, and 

a multi-memory network is utilized to analyze the user utterances for recommendation. 

Understanding user preferences and intentions from dialogues is the key requirement for 

conversational recommendation or dialog systems in general, since subsequent tasks such 

as response generation heavily rely on this information. Much existing work focused on 
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the multi-turn strategy and core recommendation logic [28], while they circumvented the 

extraction of user preferences from raw natural language utterances and often required 

the preprocessed input such as rating scores [109] and YES/NO answers [108], which 

is unnatural in real-world human conversations. Some recent work extracted semantic 

information in users' raw utterance by utilizing deep learning, e.g., Li et al. [47] based on 

recurrent neural network (RNN), Liu et al. [51] based on convolutional neural network 

(CNN), and Penha and Hauff [70] based on the bidirectional encoder representations 

from transformers (BERT) [20]. 

[55] models two separate systems within a unified framework, seek high-level mapping 

between hierarchical dialog acts and multi-hop knowledge graph reasoning. The model 

walks on a large-scale knowledge graph to form a reasoning tree at each turn, then 

mapped to dialog acts to guide response generation. [74] propose the Knowledge-Based 

Question Generation System (KBQG), a framework for conversational recommendation 

which models a user's preference in a finer granularity by identifying the most relevant 

relations from a structured knowledge graph (KG). 

2.3 Cross-domain Recommendation 

Cross-domain recommendation seeks to transfer knowledge from a data-rich source do­

main and utilize it in a new target domain [78]. This may help alleviate the cold-start 
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problem or lack of sufficient data for personalized recommendations in the new tar­

get domain. Typical cross-domain recommendation models are extended from single­

domain recommendation models [46]. Hu et al. [34] introduced a memory component 

jointly with a transfer network to selectively transfer source content information to 

the target domain for a given user. These approaches assume that different patterns 

characterize the way that users interact with items of a certain domain. However, our 

approach differs that it does not require users to be overlapped in the two domains and 

can address the user cold-start problem. Gao et al. [27] proposed two levels of atten­

tion mechanisms to transform the interaction history of a user in the source domain 

as an additional user latent factor in the target domain. Their approach exploits the 

transferable information from the set of overlapped items which may not be feasible 

to apply to the conversational domain where the source and target domains are often 

multimodal. Another recent approach by [37] uses domain separation networks [6] to 

train a multi-class classifier from the source domain to predict the preferred item in the 

target domain, but the idea may not be applicable to natural language conversations. 

[103] proposes Cycle Generation Networks (CGN) focuses on learning explicit mapping 

between a user's behaviors (i.e. interaction itemsets) in different domains during the 

same temporal period. [106] constructs two separate heterogeneous graphs based on 

the rating and content information from two domains to generate more representative 

user and item embeddings. Then, we propose an element-wise attention mechanism to 

effectively combine the embeddings of common users learned from both domains. [50] 



List of Tables 22 

proposes a novel Bi-directional Transfer learning method for cross-domain recommen­

dation by using Graph Collaborative Filtering network as the base model (BiTGCF). 

[93] proposes a TagCDCTR (Tag-informed Cross Domain Collaborative Topic Regres­

sion) model, which exploits shared tags as bridges to link related domains through an 

extended collaborative topic modeling framework. The model exploits the inter-domain 

relations by encoding cross domain item-item similarity based on common tags and 

jointly learning a shared set of topics from all domains together. 



Chapter 3 

Foundation 

3.1 Conversational Recommendation Systems 

Recommender Systems utilize users historical preferences in the form of either explicit 

or implicit feedback to provide recommendations. However this kind of static recom­

mendation has one major shortcoming, that the user preferences might be stale. Con­

versational recommendation systems can mitigate this problem to a certain extent, as 

they can obtain most recent user preferences using a dialog based conversation. Conver­

sational Recommendation Systems provide personalized recommendation and natural 

language dialogue for the users, using either text, speech or vision based interface. 

In this section, we will provide overview of Conversational Recommendation Systems. 

23 
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3.1.1 Motivation 

Typically, a recommender system presents a tailored set of recommendations after ob­

serving the users behavior over a period of time. Although such an approach is common 

and useful in various domains, it can have a number of potential limitations. There 

are, for example, a number of application scenarios, where the user preferences cannot 

be reliably estimated from their past interactions. This is often the case where the 

user even might have no past experience. The set of recommendations can be highly 

context-dependent, and it might be difficult to automatically determine the user's cur­

rent situation or needs. Another assumption is that users already know their preferences 

when they arrive at the site which is not necessarily true. Users might also construct 

their preferences only during the decision process, when they become aware of the space 

of the options. In some cases, they might also learn about the domain and the available 

options only during the interaction with the recommender. Conversational Recommen­

dation System addresses many of the above mentioned challenges. 

3.1.2 History 

Although Conversational Recommendation Systems is in boom right now, the main con­

cept has started about 30 years ago, in IR(Information Retrieval), HCI(Human Com­

puter Interaction), RecSys(Recommendation Systems) communities. 

In [16], the authors proposed / 3 R, one of the earliest information systems that enables 

user-system interaction through dialogue. Later [3], proposed MERIT, an interactive 
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FIGURE 3.1: Typical architecture of a Conversational Recommender System 

25 

information seeking system by using script-based conversational interaction. In 2000 

[30] formally introduced Conversational Recommendation System, using it for place 

recommendation. For more than 15 years after that the research in this area has been 

steadily growing. In 2018, there has been a surge of research work in this field , owing 

to the increasing popularity of Deep Learning and Reinforcement Learning. 

Conversational Recommendation Systems can be formulated as a recommendation sys-

terns which can elicit dynamic user preferences and utilize the gained knowledge to 

satisfy user needs in a real-time multi-turn dialogue. A typical CRS architecture [36] 

include modules like input processing, output generation, dialogue management, user 

modeling and recommendation explanation module as shown in Figure 3.1. The in-

put is obtained in many different modes including form-based, or natural language e.g., 

text, speech, vision. The input processing module handles the processing of the input 
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based on type of the input. One of the main features of Conversational Systems is the 

interaction initiative, including system-driven, user-driven and mixed-initiative systems. 

Critiquing is a method of conversational recommendation that iteratively adapts rec­

ommendations in response to user preference feedback. Most of the critiquing-based 

systems are considered to be system-driven or mixed-initiative. The exclusively system­

driven applications are form-based systems, where the system guides the user through 

a personalized preference elicitation until enough is known about the user to make rec­

ommendations. The other extreme is user-driven, which is mode like a question-answer 

mode, where "user-asks, system responds". 

The User Modeling System module learns user preferences and builds user profile during 

the conversation. The Recommender and Reasoning System retrieves a set of recom­

mendations based on the current dialog state and current user profile. The response 

generation module is responsible for generating the system dialogue as a response. Vari­

ous knowledge entities like item database, user models and background knowledge could 

be utilized for improving the overall performance. 

3.1.3 Underlying Knowledge and Data 

CRS is a dialog-based system, which has to support user's information needs and user 

intent. Especially in NLP-based approaches, detecting user intent is one of the main 
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tasks. Some of the common domain-independent user-intents found in literature in­

clude starting/re-starting/ending a dialog, chit-chat, obtaining recommendations and 

explanations. 

User Modeling is one of the central tasks of CRS. User preferences can be elicited by 

various modalities and forms in which user might want to express the preferences. The 

modeling of user using the preferences can be utilized for further inferences regarding 

the relevance of the recommended items. User preferences can be obtained in two 

ways, during the ongoing dialog (short-term) or past user preferences or preference over 

multiple sessions (long-term). Some of the ways user preferences could be elicited from 

the on-going dialog is individual item ratings(likes, dislikes) or from tags, key-phrases, 

etc. 

CRS systems utilize additional knowledge related to items to be recommended(movies, 

books, etc) like corpora of the natural language conversation for learning and additional 

knowledge sources for entity recognition. Item related knowledge include item-ratings, 

meta-data including attributes of the item(e.g., genre of movies). These attributes can 

be utilized to compute personalized recommendation or provide explanations for the 

recommendations. Examples of some item related knowledge are MovieLens, Netflix 

ratings, amazon electronic products reviews, etc. CRS dialogue corpora are usually 

built using recorded and annotated conversation between human annotators. Some of 

the dataset built that way include ReDial, GoRecDial, bAbI, etc. In our work we used 

the ReDial and GoRecDial datasets. 
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3.1.4 Computational Tasks 

3.1.4.1 Main Tasks 
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CRS carry out four general types of tasks during conversations : Request , Recommend, 

Explain, and Respond, as seen in Figure 3.2. 

Request: One main task of CRS is to determine next question to ask, preferably with 

increased dialog efficiency, i.e., with fewer number of turns. Many of the CRS mod­

els use "slot-filling" approach, seeking to acquire user preference information regarding 

predefined item attributes. Early CRS systems used heuristics to rank the item at­

tributes for which the user has not expressed any preference yet [101, 87, 83]. Some of 

the approaches include user feedback on a pair of items or set of items [52], popularity, 

diversity of items [8 , 60, 67, 73]. More recent work explore learning based approaches 

including reinforcement , RNN-based learning [85, 88, 56] . 
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Recommend: This is the pivotal task of a CRS system. There are many approaches 

including the traditional collaborative filtering, content-based, knowledge-based, hybrid 

[53, 68, 94]. In [80], a history-guided critiquing system was proposed that aims to 

retrieve recommendation candidates from other users' sessions that are similar to the 

one of the current user. In [21], a travel recommender system was implemented that 

computes recommendations based on the relevance of item attributes to user preferences 

based on the Euclidean Distance. 

