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Robust Recursive Eigendecomposition and
Subspace-Based Algorithms With Application to

Fault Detection in Wireless Sensor Networks
S. C. Chan, Member, IEEE, H. C. Wu, and K. M. Tsui

Abstract—The principal component analysis (PCA) is a valu-
able tool in multivariate statistics, and it is an effective method
for fault detection in wireless sensor networks (WSNs) and other
related applications. However, its online implementation requires
the computation of eigendecomposition (ED) or singular value
decomposition. To reduce the arithmetic complexity, we propose
an efficient fault detection approach using the subspace track-
ing concept. In particular, two new robust subspace tracking
algorithms are developed, namely, the robust orthonormal pro-
jection approximation subspace tracking (OPAST) with rank-1
modification and the robust OPAST with deflation. Both methods
rely on robust M-estimate-based recursive covariance estimate to
improve the robustness against the effect of faulty samples, and
they offer different tradeoff between fault detection accuracy and
arithmetic complexity. Since only the ED in the major subspace
is computed, their arithmetic complexities are much lower than
those of other conventional PCA-based algorithms. Furthermore,
we propose new robust T 2 score and SPE detection criteria with
recursive update formulas to improve the robustness over their
conventional counterparts and to facilitate online implementation
for the proposed robust subspace ED and tracking algorithms.
Computer simulation and experimental results on WSN data
show that the proposed fault detection approach, which com-
bines the aforementioned robust subspace tracking algorithms
with the robust detection criteria, is able to achieve better per-
formance than other conventional approaches. Hence, it serves
as an attractive alternative to other conventional approaches to
fault detection in WSNs and other related applications because of
its low complexity, efficient recursive implementation, and good
performance.

Index Terms—Fault detection, orthonormal projection approx-
imation subspace tracking (PAST) (OPAST), outlier detection,
PAST algorithm with deflation (PASTd), recursive principal com-
ponent analysis (R-PCA), robust statistics, subspace eigendecom-
position (ED), wireless sensor networks (WSNs).

I. INTRODUCTION

A WIRELESS sensor network (WSN) is a network made up
of a large number of sensor nodes distributed in a large

area for monitoring physical variables such as temperature,
humidity, voltage, etc. Typical applications of WSNs include
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environmental and habitat monitoring [1], health and medical
monitoring, surveillance [2], irrigation systems [3], industrial
monitoring [4], and so on. To maintain the reliability of a
WSN, outlier detection is necessary to facilitate appropriate
human intervention for fixing potential physical hazards due
to abnormal observations or measurements collected by the
sensor nodes. The occurrence of faulty samples can be caused
by internal and external factors [5]. Internal factors refer to
hardware failure, such as errors generated due to low battery
power [6], while external factors refer to physical events such
as a sudden rise of temperature caused by chemical fire and a
sudden increase in network traffic due to malicious attack on
the network.

In [7], a histogram-based approach has been proposed to de-
tect faulty samples in WSNs. Since the histogram information
is partially updated when major network changes are detected,
it is amendable to online implementation. Moreover, during
data exchange between sensor nodes, its low communication
overhead leads to an advantage of reduced energy consumption.
This will increase the life-span of sensor nodes. However,
this approach only focuses on the analysis of single physical
variable. Very often, multiple physical variables should be
monitored simultaneously.

For fault detection with multiple physical variables, the
measurement variables are usually correlated, for example, the
dependence between the resistance of a wire and surrounding
temperature. Moreover, the WSN can be regarded as a time-
variant system, where the measurement variables are time vary-
ing due to environmental changes such as the variation of light
intensity between day time and night time. To handle such cor-
related measurement variables, multivariate statistical process-
ing methods such as the principal component (PC) analysis
(PCA) and the partial least squares can be used [8]. Among
these two methods, the PCA is commonly adopted [9]–[11]
because of its robustness and reliability [8].

The usefulness of PCA for fault detection in WSNs was first
reported in [9]. It is able to capture the dependence of the
measurement variables and detect correlated faults or anomalies
that span through multiple groups of sensor nodes. One major
limitation of the conventional PCA approach is that it does
not support real-time monitoring of possible system changes,
for example, due to temperature variation. To overcome this
limitation, the exponentially weighted PCA (EWM-PCA) [12],
[13] and the recursive PCA (R-PCA) [14] have been developed
for process monitoring. They support real-time monitoring and
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are more adaptive to system changes. While the EWM-PCA has
high implementation complexity due to the expensive eigen-
decomposition (ED) and singular value decomposition (SVD),
the R-PCA is very efficient in computing recursively the ED
by means of two rank-1 modifications. However, all the afore-
mentioned algorithms still require the explicit computation of
all associated eigenvectors and eigenvalues of the entire ED.

In this paper, we propose an efficient online fault detec-
tion approach with reduced arithmetic complexity based on
recursive subspace tracking concept [15]–[21], such as the or-
thonormal projection approximation subspace tracking (PAST)
(OPAST) algorithm. Its main advantage is that only the ma-
jor subspace is recursively tracked in order to compute the
associated eigenvector and eigenvalues for fault detection. In
particular, after the subspace and associated components have
been tracked, major eigenvectors and eigenvalues in the sub-
space required by the fault detection algorithm can be computed
by either rank-1 modification or deflation. This results in two
new algorithms, namely, the OPAST with rank-1 modification
(OPASTr) and the OPAST with deflation (OPASTd), which
offer a tradeoff between the accuracy in identifying the faults
and arithmetic complexity. The new algorithms can also be
viewed as an extension of the conventional OPAST algorithm
for computing eigenvectors and eigenvalues in the subspace.1

Since the proposed algorithms only work on the major signal
subspaces with a much smaller dimension, the arithmetic com-
plexities are much lower than computing the whole ED using
PCA-based algorithms such as the EWM-PCA and R-PCA.

Another objective of this paper is to improve the robustness
of the proposed algorithms against the outliers or faulty sam-
ples. The resultant algorithms are called robust OPASTr (R-
OPASTr) and robust OPASTd (R-OPASTd) algorithms. Faulty
samples may mask subsequent faults if they are used to update
the PCA model [8]. To suppress such effect, either the samples
should be removed or their subsequent masking effects should
be estimated and compensated, once they are identified as
undesired outliers. In this paper, the concept of outlier removal
is incorporated in the proposed algorithms by means of robust
M-estimation of the recursive covariance estimate [22], which
is useful in removing or suppressing the contribution of the
faulty samples to the subspace estimation. Moreover, the re-
cursive covariance update formula leads to an efficient online
implementation of the proposed algorithms, which, in turn, are
able to adapt to possible system changes.

