13 research outputs found

    A Multi-agent System for Outliers Accommodation in Wireless Sensor Networks

    Get PDF
    This work has been partially supported by the European Commission under the contract FP7-ICT-224282 (GINSENG) and Project CENTRO-07-ST24-FEDER-002003 (iCIS-Intelligent Computing in the Internet of Services).In monitoring applications the accuracy of data is paramount. When considering wireless sensor networks the quality of readings taken from the environment may be hampered by outliers in raw data collected from transmitters attached to nodes' analogue-to-digital converter ports. To improve the data quality sent to the base-station, a real-time data analysis should be implemented at nodes' level, while taking into account their computing power and storage limitations. This paper deals with the problem of outliers detection and accommodation in raw data. The proposed approach relies on univariate statistics within an hierarchical multi-agent framework. Results from experiments on a real monitoring scenario, at a major oil refinery plant, show the relevance of the proposed approach.publishersversionpublishe

    Outlier Detection Techniques For Wireless Sensor Networks: A Survey

    Get PDF
    In the field of wireless sensor networks, measurements that significantly deviate from the normal pattern of sensed data are considered as outliers. The potential sources of outliers include noise and errors, events, and malicious attacks on the network. Traditional outlier detection techniques are not directly applicable to wireless sensor networks due to the multivariate nature of sensor data and specific requirements and limitations of the wireless sensor networks. This survey provides a comprehensive overview of existing outlier detection techniques specifically developed for the wireless sensor networks. Additionally, it presents a technique-based taxonomy and a decision tree to be used as a guideline to select a technique suitable for the application at hand based on characteristics such as data type, outlier type, outlier degree

    Outlier detection techniques for wireless sensor networks: A survey

    Get PDF
    In the field of wireless sensor networks, those measurements that significantly deviate from the normal pattern of sensed data are considered as outliers. The potential sources of outliers include noise and errors, events, and malicious attacks on the network. Traditional outlier detection techniques are not directly applicable to wireless sensor networks due to the nature of sensor data and specific requirements and limitations of the wireless sensor networks. This survey provides a comprehensive overview of existing outlier detection techniques specifically developed for the wireless sensor networks. Additionally, it presents a technique-based taxonomy and a comparative table to be used as a guideline to select a technique suitable for the application at hand based on characteristics such as data type, outlier type, outlier identity, and outlier degree

    Robust recursive eigendecomposition and subspace-based algorithms with application to fault detection in wireless sensor networks

    Get PDF
    The principal component analysis (PCA) is a valuable tool in multivariate statistics, and it is an effective method for fault detection in wireless sensor networks (WSNs) and other related applications. However, its online implementation requires the computation of eigendecomposition (ED) or singular value decomposition. To reduce the arithmetic complexity, we propose an efficient fault detection approach using the subspace tracking concept. In particular, two new robust subspace tracking algorithms are developed, namely, the robust orthonormal projection approximation subspace tracking (OPAST) with rank-1 modification and the robust OPAST with deflation. Both methods rely on robust M-estimate-based recursive covariance estimate to improve the robustness against the effect of faulty samples, and they offer different tradeoff between fault detection accuracy and arithmetic complexity. Since only the ED in the major subspace is computed, their arithmetic complexities are much lower than those of other conventional PCA-based algorithms. Furthermore, we propose new robust T 2 score and SPE detection criteria with recursive update formulas to improve the robustness over their conventional counterparts and to facilitate online implementation for the proposed robust subspace ED and tracking algorithms. Computer simulation and experimental results on WSN data show that the proposed fault detection approach, which combines the aforementioned robust subspace tracking algorithms with the robust detection criteria, is able to achieve better performance than other conventional approaches. Hence, it serves as an attractive alternative to other conventional approaches to fault detection in WSNs and other related applications because of its low complexity, efficient recursive implementation, and good performance. © 2012 IEEE.published_or_final_versio

    Blind Bernoulli Trials: A Noninteractive Protocol for Hidden-Weight Coin Flips

    Get PDF
    We introduce the concept of a Blind Bernoulli Trial, a noninteractive protocol that allows a set of remote, disconnected users to individually compute one random bit each with probability p defined by the sender, such that no receiver learns any more information about p than strictly necessary. We motivate the problem by discussing several possible applications in secure distributed systems. We then formally define the problem in terms of correctness and security definitions and explore possible solutions using existing cryptographic primitives. We prove the security of an efficient solution in the standard model. Finally, we implement the solution and give performance results that show it is practical with current hardware

    Wireless sensor network as a distribute database

    Get PDF
    Wireless sensor networks (WSN) have played a role in various fields. In-network data processing is one of the most important and challenging techniques as it affects the key features of WSNs, which are energy consumption, nodes life circles and network performance. In the form of in-network processing, an intermediate node or aggregator will fuse or aggregate sensor data, which are collected from a group of sensors before transferring to the base station. The advantage of this approach is to minimize the amount of information transferred due to lack of computational resources. This thesis introduces the development of a hybrid in-network data processing for WSNs to fulfil the WSNs constraints. An architecture for in-network data processing were proposed in clustering level, data compression level and data mining level. The Neighbour-aware Multipath Cluster Aggregation (NMCA) is designed in the clustering level, which combines cluster-based and multipath approaches to process different packet loss rates. The data compression schemes and Optimal Dynamic Huffman (ODH) algorithm compressed data in the cluster head for the compressed level. A semantic data mining for fire detection was designed for extracting information from the raw data by the semantic data-mining model is developed to improve data accuracy and extract the fire event in the simulation. A demo in-door location system with in-network data processing approach is built to test the performance of the energy reduction of our designed strategy. In conclusion, the added benefits that the technical work can provide for in-network data processing is discussed and specific contributions and future work are highlighted
    corecore