Explain: Explanations can increase the system's perceived transparency, user trust and 

satisfaction, and they can help users make faster and better decisions [29]. 

Respond: This task is relevant to user-initiated or mixed NLP based CRS system where 

user actively asks a question, issues a command to the system. This task related to sit­

uations which are not recommendations or explanations. Two approaches can be used 

to generate system response for user utterances. One approach is to map the utter­

ances to predefined user intents and then system responds using templates. Alternative 

approach is to automatically generate systems response using machine learning model 

from dialog corpora. Some of the conversation breakdown approaches are adopted in 

situations where system cannot infer user intent, by apologizing and politely asking to 

repeat the question. 

In literature commonly used response generation approaches include retrieval-based and 

generation-based. [58] compares both the retrieval-based and generation-based and 

showed that KBR(Knowledge-based Retrieval model) can be favorable over the deep 
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learning based generation models from user perspective. They used crowd source to 

evaluate if the responses generated by both retrieval-based and generation-based meth­

ods are relevant to the user utterance in the the dialogue. 

3.1.4.2 Supporting Tasks 

In NLP-based CRS, it is critical to understand user intent, based on which system 

needs to take an appropriate action. Some of the supporting tasks include intent detec­

tion(including sentiment analysis) and named entity recognition(NER) [65]. 

In our work, we implement the many of the modules including input processing, dialog 

management system, user modeling, recommendation modules and response generation. 

However the main focus of this work is to learn the user profile in online fashion as the 

conversation unfolds. We will provide more details on the modules in the Chapters 4 

and 5. 

3.2 Memory Networks 

Memory Networks are a class of models that combine large memory with learning com­

ponents that can read and write to it [96]. Early Deep learning models like RNN, LSTM, 

GRU have capability for short term memory. Recurrent Neural Networks(RNN) [100] 

models are very effective for many applications including neural machine translation 

[2, 13], speech recognition [49], generation image descriptions [40], etc. Most of these 
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involve dealing with a single sentence. But when it comes to analyzing multiple sen­

tences to arrive at the solution, more complex models including attention [90] or memory 

[43, 11] are required. 

However when there is some type of dependencies within the data, i.e., out-of-order ac­

cess or long-term dependency, LSTM, GRU models do not suffice. The main motivation 

for Memory Networks is long term memory. Long term memory is required for tasks 

like reading comprehension where in some questions are answered after reading a story. 

The model incorporates Reasoning with Attention over Memory(RAM). 

The main components of memory network as implemented in [96] are: 

• I (input): converts to bag-of-word-embeddings x. 

• G (generalization): stores x in next available slot mn, 

• 0 (output): Loops over all memories k=l or 2 times: 

- 1st loop max: finds best match mi with x. 

- 2nd loop max: finds best match mi with (x, mi)-

- The output o is represented with (x, mi, mi). 

• R (response): ranks all words in the dictionary given o and returns best single 

word or full RNN. 
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Objective function: Minimize: 

Where: 

L max(O, 'Y - so(x, moi) + so(x, f))+ 
f-l-mo1 

L max(O, 'Y - so([x, moil, mo2) + so([x, moil,}'))+ 
f'l-mo2 

L max(O, 'Y - sR([x, moi, mo2], r) + sR([x, moi, mo2l, r)) 
rf-r 

S0 is the matching function for the Output component. 

SR is the matching function for the Response component. 

x is the input question. 

m01 is the first true supporting memory (fact). 

mo2 is the second true supporting memory (fact). 

r is the response. 
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Figure 3.3 shows the interaction between the memory and controller module, which learn 

the new representations to the stored in the memory using the new input sentences. 

[96] formulated a set of 20 tasks, similar to unit testing in computer science. Each "leaf" 

task is an independent task which can be tested one specific aspect of intended behavior. 

Subsequently "non-leaf" dependent tasks can be built by testing combinations. 
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Figure 3.4 shows an example of internal working of memory module for a reading com­

prehension task where the system receives three input sentences and has to answer a 

question based on the input story. Figure 3.5 shows an example of a another factoid QA 
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John is in the playground . --+-----!: SUPPORTING FACT J 

Bob is in the office. 
Where is John? A:playground 

FIGURE 3.5: Factoid QA with Single Supporting fact 
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with two supporting facts. In this case the question "Where is John" could be answered 

using one supporting fact of "John is in the playground." which is two sentences farther. 

John is in the playground. - ---- SUPPORTING FACT 
Bob is in the office. ~------~ 

John picked up the football. 
Bob went to the kitchen. 

- ---- SUPPORTING FACT 

Where is the football? A:playground 

FIGURE 3.6: Factoid QA with Two Supporting fact 

Figure 3.6 shows an example of a another factoid QA with two supporting facts. In 

this case the question "Where is the football?" could be answered using two supporting 

facts which are two("John picked up the football") and four("John is in the playground") 

sentences farther. 

Similarly there are many more tasks including two argument relations: subject vs object, 

yes/no questions, counting, lists/ sets, basic coreference, compound coreference, time 

manipulation, basic deduction, positional reasoning, reasoning about size, path finding, 

etc. 
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3.3 Latent Factor Models 

3.3.1 Collaborative Filtering 

A Recommendation System is a system which predicts the ratings the user might give 

a particular item. It is widely adopted in industry where companies recommend their 

products to the online customers e.g., Amazon(products), Google(Search, YouTube), 

etc. There are mainly 2 types of Recommender Systems, collaborative filtering [25], 

content-based filtering [89]. Collaborative filtering method is an application of Matrix 

Factorization [42] to find the relationship between items' and users' entities. Latent fea­

tures, the association between users and items matrices, are determined to find similarity 

and make a prediction based on both item and user entities. 

As shown in Figure 3.7, there are various types of Recommender Systems. On the high 

level there are collaborative filtering, content-based and hybrid of these two. There are 

three types of collaborative filtering including, memory-based, model-based and hybrid. 

Memory-based models include user-based similarity and item-based similarity. Model­

based models include clustering(KNN), matrix factorization based(SVD, NMF) and 

deep learning based(GMF) As the Netflix Prize competition has demonstrated, matrix 

factorization models are superior to classic nearest-neighbor techniques for producing 

product recommendations, allowing the incorporation of additional information such 

as implicit feedback, temporal effects, and confidence levels [42]. Matrix factorization 

models map both users and items to a joint latent factor space of dimensionality f, such 
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that user-item interactions are modeled as inner products in that space. Given a set of 

U users and I items, the set of ratings from user for some items can be computed using 

Matrix Factorization as in Figure 3.8. 

items items 
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FIGURE 3.8: Matrix Factorization 
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3.3.1.1 Memory-Based Colaborative Filtering 

The memory-based approach uses user rating data to compute the similarity between 

users or items. Typical examples of this approach are neighbourhood-based CF and 

item-based/user-based top-N recommendations. 

For example, in user based approaches, the value of ratings user u gives to item i is 

calculated as an aggregation of some similar users' rating of the item:r u,i = aggru'EU r u',i 

where U denotes the set of top K users that are most similar to user u who rated item 

i. An example of the aggregation function can be: 

1 
rui = - ~ ru'i , N~, 

u 1EU 

The neighborhood-based algorithm calculates the similarity between two users or items, 

and produces a prediction for the user by taking the weighted average of all the ratings. 

Similarity computation between items or users is an important part of this approach. 

Multiple measures, such as Pearson correlation[77] and vector cosine[7] based similarity 

are used for this. 

The Pearson correlation similarity of two users ux, Uy is defined as: 

where lxy is the set of items rated by both user x and user y. 
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The cosine-based approach defines the cosine-similarity between two users Ux and Uy as: 

..... ..... 
• , ( ) ( .......... ) Ux·Uy 

cosme_s1m Ux,Uy = cos Ux,Uy = lluxll X lluyll '°' r2 LJ Uy,i 
iEluy 

The user based top-N recommendation algorithm uses a similarity-based vector model 

to identify the k most similar users to an active user. After the k most similar users 

are found, their corresponding user-item matrices are aggregated to identify the set of 

items to be recommended. A popular method to find the similar users is the [19], which 

implements the nearest neighbor mechanism in linear time. 

User-based approach uses similarity between users, and the items that would be rec­

ommended to a user would be based on items that another user that is most similar 

to them liked. A user-based recommender first finds k users whose row vectors are the 

most similar (and sufficiently similar) to the one of u. (k is a free parameter.) We will 

call these the k neighbors of u. 

On the other hand, item-based approach uses the similarity between items. Then if a 

user likes one item, it will recommend the item that are most similar to that one. It 

identifies sets of items that occur together in the same shopping cart way more often 

than expected by chance. These sets are called frequent itemsets. To the new user who 

bought some of the items in a frequent itemset, some others in the same set may be 

recommended. 

The advantages with this approach include explainability of the results, which is an 
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important aspect of recommendation systems, it is easy to create and use the data, etc. 

Some of disadvantages with this approach include decrease in performance when data 

gets sparse, which occurs frequently with web-related items. This hinders the scalability 

of this approach and creates problems with large datasets. Although it can efficiently 

handle new users because it relies on a data structure, adding new items becomes more 

complicated since that representation usually relies on a specific vector space. Adding 

new items requires inclusion of the new item and the re-insertion of all the elements in 

the structure. 

3.3.1.2 Model-Based Colaborative Filtering 

In this approach, models are developed using different data mining, machine learning 

algorithms to predict users' rating of unrated items. There are many model-based CF 

algorithms. Bayesian networks, clustering models, latent semantic models such as singu­

lar value decomposition, probabilistic latent semantic analysis, multiple multiplicative 

factor, latent Dirichlet allocation. 