Similarly, we extend the conventional T 2 score and squared
prediction error (SPE) detection criteria using the concept of
robust M-estimation [23]. To facilitate online implementation,
we also develop recursive update formulas for these detection
criteria based on the robust z-score reported in [24]. The resul-
tant robust T 2 score and robust SPE offer better robustness over
their conventional counterparts under the presence of faulty
samples or outliers. Also, simulation and experimental results
show that they can improve the performance of the conventional
PCA-based fault detection algorithms. Overall, the proposed

1When applying the OPAST algorithm in array signal processing, the explicit
computation of eigenvectors and eigenvalues in the tracked subspace is not
required.

fault detection approach, which combines the aforementioned
robust subspace tracking algorithms with the robust detection
criteria, is able to achieve better performance than other con-
ventional approaches. Its low complexity, efficient recursive
implementation, and good performance make it as an attractive
alternative to other conventional approaches used in WSNs and
other related applications.

This paper is organized as follows: The background of WSNs
and conventional fault detection algorithms and criteria are
introduced in Section II. In Section III, the proposed robust fault
detection approach, including new robust subspace tracking
algorithms and fault detection criteria, is discussed. Design
examples and comparisons with conventional algorithms are
presented in Section IV. Finally, conclusions are drawn in
Section V.

II. BACKGROUND

In a WSN, the two most popular methods for performing
outlier detection are the centralized approach and the distrib-
uted approach. In the centralized approach, raw measurements
obtained from all sensor nodes are sent to the sink for outlier
detection. Very often, the sink has the knowledge of overall
network topology and collects the measurements from all as-
sociated sensor nodes in the WSN. In a large-scale environ-
ment, the centralized approach requires high communication
overhead which leads to high energy consumption. On the other
hand, in the distributed approach, outlier detection is performed
at each sensor node by local outlier detection algorithm. Com-
paring with the centralized approach, the distributive approach
is preferred as more in-network computation is performed and
only important information is exchanged among the sensor
nodes. Therefore, the communication overhead and energy
consumption are significantly reduced.

A sensor fault is often referred to as an abnormal behavior
of a sensor in WSNs. When a fault is developed in a sensor,
the measurements deviate considerably from those measured
in normal operation, which are also called the outliers. The
following two types of faulty readings are often observed in
the sensors deployed in WSNs.

1) Impulsive fault: an impulsive and abrupt change in mea-
sured value between two successive samples. For ex-
ample, in [1], impulsive faults were found in sensors
with occasional short circuit created between the positive
and negative terminals of the Bayonet Neill–Concelman
connectors due to the moisture of mud.

2) Mean-shift fault: constant offset readings of the sensor
possibly caused by improper calibration and missing data
as mentioned in [25].

In this paper, we focus on the detection of impulsive faults,
which can also be extended to the detection of mean-shift fault
with the aid of wavelet transform [26], [27]. More precisely, by
transforming the data into the wavelet domain, the mean-shift
fault can be represented in the wavelet coefficients with two
impulses indicating the beginning and the end of the mean-shift
fault. Therefore, the detection of mean-shift fault in the time
domain can be reformulated as the detection of impulsive fault
in the wavelet domain. As a result, the mean-shift fault can be
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identified by detecting the impulses in the wavelet domain using
the proposed fault detection algorithm. Interested readers are
referred to [26] and [27] for mean-shift detection using wavelet
transform.

A. Conventional Fault Detection Algorithms

A commonly used local fault detection technique is the PCA.
Its main idea is to first project the measurement vectors into the
signal subspace spanned by a number of chosen major PCs and
then identify outliers in the signal subspace. More precisely,
consider a P th variable vector x = [x1, x2, . . . , xP ]T, where
the superscript T denotes matrix transposition. We are given
N measurements of x, where xi = [xi,1, xi,2, . . . , xi,P ]T, i =
1, . . . , N , is the ith measurement vector obtained, for example,
at a certain time instant i. xi is usually “centered,” i.e., with
its mean removed, before the PCs are computed. Hence, the
mean of xi, i = 1, . . . , N , is first computed and is subtracted
from each of the measurement vector to form xi. Let X =
[x1,x2, . . . ,xN ]T be the data matrix after centering. In PCA,
we wish to express the centered random vector x in terms
of B PCs

x =
B∑

m=1

tmpm + e (1)

where B is an appropriately chosen number of PCs to achieve
a sufficiently small approximation error e, pm is the mth PC,
and tm is its associated score. Using (1), X can be written as

X =
B∑

m=1

tmpT
m + E = ΓP T + E (2)

where Γ = [t1, . . . , tB ] is the score matrix, tm =
[tm,1, . . . , tm,N ]T, tm,i is the associated score for the ith
measurement vector, i = 1, . . . , N , P = [p1, . . . .,pB ]T is the
collection of PCs or loading matrix, and E is the error matrix.
A common way to determine the PCs is to compute the ED of
the empirical correlation matrix

Cxx = E[x · xT ] =
1

n − 1
XT X = UΛUT (3)

where the columns of U are the eigenvectors and they are also
the PCs and Λ = diag{λ1, . . . , λP } contains the eigenvalues
in descending order of magnitude (λ1 ≥ λ2, . . . ,≥ λP ). If
the first B largest eigenvalues and their eigenvectors UB are
retained, then one gets P = UB . The subspace spanned by
the major PCs P = UB is usually referred to as the signal
subspace. The estimate X̂ is

X̂ = X
(
UBUT

B

)
= ΓP T . (4)

Comparing (2) with (4) above, one finds Γ = XUB . Al-
ternatively, the PCs can also be computed from the SVD
of the data matrix X as X = V Λ1/2UT , where V and U
are orthogonal matrices and Λ1/2 is a diagonal matrix con-
taining the singular values. The corresponding estimate X̂ =
(V BΛ1/2

B )UT
B can be similarly found by retaining the first

B largest singular values, and hence, the score matrix is Γ =
V BΛ1/2

B . For simplicity, only the ED in (3) is considered in
this paper. The residual E in (2) can be found by subtracting the
estimate X̂ from the original data matrix X , i.e., E = X − X̂ .
For online applications, x may be taken over consecutive time
instants. Denote the corresponding sample at the time instant t
by x(t). The empirical correlation matrix can be replaced with
an exponentially weighted time recursive estimate [12] as