Latent factor models like singular value decomposition(SVD), principal component anal­

ysis(PCA), compress user-item matrix into a low-dimensional representation in terms 

of latent factors. One advantage of using this approach is that instead of having a high 

dimensional matrix containing abundant number of missing values we will be dealing 

with a much smaller matrix in lower-dimensional space. A reduced presentation could be 

utilized for either user-based or item-based neighborhood algorithms that are presented 
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in the previous section. There are several advantages with this paradigm. It handles the 

sparsity of the original matrix better than memory based ones. Non-Negative Matrix 

Factorization is one of the Model-based MF. 

Non-Negative Matrix Factorization Non-negative matrix factorization(NMF) is 

a technique for obtaining low rank representation of matrices with non-negative or pos­

itive elements. Such matrices are common in a variety of applications of interest. NMF 

is a dimension reduction method, as the resulting decomposed matrices have a smaller 

number of entries than the original matrix. This means that one does not need all the 

entries of the original matrix to perform a decomposition, thus NMF should be able 

to handle missing entries in the target matrix. Indeed, factorization can be fulfilled by 

dropping the loss items related to the missing entries if the target loss function is a sum 

of per-entry losses, e.g., mean square error (MSE) or Kullback-Leibler (KL) divergence. 

Furthermore, the reconstructed matrix has values on entries that are missing in the 

original matrix. This reveals the capability of NMF for missing value imputation. 

Given a data matrix A of m rows and n columns with each and every element aij ~ 0, 

NMF seeks matrices W and H of size m rows and k columns, and k rows and n columns, 

respectively, such that A ~ W H, and every element of matrices W and H is either 

zero or positive. The quantity k is set by the user and is required to be equal or less 

than the smallest of m and n. The matrix W is generally called the dictionary or basis 

matrix, and H is known as expansion or coefficient matrix. The underlying idea of this 

terminology is that a given data matrix A can be expressed in terms of summation of 
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k basis vectors ( columns of W) multiplied by the corresponding coefficients ( columns of 

H). 

The matrices W and H are determined by minimizing the Frobenius norm: 

IIA-WHll2 

The minimization is carried out by some suitable iterative search process and the so­

lution, i.e. matrices W and H, is not unique. There are many variations to the basic 

NMF approach wherein additional constraints, for example sparsity, are imposed on the 

resulting solution to limit the solution space for W and H. 

Generalized Matrix Factorization Generalized Matrix Factorization (GMF) [33] 

is a simple nonlinear generalization of MF, which makes a prediction Yui of Yui as follows: 

where denotes the element-wise product of vectors, his a weight vector, and¢(·) is an 

activation function. To show that MF is a special case of G MF, we can simply set h = 1 

where 1 is the vector with all elements equal to 1. In this way, apart from the activation 

function, the MF model is exactly recovered by GMF. 
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Methodology 

In this section, we describe our proposed model Personalized Memory Transfer (PMT) 

to learn user preferences in an online conversational chit-chat setting. We use movie 

recommendations as a motivating example, but the proposed method is generic and 

can be applied to other domains as well. In this setting, there exist two types of 

ambiguities: 1) the user expresses preference in the form of natural language instead 

of explicit (ratings) or implicit (clicks/views) feedback; 2) movie mentions within the 

conversation may not be able to be mapped to unique item identifiers, e.g., users might 

simply just ask for animation movie recommendation. 

We tackle the aforementioned challenges by treating each conversation as a virtual item 

with a combination of the (pre-trained) known item representations based on their 

content semantic similarity obtained from a key-value structured memory [61]. This 

42 
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virtual item can then be used as a positive instance in the pairwise training of the 

model. 

More specifically, PMT performs online updates to a user representation throughout 

the conversations by consulting the stored semantic movie representation in the mem-

ory. The key-value memory structure is tailored such that the model uses the keys to 

address relevant memories with respect to the current user 's utterance (query) followed 

by a reading phase which returns the output memory using the value memory. This 

memory structure enables the model to transfer prior knowledge of item representation­

s/ preferences and natural language to bridge two different forms of transfer learning. 

The output memory returned by the key-value memory structure acts as a mixture of 

item preferences extracted from user's natural language conversation, and it will guide 

the updates to the user representation with standard backpropagation via stochastic 

gradient descent. An overview of the process can be seen in Figure 4.1. The subsections 

below describe the architecture in detail. 
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4.1 Key-Value Memory 

One of the major components of PMT is the key-value memory. Each movie j is repre­

sented by a memory slot with a corresponding pair of key memory kj and value memory 

vi. Intuitively, the key memory represents each movie in a low-dimensional semantic 

space to identify similar movies according to the current user's utterance which in turn 

produces a relevance score weighting the appropriate value memories according to sim­

ilarity. This weighted value memory or output memory acts as a weighted combination 

of item preferences represented in a low-dimensional latent space. 

Formally, we define the key memory for the /h movie via embedding a sequence of words 

Wt corresponding to a movie's plot (or summary) Di= { w1, ... , wlDil} with an encoder: 

(4.1) 

where <I>(·) is a natural language encoder or feature extractor which maps a variable 

length textual document to a single fixed de dimensional semantic vector. The encoding 

function could be a pre-trained language model such as Universal Sentence Encoder 

[9], Transformer [90], ELMo [71], and BERT [20]. Note that this can also be used to 

encode the user's utterances as well. In Section 5.5, we investigate the effect of the 

natural language encoder on the recommendation performance by experimenting with 

different pre-trained sentence encoders. Once the encoder is pre-trained on a large 

corpus the parameters remain frozen during our training process. This is the first form 
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of transfer learning in PMT. We would like to point out that the definition of the keys 

is not restricted to a language model representation, alternative representations such as 

knowledge bases [61] or additional meta information such as actors, genres, or directors 

may also be incorporated to achieve more objective recommendations [39]. 

Each value memory Vj is a low-dimensional latent representation of each movie j. We 

use the learned item representations from a pre-trained interaction function as the value 

memories. The pre-training can be done on a traditional large-scale collaborative filter­

ing dataset such as MovieLens. This is the second form of transfer learning in PMT. 

Section 4.4 includes the details about the interaction function. Similar to the key mem­

ory, we are not restricted to setting the value memory to a specific representation from 

the interaction function. In addition, the flexibility of the key-value memory structure 

allows the key memory and value memory to be of different dimensionality. 

We would like to point out that the entire memory structure is fixed and not learnable 

throughout the conversation. Although this work focuses on the movie domain, the 

representation of the keys can be easily extended to other application domains such as 

using product descriptions for product recommendation or paper abstracts for paper 

recommendation. 
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4.2 Key Addressing 

To identify movies the user may be interested in, we query the key memory by encoding 

the user's utterance to a low-dimensional representation producing a relevance score for 

each movie. Specifically, an utterance consisting of a variable length sequence of words 

Xt = { w1 , ... , w1xt1} at a given turn tis encoded as: 

(4.2) 

where qt represents the low-dimensional query embedding encoding the current user's 

utterance. Using the same natural language encoder as the key memory in the previous 

subsection allows the movie's plot and each utterance to be mapped into the same space 

permitting semantic comparison in vector space [10]. The model uses this query vector 

to identify relevant movies in the key memory the user may be interested in based on 

past utterances. Each memory slot is addressed by computing the similarity of the given 

utterance and each movie with: 

(4.3) 

where s; expresses the user's level of interest in the /h movie based on the encoded 

movie's summary and the tth utterance qt as measured by the inner product. I is the set 

of all movies. For example, if a user expresses interest in animated children movies, the 
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encoded query should produce higher relevance scores to semantically related children 

movies in the key memory. 

4.3 Key-Value Reading 

Reading the key-value memory structure bridges the two forms of transfer learning 

(natural language encoder and item representations/preferences) in separate semantic 

spaces. At a high level, the similarity computed between the query and key memories 

weighs the relevant value memories. In other words, the user's utterance determines the 

amount of weight allocated to each movie's value memory yielding a mixture of item 

representations. 

Including the entire set of all movies can be computationally expensive and may in-

traduce noise to the final memory output representation. Similar to the key-hashing 

performed in [61], we select a subset of top-k movies with the highest similarity score 

according to Eq. (4.3) which we denote as Sk. To obtain the final output memory we 

first normalize the similarity with the softmax function: 

exp (s}) 

I: exp (sf) 
lESk 

(4.4) 

obtaining a distribution of the current user's preference over each movie j E Sk from the 

utterance at turn t. Alternatively, we can also interpret this as an attention mechanism 

where the attention places higher weights on movies similar to the utterance. 
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Finally, the output memory representation is weighted by the probability each movie is 

relevant to the current user's utterance in the conversation via: 

(4.5) 

where Vj is the latent representation of movie j. This weighted value memory increases 

the impact of corresponding movies whose query and keys have high similarity in the 

semantic space while decreasing the influence of movies which may be irrelevant. Each 

value memory may represent concrete variations such as the genre of a movie or more 

subjective aspects such as visual aesthetics or a completely hidden and uninterpretable 

latent structure. By weighting each of the value memory according to its relevance we 

construct a weighted combination of preferences representing multiple degrees of each 

variation. 

We now have the final memory output representation extracted from the user's utterance 

Xt at turn t. As discussed before, we assume that it may not be possible to map user's 

natural language conversation to particular movies, the memory output representation 

ot which is a combination from the known item representations based on their content 

semantic similarity obtained by the key-value memory structure serves as a good virtual 

"positive" item representation for the user. 



Chapter 4: Methodology 49 

4.4 Interaction Function 

In this section, we first present the interaction function in the classic collaborative 

filtering setting and then show how we can utilize it in our proposed model via pre­

training. 

In collaborative filtering, the interaction function measures a user's level of interest in 

a given item. This interaction function can estimate the scores of unobserved entries 

with M users and N items in the M x N ratings matrix R, which are used to rank each 

item. The set of all users and items are denoted as U and I, respectively. Formally, 

we assume the interaction function takes the following form which produces a ranking 

score for a given user i EU and item j EI as: 

(4.6) 

where ui and Vj are generally learnable parameters in a shared d dimensional space. 

We can define multiple forms of the interaction function f(·). The parameters of all 

interaction functions can be learned by optimizing the pairwise ranking BPR loss [75] 

via stochastic gradient descent (SGD). The most basic interaction function is just a 

linear version via the inner product: 

(4.7) 
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which can yield one of the early influential algorithms in collaborative filtering: Singular 

Value Decomposition (SVD) [79], and other related matrix factorization (MF) based 

methods. 

A linear function may lack the flexibility to disentangle complex item preferences and 

generalize to another dataset. Hence we can use a nonlinear variant generalized matrix 

factorization (GMF) [33]: 

(4.8) 

where 0 is the elementwise product; h E ]Rd is an additional parameter to be learned and 

¢(·) is a nonlinear activation function. We can adopt the rectified linear unit (ReLU) 

function ¢(x) = max(O, x) as the nonlinear function due to its nonsaturating behavior 

[66] . GMF degenerates to matrix factorization if we set the nonlinear activation function 

¢(·) to the identity function and constrain the vector h to the ]_ vector with all values 

as 1. 

In our work, we use the interaction function introduced above ( either MF or GMF) as 

the last layer of the proposed architecture, as illustrated in Figure 4.1. We can estimate 

the ranking score of the output d in Eqn.(4.5) for the user i using the interaction 

function as below 

(4.9) 

where ui is the user representation for the utterance at turn t. As discussed in Section 

4.3, ot is a combination from the known movie representations Vj and can be viewed as 

a virtual movie representation of the utterance Xt at turn t. 
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Inspired by the recent success of pre-trained models in many domains, we noticed that 

both latent representation of movie Vj and interaction function f(·) can be pre-trained 

on the existing large-scale movie rating datasets such as MovieLens. Thus, we do not 

have to estimate Vj and ot, if there is no fine tuning. The only parameter that needs 

to learn is the user representation ui. During the conversation, user representation ui 

is dynamically updated based on each new utterance represented by a combination of 

the known movies. The next section explains the loss function and the optimization 

procedure in model training. 

4.5 Learning the User Preference Vector 

Since the nature of the data resembles the implicit feedback setting, we take the pairwise 

assumption that a given user i prefers the observed item j+ over the unobserved item 

j-. However, without previous user interactions we cannot use standard techniques to 

perform the sampling. Instead, the positive item is inferred from the conversation via 

reading the key-value memory structure which produces a virtual item representation 

as ot from the utterance Xt. Since users may express positive or negative preferences 

towards particular recommendations throughout the conversation, we integrate a sen­

timent classifier y = g(Xt) E [O, 1] which handles the uncertainty associated with the 

negative sampling procedure. For each turn in the conversation, our training data con­

sists of a tuple for each user utterance Xt E X and sampled negative item j- which are 
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used to minimize the cross-entropy objective: 

£(Xt,j-) = -ylog(o-(y)) - (1-y) log(l - o-(y)) (4.10) 

where o-(x) = 1/(1 + exp (-x)) is the logistic sigmoid function and y = ff - fij-· 

The intuition is as follows, we want to maximize the relevance score ff of the weighted 

combination of movie preferences extracted by the current utterance Xt over the rele­

vance score f ij- from the sampled negative movie j- assuming the sentiment is positive 

i.e. y = 1. Conversely, if the sentiment is negative the update to the user preference 

vector is performed in the opposite direction. In reality, utterances have varying levels 

of sentiment with some recommendations being favored over others, allowing y to act 

as a gate determining the level of satisfaction the user has with the recommendation. 

The only parameter learned is the new user's latent factor ui while all other parameters 

are held fixed. The loss function is optimized in an online fashion using stochastic gra­

dient descent (SGD) which allows updating the user representation as the conversation 

progresses. Parameter updates are performed after each seeker's utterance. Note only 

the utterances require the encoder function <I>(·) during the online setting and the movie 

summaries can be encoded and cached ahead of time. 
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4.6 Recommendation 

Since the final output memory representation acts as a virtual item extracted from 

the natural language conversation, it does not directly correspond to a single item 

and therefore cannot be used to recommend items. The final output memory is only 

used to evaluate the loss function with respect to the interaction function. To perform 

recommendations, the newly learned user representation is plugged into the interaction 

function. The ranking score for the new user i and item j is: 

(4.11) 

Note that here we use the newly learned user representation ui and the true item 

representation Vj (not the estimated output memory). The top-n movies with the 

highest ranking scores can be presented to the user. Algorithm 1 shows the procedure 

on performing the recommendations in PMT. In the experiments, we evaluate these 

top-n recommendations against the item that the Seeker actually liked at turn t. 

4. 7 Response Generation 

Along with the recommendation, we generate system response, using the retrieval ap­

proach [59]. In the retrieval based model, we utilize the existing data to retrieve a 

potential candidate for the system response. 



List of Tables 

Algorithm 1: Procedure for performing recommendations in PMT 
Input: Conversation X, Encoder 4>(·), interaction function f(·), learning rate a 

Randomly initialize new user latent factor Ui 
for xt EX do 

if Speaker== Seeker then 
Encode utterance qt t- 4>(Xt) 
Compute output memory ot (Eq. (4.5)) 
Compute ranking score ff (Eq. (4.9)) 
Sample negative item j-
U pdate 11i +- 11i - av' ui£(Xt, j-) 

else Speaker==Recommender 
I Recommend Movies (Eq. (4.11)) 

end 
end 
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(4.12) 

given the tth utterance xt, and the set of response candidates, we compute the similarity 

of the user utterance as measured by the inner product. 

We implement two simple retrieval based response generation. In the first approach we 

collect the system response from the training dataset as the candidate set. In this case 

R is the set of all system responses in the training set. We rank the output candidates 

using the compute scores and pick the topn. In the second approach we collect the all 

the user utterances from the training dataset as the candidate set. In this case R is 

the set of all user utterances in the training set. Similar to first approach we compute 

the similarity of the given user utterance qt to the set of all the user utterances from 

train data, R. For the topn output candidates that we pick, the final response set is the 

immediately following response of these topn candidates. 
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Experiments 

5.1 Datasets 

We validate our proposed methodology on two public conversational datasets. The 

first one is called Recommendations through Dialogue (ReDial) 1 dataset [47] which 

consists of 206,102 utterances in 11,348 dialogues. The dialogues were crowd sourced 

and collected from Amazon Mechanical Turk where two users are paired up to converse 

around the topic of movies. Each user plays a specific role. The first user known 

as the seeker tries to explain their movie preferences and asks for appropriate movie 

suggestions. The second user known as the recommender tries to understand the seeker 

and provide appropriate movie recommendations. There are a total of 956 users and 

51,699 movie mentions. The second dataset is called Goal-driven Recommendation 

1https://redialdata.github.io/website/ 
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Dialogue (GoRecDial) which includes 170,904 utterances and 9,125 dialogues between 

pairs of human workers recommending movies to each other. It was collected through 

the task specifically designed as a cooperative game between two players working toward 

a quantifiable common goal. We refer the readers to [38] for full details. 

Movie plots are collected from IMDB2 and the interaction function is pre-trained using 

the latest version of MovieLens [31] consisting of 27M ratings from 283K users over 

53K items. We split 80% of the ratings for training, 10% for cross-validation and the 

remaining 10% for hold-out purposes. Following [47] we match up the movies between 

the MovieLens dataset and each testbed with string matching using the authors' pro­

vided implementation3 . After preprocessing and removing invalid entries we obtain 

5,045 movies on the ReDial dataset and 2,065 movies on GoRecDial. We only keep 

movie suggestions by the recommender which was not marked as dislike by the seeker. 

We perform 5-fold cross-validation and report the mean. Hyperparameters are tuned 

on a single fold then held fixed for the remaining folds. 

5.2 Evaluation Metrics 

We use standard recommendation system evaluation metrics for top-n ranking, Normal-

ized discounted cumulative gain (NDCG), Precision (P), Recall (R) and Mean recipro­

cal rank (MRR) [57]. Users are generally interested in only a few top-ranked movies, 

NDCG@n and MRR@n are used to compare the top-n recommendation performance. 

2https://www.imdb.com 
3https://github.com/RaymondLi0/conversational-recommendations 
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As the data resembles an implicit feedback setting where the level of user feedback is ex­

tracted from the conversation, rank aware metrics such as NDCG and MRR alone may 

be insufficient since a negative entry could adversely impact the metric but in reality 

the user may not be aware of the item's existence. We added Recall as one additional 

metric for this consideration. Specifically, we treat the movies mentioned by the recom­

mender in utterance xt at turn t as the ground truth where the seeker did not give the 

recommendation 'dislike'. Note the recommendation is performed prior to observing the 

utterance with the ground truth and the model has only seen the utterances prior to 

turn t. 

In the experiments, all the movies are treated as the candidates for ranking including 

those the user had previously talked about. In the real conversations, a user may 

only refer to a movie by an inexact or vague mention and thus it would be difficult 

to automatically identify and exclude the mentioned movies. While both ReDial and 

GoRecDial datasets have annotated movie mentions, the real-world conversations may 

not have such information. It is worth noting that all the baseline methods also used 

the same set of candidate movies as our methods for a fair comparison. 