Cxx(t) = βCxx(t − 1) + (1 − β)x(t)xT (t)

where x(t) is the centered measurement vector and β is a
forgetting factor. However, as suggested in [14], appropriate
measure should be incorporated to account for the change
of mean in the aforementioned estimation. The exponentially
weighted correlation matrix estimate is then modified to

Cxx(t)=β
[
Cxx(t−1)+Δμ(t)ΔμT (t)

]
+(1−β)x(t)xT (t)

(5)

where Δμ(t) = μ(t) − μ(t − 1) and μ(t) is the mean estimate
of x(t). The major PCs UB(t) and their corresponding eigen-
values ΛB(t) = diag{λ1(t), λ2(t), . . . , λB(t)} at time instant
t can be obtained by invoking ED on Cxx(t) in (5). This
is referred to as the EWM-PCA [12], [13]. On the other
hand, in the R-PCA, they are obtained by means of recur-
sively computing Cxx(t) as two rank-1 modifications described
in [14].

B. Conventional Fault Detection Criteria

For fault detection, the SPE and the T 2 score [28], [29] are
two commonly used fault detection measures to visualize the
distance of x(t) from the rest of the data. After centering, the
SPE for the measurement vector x(t) is given by

SPE(t) = ‖x(t) − x̂(t)‖2
2 (6)

where x̂(t) is the approximated measurement and it can be
determined according to (4) as

x̂(t) = UB(t)UT
B(t)x(t). (7)

Note that only the major subspace UB(t) is required in
computing the SPE. The measurement vector is labeled as
a faulty sample when the SPE exceeds a certain detection
threshold. Conventionally, the detection threshold for the SPE
is given by [28] and [29]

ΓSPE(t)=θ1(t)

[
h0ξ

√
2θ2(t)

θ1(t)
+1+

θ2(t)h0(t)(h0(t)−1)
θ2
1(t)

] 1
h0(t)

(8)

where h0(t)=1−(2θ1(t)θ3(t)/3θ2
1(t)), θj(t)=ΣP

b=B+1λ
j
b(t),

j = 1, 2, 3, λb(t) is the bth largest eigenvalue of Cxx(t) in (5),
and ξ is a threshold quartile parameter corresponding to the
upper (1 − P{X > ξ}) percentile of the Gaussian distribution.
Hence, the probability that the faulty sample exceeds the thresh-
old quartile is P{X > ξ} = (2/

√
π)

∫ ∞
ξ e−x2

dx. The value
of ξ is chosen to achieve a certain detection rate. In process
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monitoring, the mean process is usually slow varying, and a
detection confidence interval of P{−ξ ≤ X < ξ} = 0.99 is
often used [12], [30]. The detection threshold in (8) depends on
the quadratic and cubic sum of the eigenvalues, and therefore,
it could be sensitive to the effect of the faulty samples on the
eigenvalues.

On the other hand, the T 2 score for the measurement vector
x(t) is given by

T 2(t) =
∥∥xT (t)UB(t)Λ−1

B (t)UT
B(t)x(t)

∥∥2

2
(9)

where ΛB(t) contains the first B largest eigenvalues obtained
from Cxx(t) in (5). Note that, in computing the T 2 score, the
eigenvalues at each time instant are required. The T 2 score is
based on the first B PCs, and it detects the changes in the latent
variables that are of the greatest importance to the variance
of the process. The detection threshold for the T 2 score is
given by

ΓT 2(t) =
(P 2 − 1)B
P (P − B)

ξF (10)

where ξF is a threshold quartile parameter of the F distribution
with B and P − B degrees of freedom. For the same confidence
interval P{−ξ ≤ X < ξ}, the value of ξF is related to ξ as
follows:

ξF = F−1 (P{−ξ ≤ X < ξ}) (11)

where F−1(.) is the inverse cumulative distribution function
of the F distribution. Note that the detection threshold in (10)
is independent of time, and hence, it may be less adaptive to
gradual system change. Faulty samples can be labeled using
one of the following criteria:

1) SPE-based detection criterion: The SPE exceeds the de-
tection threshold.

2) T 2 score-based detection criterion: The T 2 score exceeds
the detection threshold.

3) SPE + T 2 score-based detection criterion: Either the T 2

score or the SPE exceeds their detection thresholds.

Among the three criteria, the SPE + T 2 score-based detec-
tion criterion is most commonly adopted because both measures
are complement to each other for the fault detection in either
signal or noise subspaces [31]. In other words, the use of both
measures allows one to identify faults in both the signal and
noise subspaces, thus increasing the accuracy of fault detection.

When a faulty sample is detected, its masking effect on
subsequent faults should be isolated by either removing the
faulty sample or by estimating its effect in detecting subsequent
faulty samples, which is commonly referred to as fault replace-
ment [8]. In this paper, we consider the former option (i.e.,
the removal of the faulty sample) for simplicity and develop
an efficient fault detection approach based on the subspace
principle. In principle, the effect of the detected faults can also
be estimated from the estimated PCs. For more details of fault
replacement, interested readers are referred to [8].

III. PROPOSED SUBSPACE-TRACKING-BASED FAULT

DETECTION ALGORITHMS

In this paper, we mainly focus on the local detection used
in the distributed approach for simplicity. Interested readers
are referred to [9] for a comprehensive study of the PCA in a
distributed architecture. In the PCA approach, outlier detection
is performed by analyzing the collected raw measurements with
a normal operation model, which consists of the mean estimate,
the PCs that span the signal subspace, and a detection threshold.
The normal operation model is usually built offline using a fixed
block of initial data. Its major disadvantage is that it does not
take into account gradual system changes because the model
and detection threshold are fixed. On the other hand, in the
proposed approach, the normal operation model and detection
threshold are updated recursively so that it is more adaptive to
gradual system changes.

The proposed approach can be mainly divided into three
steps:

1) A new robust recursive location estimator is proposed to
update the mean estimate recursively.

2) Then, the proposed robust subspace tracking algorithms
are used to estimate the signal subspace recursively.

3) New robust detection criteria are proposed to perform
fault detection and compute the detection thresholds re-
quired in the robust subspace tracking algorithms. The
robust subspace tracking algorithms ignore the sample
when an outlier sample is detected and perform normal
update otherwise.