5.3 Baselines and Settings 

We validate the effectiveness of our model against a few baseline methods. 
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Random: The top-n recommendations are randomly selected from all the candidate 

movies in a uniform distribution. 

Popularity: The movies with the highest popularity that occur in the MovieLens 

training set are presented to the user. While simple, this baseline could sometimes yield 

competitive performance in the benchmark recommendation tasks [18]. 

TF-IDF (Term frequency inverse document frequency): The movies are ranked accord­

ing to the TF-IDF vector space similarity between the user's utterance and each movie's 

plot via the inner product. 

Semantic Retrieval: This method uses Eq. ( 4.3) to rank the movies according to the 

inner product similarity where the encoder is the Universal Sentence Encoder. Movies 

with the highest similarity to the utterance are presented to the user. 

SVD (Singular Value Decomposition) [79] and NMF (Non-negative Matrix Factor­

ization) [26]: These two baselines are classic collaborative filtering methods based on 

matrix factorization (Section 3.3.1.2). We used movie preferences from the conversa­

tions to form user rating matrices (binary: like vs dislike) and then learn latent user and 

item factors for rating predictions. These methods require movie mentions identifiers 

annotated in each utterance. 

ConvAE: This Conversational Autoencoder (ConvAE) approach was proposed in [47] 

(together with the ReDial dataset). It consists of a dialogue generation model based 



Chapter 5: Experiments 59 

on hierarchical recurrent encoder-decoder, a sentiment prediction model, and an auto­

encoder recommender. Similar to SVD and NMF, this approach requires explicit movie 

annotations in the conversations. 

DropoutNet [91]: A deep learning based approach which adapts a deep neural network 

to handle the user cold-start problem on top of weighted matrix factorization (WMF), 

which demonstrated the state-of-the-art performance on public benchmarks. 

For PMT, we first pre-train the two interaction functions Matrix Factorization (MF) and 

Generalized Matrix Factorization (GMF) with movie representations on the MovieLens 

dataset. All hyperparameters are obtained from a grid search by performance on the 

held out cross-validation set. We searched for the best latent dimension or embedding 

size from {10, 20, 30, 40}, L2 between 0.1 to le - 7, and the model was optimized with 

the SGD variant Adam [41] using a standard learning rate of 0.001. We applied the pre­

trained Universal Sentence Encoder with Transformer (USE-Transformer) [9] to encoder 

natural language texts in all the experiments ( unless specified otherwise). Section 5.5 

studies the effect of the sentence encoder on the recommendation performance. 

In the experiments, the sentiment classifier was a logistic regression model with the 

USE-Transformer encoding of a given utterance as input. To train a sentiment classifier 

for each dataset, we used the labeled sentiment data from each dataset together with 

the labeled data from the Movie Review dataset4 , which resulted in 218,809 training 

instances for Redial and 75,005 for Goredcdial. The movie review dataset is in the 

same domain of movie discussions and shares some similar characteristics with the two 

4https://ai.stanford.edu/-amaas/data/sentiment/ 
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testbeds. It has limited but high-quality binary sentiment labels (25,000 training ex­

amples). The majority of training data for sentiment classifiers still came from ReDial 

and GoRecDial themselves. 

It is worth noting that several parts of the proposed model is pre-trained including 

sentence encoder/embeddings and sentiment classifier (pre-trained on sentiment labels), 

as well as the interaction function f(·) in Eqn.(4.9) and the latent representation of 

movie Vj (pre-trained on MovieLens). Once they are pre-trained, the parameters are 

held fixed and not fine-tuned to the downstream recommendation task as we considered 

the fact that the labeled domain data is limited. As demonstrated in Section 5.4, even 

without fine-tuning of the pre-trained models, the proposed approach demonstrated 

good improvement over the baseline methods. As shown in Algorithm 1, each new user 

latent factor ui is the only learnable parameter during training. It is randomly initialized 

from a uniform distribution with the range computed from the variance of the pre-trained 

user representations maintaining the relative scale with respect to other parameters. 

During the conversation we use SGD with a learning rate of 0.1 to optimize the new 

user representation. At each turn t we update the parameters ui and randomly sample 

negative items from the k least similar movies. All the experiments were conducted 

on a server with 2 Intel E5-2630 CPUs and 4 GeForce GTX TITAN X GPUs. The 

proposed models were implemented in PyTorch with the source code publicly available 

at GitHub5• 

5https://github.com/agodavarthy/PMT 



Chapter 5: Experiments 61 

P@l P@3 R@l R@3 R@lO R@25 

Random 0.0001 0.0002 0.0000 0.0004 0.0019 0.0048 
Popularity 0.0035 0.0020 0.0024 0.0048 0.0112 0.0220 
TF-IDF 0.0000 0.0000 0.0000 0.0000 0.0000 0.0080 
Semantic 0.0048 0.0036 0.0037 0.0086 0.0214 0.0411 
SVD 0.0000 0.0022 0.0000 0.0026 0.0116 0.0317 
NMF 0.0000 0.0002 0.0000 0.0016 0.0095 0.0274 
ConvAE 0.0014 0.0024 0.0014 0.0072 0.0408 0.1013 
DropoutNet 0.0039 0.0056 0.0031 0.0136 0.0346 0.0577 
PMT-MF 0.0017 0.0019 0.0017 0.0058 0.0153 0.0336 
PMT-GMF 0.0060t 0.0061 0.0046t 0.0144 0.0414t 0.0798 

NDCG@3 NDCG@lO NDCG@25 MRR@3 MRR@lO MRR@25 

Random 0.0003 0.0009 0.0016 0.0003 0.0006 0.0009 
Popularity 0.0042 0.0065 0.0092 0.0048 0.0058 0.0067 
TF-IDF 0.0000 0.0000 0.0018 0.0000 0.0000 0.0003 
Semantic 0.0069 0.0117 0.0166 0.0068 0.0098 0.0113 
SVD 0.0014 0.0046 0.0094 0.0006 0.0024 0.0036 
NMF 0.0008 0.0036 0.0079 0.0002 0.0018 0.0029 
ConvAE 0.0043 0.0157 0.0302 0.0034 0.0084 0.0118 
DropoutNet 0.0096 0.0173 0.0232 0.0074 0.0131 0.0151 
PMT-MF 0.0042 0.0077 0.0123 0.0034 0.0058 0.0072 
PMT-GMF 0.0108t 0.0208t 0.0306 0.0091t 0.0160t 0.0192t 

TABLE 5 .1: Experimental results on the ReDial dataset for different methods reporting 
Precision (P), Recall (R), normalized discounted cumulative gain (NDCG) and mean 
reciprocal rank (MRR) for different cut offs. The best results are highlighted in bold. t 
denotes the improvement over the best result of the baselines is statistically significant 

based on the paired t-test (p-value < 0.05). 

5.4 Baseline Comparison 

In this section, we present the results of our proposed Personalized Memory Transfer 

(PMT) approach against the baseline methods on the two testbeds. Table 5.1 shows 

the results on the ReDial dataset. As we can see, the Random baseline yielded very 

small values in all the metrics, indicating the difficulty of this recommendation task. 

The Popularity baseline performs much better than Random but generally worse than 

the other more competitive methods due to its lack of any form of personalization. The 
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Semantic Retrieval method yielded much better results than TF-IDF, which is likely 

due to the fact that the user conversations often do not contain the keywords in the 

movie plots. There often exist some vocabulary gap between utterances and movie 

plots. For example, in the example dialogue shown in Figure 1.1, the seeker was looking 

for a "suspenseful" movie. The plot of a relevant movie A Space Odyssey does not 

include "suspenseful" but it contains a closely related word "mysterious". The much 

improved results of the Semantic baseline over TF-IDF demonstrated the advantages of 

the semantic sentence encoder in relating user utterances with movie plots. 

The matrix factorization methods SVD and NMF performed better than Random, Pop­

ularity, and TF-IDF but worse than Semantic Retrieval, which indicates the importance 

of utilizing natural language information for conversational recommendations as SVD 

and NMF only looked at annotated movie preferences. Conv AE did not perform well on 

the very top ranked results as evidenced by the metrics of P@l, P@3, R@l, R@3, and 

NDCG@3, while obtaining the best result in R@25. It is worth noting that ConvAE 

relies on annotated movie mentions in the utterances, which may not be available in 

the real world scenarios. Nonetheless, the proposed PMT-GMF model yielded the best 

results in all the metrics except R@25, without utilizing the information of annotated 

movies. The majority of the improvements of PMT-GMF over the best baseline results 

were statistically significant based on the paired t-test (p-value < 0.05). DropoutNet 

generated the second best results in most metrics, which indicated the effectiveness 

of nonlinearity modeling on ReDial. This nonlinearity effect can also be seen via the 
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P@l P@3 R@l R@3 R@lO R@25 

Random 0.0005 0.0003 0.0005 0.0011 0.0042 0.0110 
Popularity 0.0039 0.0014 0.0039 0.0044 0.0110 0.0368 
TF-IDF 0.0028 0.0021 0.0028 0.0063 0.0126 0.0217 
Semantic 0.0089 0.0068 0.0089 0.0204 0.0461 0.0792 
SVD 0.0000 0.0028 0.0000 0.0083 0.0488 0.1432 
NMF 0.0000 0.0004 0.0000 0.0032 0.0238 0.0680 
ConvAE 0.0068 0.0081 0.0137 0.0325 0.1220 0.2434 
DropoutNet 0.0064 0.0087 0.0064 0.0262 0.0650 0.1380 
PMT-MF 0.0169 0.0145 0.0169 0.0437 0.1007 0.1825 
PMT-GMF o.0202t 0.0176t o.0202t 0.0528t 0.1231 0.2169 

NDCG@3 NDCG@lO NDCG@25 MRR@3 MRR@lO MRR@25 

Random 0.0009 0.0019 0.0036 0.0007 0.0012 0.0017 
Popularity 0.0042 0.0063 0.0126 0.0041 0.0048 0.0066 
TF-IDF 0.0047 0.0070 0.0092 0.0036 0.0052 0.0058 
Semantic 0.0154 0.0225 0.0325 0.0117 0.0176 0.0198 
SVD 0.0047 0.0186 0.0412 0.0020 0.0093 0.0151 
NMF 0.0017 0.0087 0.0194 0.0004 0.0040 0.0069 
ConvAE 0.0239 0.0552 0.0849 0.0210 0.0354 0.0431 
DropoutNet 0.0177 0.0314 0.0489 0.0118 0.0206 0.0254 
PMT-MF 0.0324 0.0523 0.0720 0.0248 0.0370 0.0425 
PMT-GMF 0.0387t 0.0634t 0.0861 0.0286t 0.0445t 0.0509t 

TABLE 5.2: Experimental results on the GoRecDial dataset for different methods 
reporting Precision (P), Recall (R), normalized discounted cumulative gain (NDCG) 
and mean reciprocal rank (MRR) for different cut offs. The best results are highlighted 
in bold. t denotes the improvement over the best result of the baselines is statistically 

significant based on the paired t-test (p-value < 0.05). 

comparison between the results of PMT-MF and PMT-GMF. PMT-GMF obtains bet-

ter performance than the linear counterpart PMT-MF which suggests the presence of 

more complex nonlinear interactions may be required to disentangle user preferences 

and transfer the knowledge to another dataset. 

On the GoRecDial dataset as shown in Table 5.2, the results show a similar pattern with 

the ones in Table 5.1 on ReDial, but with larger improvements observed on PMT-MF and 

PMT-GMF over the baseline methods. PMT-MF yielded the second best in the majority 
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of the metrics after PMT-GMF. The PMT-GMF model obtained better results than all 

the baselines across all the metrics except R@25, which reaffirms the effectiveness of the 

proposed model. Similar to the results on ReDial, PMT-G MF outperforms PMT-MF, 

which demonstrates the advantage of modeling nonlinearity via the interaction function. 

5 .5 Effect of Sentence Encoder 

In this section, we investigate the effect of the underlying sentence encoder on the recom-

mendation performance of the proposed model. Specifically, We experiment with four 

popular deep contextualized pre-trained sentence encoders to transform the utterances 

in the conversations into sentence embeddings. The encoders are as follows: 

• ELMo [71]. It uses a bi-directional LSTM to compute contextualized character­

based word representations. We used Tensor Flow Hub implementation of ELMo6 , 

trained on the 1 Billion Word Benchmark. 

• BERT [20]. It is is a deep embedding model that learns vector representations of 

words and sentences by training a deep bidirectional Transformer network. We 

used the uncased BERT-Base model7 trained on English Wikipedia and BooksCor-

pus. 

• Universal Sentence Encoder (USE) [9]. It has two variants: one is trained with 

a Deep Averaging Network (USE-DAN) and another with a Transformer network 

6https://tfhub.dev/google/elmo/2 
7https://github.com/google-research/bert 
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(USE-Transformer). We used TensorFlow Hub implementation of USE8, trained 

on a variety of data sources including Wikipedia, web news, web question-answer 

pages, and supervised data from the Stanford Natural Language Inference (SNLI) 

corpus. 

P@l P@3 R@l R@3 R@lO R@25 

ELMo 0.0039 0.0040 0.0030 0.0094 0.0266 0.0528 
BERT 0.0056 0.0057 0.0044 0.0138 0.0368 0.0709 
USE-DAN 0.0035 0.0037 0.0027 0.0089 0.0254 0.0509 
USE-Transformer 0.0060 0.0061 0.0047 0.0146 0.0414 0.0798 

NDCG@3 NDCG@lO NDCG@25 MRR@3 MRR@lO MRR@25 

ELMo 0.0070 0.0134 0.0201 0.0060 0.0104 0.0125 
BERT 0.0103 0.0189 0.0275 0.0087 0.0147 0.0174 
USE-DAN 0.0066 0.0127 0.0192 0.0056 0.0097 0.0117 
USE-Transformer 0.0108 0.0208 0.0307 0.0091 0.0161 0.0192 

TABLE 5.3: Experimental results of PMT-GMF on the ReDial dataset with different 
sentence encoders. The best results are highlighted in bold. 

Table 5.3 and Table 5.4 contain the experimental results of the proposed PMT-GMF 

model with different sentence encoders on the two datasets respectively. We can see the 

USE-Transformer encoder achieved the best results in all the metrics on both datasets. 

The BERT encoder yielded very similar results with USE-Transformer on ReDial across 

all the metrics. On GoRecDial, both variants of USE obtained slightly better results 

than BERT. The minor improvement of USE-Transformer over BERT could come from 

the fact that USE-Transformer used more diverse sources of data (which include some 

informal texts) for pre-training than BERT did. The results were consistent with some 

existing work in other recommendation domains which showed USE could generate 

8https://tfhub.dev/google/universal-sentence-encoder/4 
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P@l P@3 R@l R@3 R@lO R@25 

ELMo 0.0146 0.0127 0.0146 0.0381 0.0900 0.1617 
BERT 0.0169 0.0145 0.0169 0.0436 0.1007 0.1825 
USE-DAN 0.0189 0.0167 0.0189 0.0503 0.1181 0.2093 
USE-Transformer 0.0202 0.0176 0.0202 0.0528 0.1231 0.2169 

NDCG@3 NDCG@lO NDCG@25 MRR@3 MRR@lO MRR@25 

ELMo 0.0279 0.0461 0.0634 0.0206 0.0322 0.0371 
BERT 0.0324 0.0523 0.0720 0.0248 0.0370 0.0425 
USE-DAN 0.0367 0.0605 0.0826 0.0271 0.0424 0.0486 
USE-Transformer 0.0387 0.0634 0.0861 0.0286 0.0445 0.0509 

TABLE 5.4: Experimental results of PMT-GMF on the GoRecDial dataset with dif-
ferent sentence encoders. The best results are highlighted in bold. 

marginally better recommendation results than BERT as a sentence encoder [32]. Over­

all, the four state-of-the-art pre-trained text encoders yielded results in a comparable 

range. 

5.6 Effect of Embedding Size 

In this section, we analyze the effect of embedding size of key embedding kj (Eqn.(1)), 

query embedding qt (Eqn.(2)), movie embedding Vj (Eqn.(5)), and user embedding 

ui (Eqn. (7)), on the performance of our model. Figure 5.1 presents the performance 

comparison with respect to the length of embedding varied from 10 to 40 on the two 

datasets in different metrics. As we can see, on the GoRecDial dataset the metrics in 

Recall and NDCG first increase and then decrease, while on the ReDial dataset the 

performance in all the metrics improves when the embedding size increases. This may 

be due to the fact that the GoRecDial dataset has less dialogues and utterances and 

thus the model is more likely to overfit when the embedding size ( or model complexity) 
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increases. In general, the results across different metrics have a consistent pattern over 

the embedding size. 

5. 7 Effect of Conversation Length 

In this section, we examine the effect of the length of the conversation to determine 

whether updates to the user representation leads to improved performance. We bin the 

results of each recommendation based on the number of turns in a conversation. For 

example, if the model has seen 3 turns of conversation before a recommendation, the 

result of that recommendation will be categorized into the 3-turn bin. Figure 5.2 plots 

recall at 25 (R@25) varying the number of turns from 1 to 5. We do not report the 

other metrics since they show similar trends. 

As we can see, the Random and Popularity baselines seem insensitive to the number of 
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turns in a conversation, which is expected since they do not update the recommenda-

tions based on the conversations. The performance of TF-IDF seems to peak around 4 

turns on both datasets potentially due to the dependency on keywords and the increas-

ing complexity of the user's utterances as the conversation progresses. The Semantic 

baseline shows comparable results with TF-IDF on ReDial and noticeably better per­

formance on GoRecDial. On the other hand, PMT-GMF and PMT-MF demonstrate 

a steady increase and upward trend in performance as the number of turns increase 

on both datasets. The pattern is more visible on the GoRecDial dataset for the two 

proposed models. These results illustrate the effectiveness of the proposed models in 

updating the user representation over time and learning better user preferences. For all 

the different numbers of turns, PMT-GMF yields much better results than the other 

methods. In general, PMT-MF delivers the second best performance on the two testbeds 

and is followed by the Semantic baseline. The pattern in different number of turns is 

generally consistent with the overall results shown in Table 5.1 and Table 5.2. 
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5.8 Effect of Number of Layers for Different Embed­

ding Sizes 

In this section, we analyze the effect of number of layers on the performance of our 

model. Figures 5.3-5.6 present the performance comparison with respect to the number 

of layers ranging from 2 to 5 for each of the embedding size from 10 to 40 on the two 

datasets for Recall. As we can see from the figures, for both Redial and GoRecDial 

datasets, R@25 performs the best. For Redial dataset, for embedding size of 10, the 

best performance is when the number of layers are 3, however for the embedding size of 

20, the best performance is for network with 2 layers. As the embedding size increases, 

it seems that the networks with more number of layers is performing better. This shows 

that the larger embedding size has higher representational capacity which in turn is 

giving good performance. 