In the next section, we shall describe the recursive implemen-
tation of the fault detection algorithms.

A. Robust Recursive Location Estimator

A conventional recursive mean estimator of x(t) is

μ(t) = μ(t − 1) +
1
t

(x(t) − μ(t − 1)) (12)

where μ(t) is the recursive sample mean obtained at time
instant t and x(t) is the raw measurement vector obtained at
time instant t. For online implementation, the data in the distant
past should be given less weighting to reflect changes in the
process. Therefore, a forgetting factor β with a value less than
but close to one is usually introduced to form the following
recursive estimator:

μ(t) = βμ(t − 1) + (1 − β)x(t). (13)

However, this estimator is sensitive to impulsive noise since
a single impulse with large amplitude in x(t) can substantially
increase the values of μ(t). Therefore, the influence of faulty
samples on the estimation of the PCs can be unbounded. In
the statistical communities, a commonly used robust location
estimator is the median. For online implementation, we propose
the following recursive robust location estimate:

μ(t) = βμ(t − 1) + (1 − β)med (A (x(t))) (14)

where A(x(t)) = {x(t)}, . . . ,x(t − L + 1)}, med(.) is the
median operator, and the window length is L. To reduce the
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TABLE I
OPAST ALGORITHM

operations required for the median filter in practical implemen-
tation, the length of estimation window is usually chosen from
5 to 11 [32]. For large L, the pseudomedian [33] can be used
to reduce the computational complexity. The centered measure-
ment vector using the recursive mean estimate in (14), i.e.,

x(t) = x(t) − μ(t) (15)

is then used in the recursive estimation of the signal subspace.

B. Proposed Subspace Tracking Approach

As mentioned earlier, the arithmetic complexity of conven-
tional PCA-based fault detection algorithms is costly for online
applications because they require the computation of the entire
ED. To reduce the arithmetic complexity for fault detection, we
shall propose new algorithms based on the subspace tracking
concept [15]–[18]. Particularly, the signal subspace spanned
by the major PCs UB(t) is tracked recursively instead of
computing the entire ED. A classical algorithm is the PAST
algorithm proposed in [17]. The PAST algorithm recursively
estimates the signal subspace by minimizing the following
objective function:

J (W (t)) =
t∑

i=1

βt−i ‖x(i) − W (t)y(i)‖2
2 . (16)

Ideally, y(i) = W T (t)x(i), and J(W (t)) represents the en-
ergy in x(i) which is outside the subspace W (t). Hence, W (t)

is equal to the major PCs UB(t) up to an orthogonal transfor-
mation or rotation, i.e., span(W (t)) = span(UB(t)). Hence,
the outer product W (t)W T (t) is equal to UB(t)UT

B(t).
In the PAST algorithm, the projection approximation y(i) ≈
W T (i − 1)x(i) is employed so that (16) can be relaxed to a
quadratic function in W (t). Consequently, conventional recur-
sive least squares algorithm can be applied to solve for W (t)
with very low arithmetic complexity. In the OPAST algorithm
[18], an extra orthonormalization step is added to the PAST
algorithm to guarantee the orthonormality of the estimated
subspace W (t).

To apply the OPAST algorithm for fault detection, an initial
ED is assumed to be available either by performing an ED on
an initial data block or predetermining the eigenvalues offline.
The eigenvalues so obtained are used with the Kaiser’s rule [34]
or the minimum description length (MDL) [35] to estimate the
dimension B of the signal subspace. During online application,
the OPAST algorithm is invoked to update the signal subspace
recursively. Table I summarizes the OPAST algorithm.

It should be noted that, since the outer product W (t)W T (t)
is equal to UB(t)UT

B(t), the SPE can be computed as

SPE(t) =
∥∥x(t) − W (t)W T (t)x(t)

∥∥2

2
(17)

which does not require the eigenvalues and eigenvectors. If only
the SPE is needed for outlier detection, the OPAST algorithm
can be used and the arithmetic complexity will be much lower
than conventional PCA-based algorithms. On the other hand,
as the computation of T 2 score requires both the eigenvalues
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ΛB(t) and eigenvectors UB(t), the OPAST algorithm is not
directly applicable. To overcome this problem, one may employ
the R-PCA in [14] to recursively compute the ED of Cxx(t) in
(5) as two rank-1 modifications.

To further reduce the complexity, we propose, in this paper,
to compute the required subspace using subspace tracking
algorithms such as the OPAST algorithm. By projecting the
signal vector on this subspace, one can compute recursively the
ED of the projected covariance matrix and hence the required
eigenvectors and eigenvalues in the desired subspace. This
results in lower arithmetic complexity, when comparing with
the R-PCA algorithm, because the dimension of the projected
correlation matrix is smaller than that of the original correlation
matrix in (5). For the sake of presentation, it is called the
OPASTr algorithm.

An alternative with even lower arithmetic complexity is
to compute the eigenvalues and eigenvectors in the desired
subspace using the PAST algorithm with deflation (PASTd) in
[17]. Similarly, an extra orthonormalization step can be added
to the PASTd algorithm at each iteration, and it is referred to as
the OPASTd algorithm in this paper.

Due to page limitation, the detailed derivations of the PAST,
the PASTd, and the OPAST algorithms are omitted, and inter-
ested readers are referred to [17] and [18] for more details. The
details for computing the eigenvalues and eigenvectors in the
OPASTr and OPASTd algorithms will now be given.