For the GoRecdial dataset, in general, as the embedding size in increasing from 10 

to 30, the networks with more number of layers seem to perform better, although for 

embedding size of 10, network with 5 layers is equally good as network with 2 layers. 

As the embedding size increases to 40, however the best performance is for 2 layered 

network, suggesting it might be overfitting. We believe the difference in performance 

between Redial and GoRecDial data might be due to the richness of the redial data with 

longer sentences in the conversations. While a significant amount of GoRecDial data 

has single words like ACCEPT /REJECT. 
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5. 9 Efficiency Analysis 
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In this section, we empirically study the efficiency of the proposed PMT-GMF model. 

Specifically, we tested how fast on average the model can make recommendations at run 

time given an utterance in the conversation. We recorded the response time for each 

instance in the test set. The response time can be further decomposed into two parts: 

time for encoding an utterance and time for generating a ranked list of recommended 

movies. The experiments were conducted on one GeForce GTX TITAN X GPU. Table 
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5.5 contains the average response time (in seconds) of PMT-GMT with two different 

sentence encoders on the two datasets. As we can see, the encoding process constitutes a 

large fraction of the response time on both datasets, since BERT and USE-Transformer 

are large language models with many parameters. The encoding took slightly longer 

time on GoRecDial than on Redial probably because the average length of utterances 

on Redial is a bit larger. On the other hand, the ranking time on Redial was slightly 

longer than that on GoRecDial, which is likely due to the fact that Redial contains 
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PMT-GMF 
Redial GoRecDial 

Encoding Ranking Total Encoding Ranking Total 

BERT 0.6490 0.1106 0.7596 0.6973 0.0960 0.7935 
USE-Transformer 0.6040 0.1012 0.7163 0.6189 0.0898 0.7087 

TABLE 5.5: Average response time (in seconds) of PMT-GMT with two different 
sentence encoders on the two datasets: BERT and USE-Transformer. 
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more candidates movies than GoRecDial does. Overall, the total response times on 

both datasets with different encoders were in a similar range and less than 0.8 second. 

It is worth noting that there is abundant room to further improve the efficiency by using 

Knowledge distillation, e.g., DistilBERT [81], to compress large sentence encoders. We 

will further investigate this in the future work. 

5.10 Qualitative Study 

In this section, we conduct a qualitative study on a specific conversation instance and 

see how PMT-GMF learns user preferences as the dialogue progresses. Figure 5.7 shows 

an example conversation from the GoRecDial dataset between recommendation seeker 

(Seeker) and recommender (Rec). Marked in blue in the figure are the top 10 movie 

recommendations by PMT-GMF up to the conversation at that turn (based on the 

ranking score in Eqn.(11)). The positive recommendation based on the ground truth is 

marked in bold. 

At the beginning of the conversation, the Seeker expressed his/her interest in "computer 

animate comedies 11 , "fantasy movies 11 , and "Harry Potter 11 • As we can see from the first 
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Seeker: 

Rec: 
Seeker: 
Rec: 
Seeker: 
Rec: 
Seeker: 

Model: 

Rec: 
Seeker: 
Rec: 

Seeker: 
Rec: 
Seeker: 
Model: 

Rec: 
Rec: 
Seeker: 

My favorite movies are computer animate comedies. I alos 
like some fantasy movies like Harry Potter. 
Do you like any family movies? 
Sure, I like all walt disney movies such as Meet the Robinsons 
How about the family movies where there is a princess in it? 
I love the Toy Story movies 
How about any of the princess movies? 
I dont know if harry potter has a princess in it, but that 
would be the only one 
Forrest Gump I Shrek I Monsters, Inc. I Finding Nemo I 
Harry Potter and the Prisoner of Azkaban 
I Harry Potter and the Chamber of Secrets I 
American Beauty I Chicken Run I Up I Groundhog Day 
RECOMMEND Shrek 
Why did you recommend this movie? 
It was a computer animated comedy and also similar to the 
movies they said they liked. 
ACCEPT Shrek 
Why did you accept the movie? 
I like computer animated movies 
Shrek I Monsters, Inc. I Finding Nemo I 
Harry Potter and the Prisoner of Azkaban I Forrest Gump I 
Harry Potter and the Chamber of Secrets I American Beauty I 
Up I Ratatouille I Harry Potter and the Half-Blood Prince 
RECOMMEND Finding Nemo 
have you seen finding nemo? 
no, but i would love that too 

FIGURE 5. 7: an example conversation from the GoRecDial dataset between recom­
mendation seeker (Seeker) and recommender (Rec). Marked in blue in the figure are 
the top 10 movie recommendations by PMT-GMF. The positive recommendation is 

marked in bold based on the ground truth. 
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top 10 recommendations by the proposed model, two movies belong to Harry Potter 

series. The "computer animate comedies" type of movies include Shrek, Monsters, Inc, 

Finding Nemo, American Beauty, Chicken Run, and Up. These results demonstrate 

that the proposed approach can learn user preferences even when they are expressed 

at a high level (e.g., "computer animate comedies") with inexact movie mentions (e.g., 

"Harry Potter"). Only 2 out of the 10 recommendations seemed to be what the Seeker 

was looking for . Forrest Gump showed up as the top result probably because it is a 
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comedy and a very popular movie. Groundhog Day is a fantasy comedy film but not 

computer animated. 

The recommender (Rec) in the dataset recommended Shrek which was accepted by 

Seeker. It is worth noting that only Shrek is considered as a positive instance for this 

recommendation in the evaluation while some other top ranked movies by our model 

could also be relevant in the real world if they are presented to the Seeker. This offiine 

evaluation methodology may explain why all the experimental results have relatively 

low values. 

After the Seeker accepted the first recommendation, he or she further indicated "I like 

computer animated movies". As we can see, all the top three movies ranked by our 

model belong to "computer animated movies". The positive instance Finding Nemo 

appeared at the 3rd position. Forrest Gump was pushed down and Groundhog Day 

did not appear in the top 10 results any more. Up was moved up from the previous 

position. A new movie Ratatouille emerged in the top recommendations, which is a 

computer-animated comedy and released by Walt Disney as what was wanted by the 

Seeker. These results demonstrate that our model could effectively update preferences 

and recommendations based on the new utterances. 
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5.11 Response Generation 

In this section, we report the response generation module implemented using retrieval­

based [58]. We implement two approaches for response generation. In the first ap­

proach(Reel), we pool the all the responses of the recommender from the training 

dataset. 

Given a seekers utterance, we compute the semantic similarity between the represen­

tation of the seeker utterance and the pool of the recommender responses using dot 

product. We then rank them in the order of their similarity scores. In the second 

approach(Rec2) [59], we build the candidate set by pooling all the seeker utterances 

from the training dataset. We compute the semantic similarity between the seeker ut­

terances and the candidate set, that is built using the seeker utterances. The set of 

recommender responses are the immediately following response of the candidates that 

are ranked higher in the similarity scores. 

In the Figures 5.8, 5.9, we present the example of response generation using both the 

approaches for Redial dataset. In the first set of examples in Figure 5.8, the seeker is 

looking for a comedy movies, the Reel retrieves one relevant candidate in top 5 results, 

whereas Rec2 has two relevant candidates in the top 5 results. In the second set of 

examples in Figure 5.9, the seeker3 is looking for comedy movie. The recommendations 

done by Reel include one relevant result, The Boss Baby, whereas Rec2 retrieves one 

romantic comedy( Wedding Singer), and two comedies( Grown Ups, Mrs.Doubtfire). The 

seeker4 in Figure 5.9 is seeking a romantic comedy. Toy Story recommended by Reel 
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Seeker 1: 
Reel: 

Rec2: 

Seeker2: 
Reel : 

Rec2: 

No, I think I would like to watch Easy A . It's funny 
1) I would also recommend Green Lantern if you like 
Ryan Reynolds or Deadpool 2 . 
2) He is always too much haha. What about The Heat with 
Sandra Bullock and Melissa McCarthy. 
3) Hi there, how can I help you with today? 
4) What kind of movies do you like? 
5) I love them . I think Tron was a musical 

1) sure :) . Oh well I think you will like Get Out 
Another movie I'd recommend is Moneyball , 
Brad Pitt's in it . It's about baseball and economics 
2) I watched Fist Fight last week. It was really funny. 
3) I also love Paul Blart: Mall Cop and Paul Blart: Mall Cop 2 
4) Yeah, it was intense. I would definitely check it out! 
5) Spy finds me interesting 
I also like Big Daddy and The Waterboy. 
1) Split was pretty scary to me as well. 
2) Yup. 
3) Hey 
4) Have you seen Mad ea Goes to Jail . It was funny 
5) texas high schools; what about a high school movie? 
there is some romancing in American Pie 

1) Raiders of the Lost Ark was good 
2) tell me a movie you like or a genre you are interested in? . Cool 
3) I also liked My Best Friend's Wedding. 
Used to watch that one a lot . 
4) Oh and The Wedding Singer. 
what are some you enjoy? . okay, great 
5) Great! Have you ever seen How to Lose a Guy in 10 Days? 

FIGURE 5.8: Examples of Response Generation for a given Seeker dialog for Redial 
dataset. 
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meets the criteria of comedy to a certain level. A couple of recommendations done 

by Rec2 Barbershop: The Next Cut It, Notting Hill fall under the category of comedy 

and romantic comedy respectively. In general Rec2 which is based on computing the 

similarity between the user utterance seems to be performing slightly better than the 

Reel, which relies on the similarity score between the user/ seeker utterance and system 



Chapter 5: Experiments 77 

Seeker3: I have seen that movie and it is definitely hilarious. 
I have yet to watch the next one though, 22 Jump Street . 