C. Recursive Eigenvalue and Eigenvector Computation

In the PAST algorithm, it is known that the estimated
subspace W (t) is equal to the major PCs UB(t) up to an
orthogonal transformation or rotation Q(t), i.e.,

UB(t) = W (t)Q(t) (18)

where Q(t) is a B × B orthogonal matrix satisfying
Q(t)QT (t) = I . We now propose an approach based on rank-1
modification to estimate the associated eigenvectors and eigen-
values of the subspace and employ them for fault detection.
More precisely, one can project the centered measurement
vector x(t) on W (t) to get y(t) = W T (t)x(t). Here, we
remark that y(t) is a projection of x(t) on the subspace W (t),
and it is different from the projection approximation y(t) in
(16). Let the resultant correlation matrix of y(t) be Cyy(t) =
E[y(t)yT (t)]. If W (t) is slowly varying over time, then
Cyy(t) = W T (t)Cxx(t)W (t). By projecting Cxx(t) onto the
signal subspace W (t), and from (18), we obtain

Cyy(t) = W T (t)U(t)Λ(t)UT (t)W (t)
= W T (t)UB(t)ΛB(t)UT

B(t)W (t)
= Q(t)ΛB(t)QT (t). (19)

By means of the projection, only the eigenvectors that span
the signal subspace are retained. Hence, the eigenvectors of the
transformation Q(t) can be computed using the ED or SVD of
Cyy(t). As mentioned earlier, the complexity of both methods
is very costly for real-time applications. Fortunately, it is known
that [36] the ED of the rank-1 update can be recursively com-
puted. More precisely, given the ED of a matrix C = UΛUT ,
we are interested in computing the ED of the rank-1 update of

C: C̃ = C + ρ′xxT , which can be rewritten as C̃ = U(Λ +
ρzzT )UT with z = UT x/‖UT x‖2 and ρ = ρ′‖UT x‖2

2. In
other words, the problem is reduced to computing the ED of the
rank-1 update of Λ̃: (Λ0 + ρzzT ), where ρ is a scalar and z is a
vector of unit norm. It has been shown that [36] the eigenvalues
λj can be updated by finding the roots of the following secular
equation:

f(λ) = 1 + ρ
P∑

j=1

z2
j

(λj − λ)
(20)

where zj is the jth element of z and λj is the jth diagonal value
of Λ0. After solving the secular equation, the jth eigenvector
can be updated as follows:

ũj =
(Λ0 − λ̃jI)−1z∥∥∥(Λ0 − λ̃jI)−1z

∥∥∥
2

(21)

where Λ̃ = diag(λ̃1, . . . , λ̃P ) contains the estimated eigenval-
ues obtained from the secular equation in (20). Hence, the ED

of C̃ can be updated as ŨΛ̃Ũ
T

, where Ũ = [ũ1, . . . , ũP ].
We now extend this technique to our recursive eigenvector
and eigenvalue computation of the subspace components in the
OPASTr algorithm.

Similar to (5), the correlation matrix Cyy(t) =
E[y(t)yT (t))] in (19) can be recursively updated as

Cyy(t) = βCyy(t − 1) + (1 − β)y(t)yT (t). (22)

Unlike (5), the change of mean is not incorporated in (22)
because the projection y(t) = W (t)x(t) is obtained from the
centered measurement vector x(t), and hence, centering is
not required for y(t). First, let the ED of Cyy(t − 1) be
Q(t − 1)ΛB(t − 1)QT (t − 1). The expression in (22) can be
rewritten as one rank-1 modification given by

Cyy(t)=Q(t−1)
[
βΛB(t−1)+(1−β)z(t)zT (t)

]
Q(t−1)T

(23)

where z(t) = QT (t − 1)y(t). Let the corresponding ED be

βΛB(t − 1) + (1 − β)z(t)zT (t) = Q̃(t)ΛB(t)Q̃
T
(t). (24)

Consequently, the new eigenvalues and eigenvectors can be
computed according to (20) and (21). The term inside the square
bracket in (23) is recognized as a rank-1 modification men-
tioned earlier with Λ0 = βΛB(t − 1), ρ = (1 − β)‖zμ(t)‖2

2,
and z = z(t)/‖z(t)‖2. Finally, the eigenvectors of Cyy(t) are
given by

Q(t) = Q(t − 1)Q̃(t). (25)

Using this result, the PCs UB(t) can be obtained from
(18). The secular equation in (20) is usually solved by some
Newton-like algorithms, and the average number of iterations
for convergence is 4.4 [36]. The complexity of the rank-1 mod-
ification is O(B3) floating point operations (flops) per iteration.
Interested readers are referred to [37] for a comprehensive study
of the rank-1 modifications.

Unlike the OPASTr algorithm, the OPASTd uses a defla-
tion approach, which is motivated by the PASTd algorithm
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in [17], to sequentially compute the eigenvectors and eigen-
values of the projection correlation matrix Cyy(t) in (19).
More specifically, we denote the bth eigenvalue of Cyy(t)
as λb(t) and the bth eigenvector as qb(t) such that Q(t) =
[q1(t), q2(t), . . . , qB(t)]. At the bth iteration, λb(t) and qb(t)
are first updated as

λb(t) =βλb(t − 1) + |zb(t)|22 (26)

qb(t) = qb(t − 1) + eb(t) [z∗b(t)/λb(t)] (27)

respectively, where

zb(t) = qT
b (t − 1)r(b)(t) (28)

eb(t) = r(b)(t) − qb(t − 1)zb(t) (29)

the superscript ∗ denotes the complex conjugate, β is the forget-
ting factor introduced in (5), and r(b)(t) (r(1)(t) = y(t)) de-
notes the residue vector obtained by removing the first (b − 1)
projections from y(t). Then, the projection of r(b)(t) onto qb(t)
is removed from r(b)(t) using the following formula:

r(b+1)(t) = r(b)(t) − qb(t)zb(t). (30)

The aforementioned deflation approach can be repeated B
times for the computation of all B major eigenvectors and their
associated eigenvalues. After obtaining Q(t), the major PCs
UB(t) can be obtained similarly from (18). It can be seen
that the sequential nature of the PASTd algorithm significantly
reduces the arithmetic complexity. However, the orthonormality
of the subspace may not be guaranteed, and hence, it is less
accurate. This will be illustrated by the simulation results in
Section IV-D.

D. Robust Recursive Detection Criteria

The detection of possible faulty samples using SPE and T 2

score relies critically on the selection of appropriate threshold.
Furthermore, to make the detection adaptive to gradual changes
in system parameters, this threshold should be recursively
updated from the measurements. In this paper, we propose to
employ the robust SPE and robust T 2 score for fault detection,
which are derived from the robust z-score reported in [24] for
outlier detection.

An important advantage of using these robust statistics [23]
is that they are more robust to the adverse influence of faulty
samples. To facilitate online implementation, we shall propose
a recursive implementation of the robust SPE and robust T 2

score. More precisely, a fault or outlier is said to be occurred
when

|SPE(t) − μSPE(t)| ≥ ξσSPE(t) (31)∣∣T 2(t) − μT 2(t)
∣∣ ≥ ξσT 2(t) (32)

where μSPE(t) and μT 2(t) are robust location estimates of
SPE(t) in (17) and T 2(t) in (9), respectively, and σSPE(t)
and σT 2(t) are robust scale estimators of SPE(t) and T 2(t),
respectively. We can see that the computation of robust SPE and
robust T 2 score in (31) and (32) only requires the eigenvectors
and eigenvalues of the tracked subspace, which is in contrast
to their conventional counterparts in (8) and (10), respectively.
Motivated by [32] and [38], the following robust recursive

location and variance estimates for the robust SPE and robust
T 2 score are proposed:

μSPE(t) = βμ_SPEμSPE(t − 1)
+ (1 − βμ_SPE)med (A (SPE(t))) (33)

σ2
SPE(t) = βσ_SPEσ2

SPE(t − 1)
+ c(1 − βσ_SPE)med

(
A

(
ΔSPE(t)2

))
(34)

μT 2(t) = βμ_T 2μT 2(t − 1)
+ (1 − βμ_T 2)med

(
A

(
T 2(t)

))
(35)

σ2
T 2(t) = βσ_T 2σ2

T 2(t − 1)
+ c(1 − βσ_T 2)med

(
A

(
ΔT 2(t)2

))
(36)

where βμ_SPE, βσ_SPE, βμ_T 2 , and βσ_T 2 are positive forget-
ting factors close to but less than one; A(d(t)) = {d(t), d(t −
1), . . . , d(t − Ld + 1)} with Ld being the window length and
d(t) denoting either SPE(t), T 2(t), ΔSPE(t), or ΔT 2(t);
med(.) is the median operator; c = 2.13 is a correction factor
for Gaussian input; and ΔSPE(t) and ΔT 2(t) are instantaneous
deviations of the SPE(t) and T 2(t) scores, respectively, from
their robust estimates

ΔSPE(t) = SPE(t) − μSPE(t) (37)

ΔT 2(t) = T 2(t) − μT 2(t). (38)

The use of the median operator is to remove possible outliers
in SPE(t) and T 2(t) from affecting the recursive mean (loca-
tion) and variance (dispersion) estimates. Next, we will discuss
how the subspace tracking algorithms should be modified when
an outlier is encountered.

E. Robust Subspace Tracking

Although the subspace-based algorithms introduced earlier
significantly reduce the arithmetic complexity, they are sen-
sitive to impulsive outliers [23]. This is because the large
amplitudes of the faulty samples will significantly affect the
tracking of the subspaces and the updating of the threshold
for further fault detection. Next, we extend the OPASTr and
OPASTd algorithms to improve their robustness to impulsive
faults. The resulting algorithms are called the R-OPASTr and
R-OPASTd algorithms, respectively.

The proposed robust OPASTr and OPASTd algorithms are
extensions of the robust PAST algorithm in [32], which relies on
a robust recursive covariance estimate based on M-estimation
[22]. More specifically, the proposed robust recursive covari-
ance estimate is modified from the covariance estimate in (5) as

Cρ_xx(t) = ψ (x(t)) β
[
Cρ_xx(t − 1) + Δμ(t)ΔμT (t)

]
+ ψ (x(t)) (1 − β)x(t)xT (t) + (1 − ψ (x(t)))Cρ_xx(t − 1)

(39)

where ψ(x(t)) is a robust weight function. Ideally, if x(t)
is an outlier, ψ(x(t)) should be small so that the covariance
matrix Cρ_xx(t) will not be affected by the corrupted samples.
Otherwise, it should be equal to one as in normal updating.
In [32], ψ(x(t)) is chosen as qH(‖x(t)‖2), where qH(u) ={ 1 uH

0 otherwise
is the derivative of the modified Huber M-

estimate function and ΓH is a threshold for suppressing the
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TABLE II
PROPOSED R-OPASTr ALGORITHM

adverse effect of faulty samples. In other words, the modified
Huber function simply ignores the samples when an outlier is
detected and proceeds with normal updating otherwise. Note
that other more complicated M-estimate function such as the
Hampel’s function [23] can be used to suppress the contribution
of the samples to different extents. For simplicity, we shall
employ the modified Huber function in this paper.

Since the T 2 score and SPE will be employed for outlier
detection, it is more convenient to choose ψ(x(t)) as

qT 2 (ΔT 2(t)) =
{

1, |ΔT 2(t)| < ΓT 2

0, otherwise
(40)

qSPE (ΔSPE(t)) =
{

1 |ΔSPE(t)| < ΓSPE

0 otherwise
(41)

or qT 2(ΔT 2(t)) · qSPE(ΔSPE(t)), depending on which crite-
rion is used. Here, ΔSPE(t) and ΔT 2(t) are instantaneous
deviations of the SPE(t) and T 2(t) scores from their robust
estimates defined in (37) and (38). ΓSPE and ΓT 2 are the thresh-
old parameters chosen to control the degree of suppression of
the faulty samples.

Motivated by [22], [32], and [38], we further propose to up-
date the thresholds ΓSPE and ΓT 2 using the adaptive threshold

TABLE III
PROPOSED R-OPASTd ALGORITHM

selection (ATS) method, which are given by

ΓSPE = ξσSPE(t) (42)

ΓT 2 = ξσT 2(t) (43)

where ξ is the threshold quartile parameter introduced in (8).
Consequently, the detection thresholds ΓSPE and ΓT 2 can be
updated recursively, and they are more adaptive to gradual
system change.

With the robust covariance update in (39), the conventional
PAST objective function in (16) will be modified to the follow-
ing robust PAST objective function:

J (W (t)) =
t∑

i=1

βt−iψ (x(i)) · ‖x(i) − W (t)y(i)‖2
2 (44)

where y(i) ≈ W T (i − 1)x(i) is the projection approximation.
The subspace W (t) in (44) can be recursively solved using
the robust PAST algorithm in [32], which is based on the
robust recursive least M-estimate algorithm [22]. Additional
reorthonormalization as in OPAST can also be performed,
which yields the proposed R-OPASTd and R-OPASTr as shown
in Tables II and III, respectively. We can see from the table
that the conventional PAST algorithm is invoked to update
W (t) followed by the reorthonormalization. If necessary, the
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TABLE IV
ARITHMETIC COMPLEXITY OF DIFFERENT ALGORITHMS UNDER DIFFERENT DETECTION CRITERIA

eigenvectors and eigenvalues in the subspace can be computed
from UB(t) and ΛB(t). In the recursive fault detection step, the
desired robust scores, such as the robust SPE, robust T 2 score,
etc., are computed, and the adaptive threshold (ATS) defined
in (42) and (43) for the given ψ(x(t)) is used to update the
detection threshold. Finally, the robust subspace is updated.
If ψ(x(t)) = 1, normal update is performed, and the W (t),
UB(t), and ΛB(t) computed in the first step of the iteration
are retained. However, if ψ(x(t)) = 0, then a faulty sample
is detected, and the quantities computed at the last iteration,
i.e., W (t − 1), UB(t − 1), and ΛB(t − 1), are retained. In
the R-OPASTd algorithm, the eigenvalues and eigenvectors
in the subspace are computed successively using the PASTd
algorithm, whereas the R-OPASTr computes them recursively
using the R-PCA algorithm.