Reel: 1) Hello! 
2) I'm ok, Have you seen The Lion King, The Boss Baby? 
3) Yes, it has Hilary Swank, Josh Hartnett and Scarlett Johansson 
4) Are you looking for any genre specifically? 
5) Also Me Before You . 

Rec2: 1) maybe The Wedding Singer? . I also thought Grown Ups was cute 
2) We are watching Mrs. Doubtfire right now. Have you seen this one yet? 
3) Honestly I haven't heard much about it. I need to watch the trailer for it. 
4) Excellent, I hear you're looking for some movies? 
5) Yes you would enjoy Winchester or Insidious: Chapter 4 

Seeker4: I am great . . It's a nice day . . 
I also really like The Holiday .. I like Shallow Hal too . . 
I hope you can help by just suggesting one movie. 

Reel: 1) That was made with real teenagers and is pretty good. It's about a 
school shooting. 
2) The Untouchables 
3) Very funny movie! What about Toy Story ? 
4) The Blind Side is another good one with Sandra Bullock 
5) Power Rangers is also nice 

Rec2: 1) Have you had a chance to see Barbershop: The Next Cut It was cute and 
it's fairly new. 
2) I liked Notting Hill 
3) I havent seen that one, but have you seen Shutter Island ? Thats a pretty 
good Mystery movie 
4) have you seen the The Ritual ? . british movie about friends going hiking 
5) Have you ever seen Beauty and the Beast with Emma Watson? 
It's so magical. 

FIGURE 5.9: Examples of Response Generation for a given Seeker dialog for Redial 
dataset. 

response. 

In Figures 5.10,5.11, we present the results of the response generation for Gorecdial 

dataset. In Figure 5.10, seekerl is looking for a thriller/crime movie. Reel has three 
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Seekerl: 
Reel: 

Rec2: 

Seeker2: 

Reel: 

Rec2: 

Hello, I like crime-dramas and thrillers 
1) do you like alfred hitchcock movies? 
2) Why did you accept the movie? 
3) RECOMMEND Jurassic Park 
4) Why did you accept the movie? 
5) I recommended this because they said they like 
crime movies, and my crystal ball had one 

1) It's an American war movie I think you would enjoy. 
2) RECOMMEND Watchmen 
3) RECOMMEND Full Metal Jacket 
4) RECOMMEND Miss Congeniality 
5) RECOMMEND Airplane! 
Hello, I am looking for A movie recommendation. 
I tend to like popular, well known movies. 
1) Why did you accept the movie? 
2) Do you like coming of age movies? 
3) RECOMMEND American Beauty 
4) Why did you accept the movie? 
5) RECOMMEND Taxi Driver 

1) Is there a time frame that you like? For instance, 
do you like newer movies, or 80s movies, or classics? 
2) i've got two to recommend, let's see if i can guess right 
3) What directors do you like? 
4) It's an American war movie I think you would enjoy. 
5) RECOMMEND Minority Report 

FIGURE 5.10: Examples of Response Generation for a given Seeker dialog for GoRec­
dial dataset. 
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relevant retrievals in top five results, including alfred hitchcock, Jurassic Park and men­

tion of the word crime in one of the results. Only one output among the top five results 

for Rec2 is slightly close to the criteria that the user is seeking, i.e., watchmen. In 

Figure 5.11, seeker4 is looking for comedy /crime/blackandwhite. While none of the to 

five retrievals of Reel are relevant, just one retrieval among to five for Rec2 is close to 

the seeker's criteria. Although Lawrence of Arabia is not a black and white movie, it is 

historical drama, which falls in the category of black and white classics. 
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Seeker3: Foreign films are a bit out of my comfort zone. War films can be okay. 
Tarantino is okay too but not necessary 

Reel: 1) RECOMMEND Pulp Fiction 
2) seeker likes this genre 
3) It is a comedy film, the category suggested. 
4) RECOMMEND Fight Club 
5) do you like historical drama? 

Rec2: 1) RECOMMEND Iron Man 3 
2) RECOMMEND O Brother, Where Art Thou? 
3) RECOMMEND Children of Men 
4) Do you prefer a little horror or a little drama with your comedy? 
5) Are you into mystery? 

Seeker4: comedy or black and white I also like crime 
Reel: 1) RECOMMEND Full Metal Jacket 

2) Why did you accept the movie? 
3) RECOMMEND High Fidelity 
4) RECOMMEND Aspen Extreme 
5) What movies do you like? 

Rec2: 1) RECOMMEND Sling Blade 
2) RECOMMEND Lawrence of Arabia 
3) what genres do youlike? 
4) I sure can, can you tell me some movie genres you enjoy to start with? 
5) It's an American war movie I think you would enjoy. 

FIGURE 5.11: Examples of Response Generation for a given Seeker dialog for GoRec­
dial dataset. 

In general, Rec2 performs slightly better than Rec2 for Redial data and for GorecDial 

data, the performance of both the recommenders seem to be similar. We believe it is 

because, the seeker utterances in Redial dataset have longer sentences, it can semanti-

cally find similarity with other seeker utterances. However for the Gorecdial dataset, 

most of the seeker utterances are short,so Rec2 could not find many semantically similar 

seeker utterances. Reel performed much better for Gorecdial dataset, which compared 

the seeker utterance with the system recommendation directly. 
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Conclusion and Future Work 

6.1 Conclusion 

To summarize, in this work we propose PMT to learn representation for a new user in an 

online fashion in a conversation setting. On the one hand, our work does not depend on 

historical interaction log from users so that it can handle cold start user. On the other 

hand, our work does not depend on mapping item mentions in user utterances to unique 

item identifiers which means we are able to extract user preferences directly from natural 

language conversation. The key idea of PMT is to leverage a key-value memory structure 

to transfer prior knowledge of natural language and item representations/preferences to 

the conversational domain. We also implement the response generation module of the 

Conversational Recommendation Systems using retrieval based models. The experi­

mental results on two public conversational testbeds reveal the advantages of PMT to 

80 
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learn an effective user representation in an online setting as the conversation progresses 

leading to better recommendations. 

6.2 Future Work 

6.2.1 Joint Optimization of Different Modules 

In most contexts, the different modules of CRS, including the language understanding 

and generation task, recommendation module and user modeling system in CRSs are 

usually studied separately. The three components share certain objectives and data 

with each other [12, 55, 44, 105]. They have the exclusive data that does not benefit 

each other. For instance, the user interface may use the rich semantic information in 

reviews but not shares with a recommendation engine [47]. Besides, the two components 

may work in the end-to-end framework that lacks an explicit conversation strategy to 

coordinate them in the multi-turn conversation [47, 12], and thus the performance is 

not satisfied in human evaluation [35]. 

6.2.2 Explainability 

Very few works are based on concepts and insights from Conversation Analysis, Com­

munication Theory or related fields [86]. In some works, recommendation dialogues 

were discussed at a qualitative level. What seems to be mostly missing so far, however, 
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is a clearer understanding of what makes a CRS truly helpful, what users expect from 

such a system, what makes them fail [62], and which intents we should or must support 

in a system. Explanations are often considered as a main feature for a convincing dia­

logue, but these aspects are not explored a lot. In addition, more research is required 

to understand the mechanisms that increase the adoption of CRS, e.g., by increasing 

the user's trust and developing intimacy, or by adapting the communication style (e.g., 

with respect to the initiative and language) to the individual user. 

6.2.3 Sophisticated Strategies for Multi-turn Conversation 

The multi-tum conversation strategies used in current CRS studies have more scope 

to implement more complex methodologies. The studies based on end-to-end dialogue 

systems do not even have an explicit strategy to control the multi-tum conversation [47, 

12]. For example rejection of a item by user may be due to reasons other than disliking 

the item, like they might have already known the item. To overcome this problem, 

the model should consider more sophisticated strategies such as recognizing reliable 

negative samples. Some of the works utilized Reinforcement-Learning as a multi-tum 

conversation strategy by determining model actions whether to ask of recommend [85]. 

Meta-RL [23] can be adopted in CRSs, where the interaction is sparse and various, to 

speed up the training process and to improve the learning efficiency for novel subsequent 

tasks. 
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6.2.4 Knowledge Enrichment 

Incorporating new/ additional knowledge base will naturally improve the performance 

of any data-dependent system. In early stages of the development of CRSs, only the 

recommended items themselves were considered [14]. Later, the attribute information 

of items was introduced to assist in modeling user preferences [15]. Even more recent 

studies consider the rich semantic information in knowledge graphs [45, 105]. For exam­

ple, to better understand concepts in a sentence such as "I am looking for scary movies 

similar to Paranormal Activity (2007) 11 , Zhou et al. [105] propose to incorporate two 

external knowledge graphs (KGs): one word-oriented KG providing relations (e.g., syn­

onyms, antonyms, or co-occurrence) between words so as to comprehend the concept 

"scary" in the sentence; one item-oriented KG carrying structured facts regarding the 

attributes of items. In addition to the knowledge graphs, multimodal data can also 

be boost the performance of text-based CRS. There are some studies that exploit the 

visual modality, i.e., images, in dialogue systems. For example, Tong et al. [99] propose 

a visual dialog augmented CRS model. The model will recommend a list of items in 

photos, and the user will give text-based comments as feedback. The image not only 

helps the model learn a more informative representation of entities, but also enable the 

system to better convey information to the user. 
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