Table IV summarizes the arithmetic complexity of the vari-
ous algorithms using the proposed robust detection criteria and
conventional detection criteria. Generally, the R-OPASTr and
the R-OPASTd offer lower complexity than other algorithms.
If the robust T 2 score is used, the arithmetic complexities
are 4PB + O(B3) and 4PB + O(B2) flops per iteration for
R-OPASTr and R-OPASTd, respectively, which are much lower
than O(P 3) flops per iteration required by the PCA, EWM-
PCA, and R-PCA. Moreover, if only the robust SPE is used,
the arithmetic complexity for R-OPASTr and R-OPASTd can
be further reduced to 4PB + O(B2) flops per iteration [18]
because the computation of eigenvectors and eigenvalues is not
required. If both the robust SPE and robust T 2 score are used for
the two algorithms, the complexity is 4PB + O(B3) because
both the major eigenvectors and the eigenvalues are computed.

IV. SIMULATION RESULTS

In this section, we consider a local fault or outlier detection
problem and compare the proposed subspace-based algorithms
with other conventional algorithms, namely, the PCA-based
algorithm in [9], EWM-PCA in [12], and R-PCA in [14]. Note
that, after the faulty sample is identified, its subsequent effect
can be estimated and may need to be compensated to facilitate
the following detection [8]. In the following simulation, we
focus on the fault detection part. Regarding the additional
option of the fault replacement, interested readers are referred
to [8] for more details. As an illustration, we employ a real data
set obtained from the Intel Laboratory [39]. The data set that

we tested was collected on February 28, 2004 from one sensor
node, and it consists of 1317 samples without any missing
data. For each sample, there are four measurement variables:
temperature, humidity, light intensity, and voltage.

In the data set, since the variables are in different physical
units, scaling is required to avoid variables with larger scales
dominating the shape of the estimated PCs/signal subspace
due to their higher variance [28], [29]. Therefore, data pre-
processing is carried out to scale all variables to unit variance.
First, the background variance is estimated from the whole data
set. Then, scaling is performed by dividing each measurement
vector with the standard deviation obtained. After scaling the
data set, the background variance of the data set is σ2

s = 1.
To study the performance of the proposed approach and other
approaches, we insert simulated faults in the form of impul-
sive outliers randomly in the data set. The impulsive out-
liers are generated using the contaminated Gaussian model as
follows: [23]

n(t) ∼ (1 − η)N
(
0, σ2

gI
)

+ ηN
(
0, σ2

imI
)

(45)

where n(t) is the impulsive outlier injected into the data set
at time instant t, η is the occurrence probability of impulsive
outlier, and N(μ,R) denotes a multivariate Gaussian distrib-
ution with mean μ and covariance R. σ2

im is the variance of
the impulsive component, and σ2

g is the variance of the additive
Gaussian component. As an illustration, η and σ2

g are chosen
as 0.1 and 1, respectively. Hence, the probability of impulsive
fault occurrence is 0.1, which is sufficiently large to evaluate
the reliability of the system. The impulse-to-noise ratio (INR)
σdB, which is the ratio of the impulsive noise variance σ2

im to
the background variance σ2

s in decibels, is given by

σdB = 10 log10

(
σ2

im

σ2
s

)
. (46)

It measures the strength of the impulsive noise over the
background noise. The forgetting factors and window lengths
in (13) and (33)–(36) are chosen as 0.99 and 11, respectively.
The number of chosen PCs and the dimension of the signal
subspace is B = 1, which are determined by Kaiser’s rule. An
initial data block of length 11, i.e., from t = 0 to t = 10, is used
to initialize all algorithms for later recursive update except the
PCA, which works on the whole data set. The three detection
criteria mentioned in Section II are used for the conventional
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Fig. 1. DP (in percent) for different threshold parameters (ξ) of vari-
ous approaches under B = 1 and σdB = 10 dB. 1Proposed approaches.
2Conventional approaches. 3Other approaches using the proposed robust de-
tection criteria. Similar remarks also apply to Figs. 2–4.

algorithms. For the proposed algorithms, similar criteria are
derived using the proposed robust T 2 score and robust SPE,
and they are referred to as the robust detection criteria in later
sections. The performance of all algorithms is assessed by the
following measures, namely, detection probability (DP) and
specificity:

DP =
TP

TP + FN
(47)

Specificity =
TN

TN + FP
(48)

where TP is the number of true positives, FN is the number of
false negatives, TN is the number of true negatives, and FP is
the number of false positives. The DP and specificity are both
important in evaluating the performance of an algorithm. The
proportion of true positives and negatives in real data may not
be equal in many situations. The DP gives a better description
of the algorithm when the proportion of TP is more than TN
and vice versa for the specificity. The DP and specificity are
calculated by averaging the results obtained in 500 Monte Carlo
simulations.

Fig. 2. Standard deviation of AUC (σAUC) of various approaches for B = 1.
1,2,3See remarks in Fig. 1.

A. Comparison Between the Proposed and
Conventional Approaches

We compare the performance between the proposed
R-OPASTr and R-OPASTd algorithms with the conventional
approaches. Figs. 1 and 2 show the DP (in percent) and speci-
ficity (in percent) of the different approaches for the threshold
parameter ξ ∈ [0, 10], which correspond to a detection confi-
dence interval of 0% and approximately 100%, i.e., P (−ξ ≤
X < ξ) → 1, respectively. For each ξ, ξF for the conventional
T 2 score-based detection criterion in (9) is calculated using
(11). We can see that the proposed approaches generally show
higher DP than the conventional approaches at the expense
of lower specificity. Also, different approaches obtain their
optimal DP and specificity at different ξ.

In order to assess the general performance of the algorithms,
the area under the receiver operating characteristic curve (AUC)
is commonly used, and it describes the area formed by TP–FP
pairs obtained from different ξ. More precisely, it can be
obtained by the trapezoidal rule as follows [40]:

AUC =
1

2N1N2

K∑
i=1

(FP i+1 − FP i)(TP i+1 + TP i) (49)
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TABLE V
AUC’S FOR DIFFERENT APPROACHES USING DIFFERENT DETECTION CRITERIA FOR B = 1 AND σdB = 10 dB

where TP i and FP i, i = 1, 2, . . . , K, are the corresponding
TP and FP for the ith chosen ξ ∈ [0, 10]. N1 and N2 are the
numbers of normal samples and impulsive outliers, respec-
tively. The best possible AUC for an algorithm is 1.0, which
yields 100% DP and specificity. An acceptable algorithm must
have an AUC greater than 0.5 in order to yield performance
better than random guessing. To quantify the performance
of the algorithms, we obtained the mean AUC and standard
deviation of AUC over 500 Monte Carlo simulations, and
they are denoted by μAUC and σAUC, respectively. Table V
shows the AUC of various algorithms under different detec-
tion criteria with σdB = 10 dB and B = 1. We can see that,
for SPE-based detection criterion and SPE + T 2 score-based
detection criterion, the performance of the proposed algorithms
(columns 2 and 3) is better than other conventional algorithms
(columns 4–6) because they have larger μAUC and smaller
σAUC. In particular, μAUC’s of the proposed algorithms are
about three times larger than those of the conventional algo-
rithms for SPE-based detection criterion. On the other hand,
for T 2-based detection, μAUC’s of the proposed algorithms are
nearly identical to other conventional algorithms except for the
PCA. However, σAUC’s of the proposed approaches are much
lower than all conventional algorithms.

The proposed R-OPASTr and R-OPASTd algorithms gener-
ally perform better than the conventional algorithms because of
the following two reasons.

1) The robust subspace tracking efficiently removes the out-
liers from the data set, which reduces the adverse effect
of outliers on the estimated subspace.

2) The robust and adaptive nature of the proposed detection
criteria improves the reliability of choosing an appropriate
detection thresholdand, thus, improves detectionaccuracy.

Moreover, we note that the required complexities for the
proposed algorithms are much lower, as illustrated in Table IV.

B. Comparison Between Different Detection Criteria

In this example, the usefulness of the proposed robust
detection criteria is studied. By incorporating them into the

conventional algorithms, the performances of the conventional
algorithms are greatly improved, as shown in columns 7–9 of
Table V. In particular, μAUC for robust SPE-based detection
criterion (columns 7–9) is about three times larger than that for
the conventional SPE-based detection criterion (columns 4–6),
at the expense of the slight decrease in μAUC for the robust
T 2 score counterpart. However, σAUC is still smaller for both
robust criteria. Also, for the robust SPE + T 2 score-based
detection criteria, larger μAUC and smaller σAUC are observed.

The robust SPE offers improvement over the conventional
SPE because of its robustness against the undesired outliers.
On the other hand, the cubic term in the conventional SPE
detection threshold in (8) magnifies the effect of the outliers
on the eigenvalues, and this contributes to the deteriorated
performance when using the conventional SPE.

Nevertheless, we can see from Table IV that the complexity
of the conventional algorithms using the proposed robust detec-
tion criteria remains at O(P 3) because the complexity is still
dominated by the computation of all eigenvalues. Unlike the
conventional algorithms, the proposed algorithms effectively
eliminate the need of computing the unused eigenvalues, and
hence, they have the lowest complexity among others.

C. Effect of the INR

In this example, we study the effect of INR σdB on the
performance of various algorithms by varying σdB from 8 to
20 dB. As can be seen in Figs. 3 and 4, most algorithms
generally have larger μAUC and smaller σAUC as σdB increases.
This is expected because impulses with larger amplitudes are
more likely to be correctly identified. However, an increasing
σdB significantly degrades the performance of the conventional
algorithms using the SPE-based detection criterion, in which
the threshold is very sensitive to the accuracy of eigenvalues
estimated. Therefore, the fault detection is more likely to break
down due to the great influence of impulsive outliers with larger
amplitudes on the eigenvalues.

Overall, the proposed R-OPASTr and R-OPASTd algorithms
perform better than other conventional algorithms when σdB
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Fig. 3. Mean AUC (μAUC) of various approaches for B = 1. 1,2,3See
remarks in Fig. 1.

increases. Moreover, we can see that the proposed robust de-
tection criteria offer improvement to the performance of these
conventional algorithms.

D. Effect of the Subspace Dimension B

In this example, we study how the subspace dimension
affects the performance of various algorithms. The simulation
settings are the same as before, except that the subspace dimen-
sion is chosen as B = 2 according to MDL, and the results are
shown in Table VI. It can be seen from Tables V and VI that the
performance improvement of the R-OPASTr algorithm is more
pronounced than the R-OPASTd algorithm when the subspace
dimension increases. This is mainly attributed to the fact that
the R-OPASTd algorithm suffers from performance degrada-
tion due to the loss of orthonormality of the eigenvectors caused
by the relaxation made on the loss function in (15). Conse-
quently, the accuracy of the R-OPASTd algorithm in computing
the eigenvalues and the resultant subspace is not as good as that
of the R-OPASTr algorithm. This suggests that the proposed
eigenvector and eigenvalue computation approach contributes
to the better performance of R-OPASTr. On the other hand,
the deflation approach has a lower arithmetic complexity at the
expense of some performance degradation.

Fig. 4. Standard deviation of AUC (σAUC) of various approaches for B = 1.
1,2,3See remarks in Fig. 1.

V. EXPERIMENTAL VALIDATION USING

REAL WSN DATA SET

In this section, we present a realistic example where the
proposed methods are used to detect anomalies observed in
real WSN data. For illustration purposes, we analyze a real
WSN data set collected from the Networked Aquatic Microbial
Observing System (NAMOS) [41]. The NAMOS is a collabo-
rative research project involving robotics, sensor networks, and
marine biology. It has deployed sensor networks at different lo-
cations to facilitate real-time observation of aquatic ecosystems
and sensor-actuated sampling for biological analysis. In par-
ticular, we consider the WSN data collected at James Reserve
(Lake Fulmor, Mountain Center, CA 92561, USA) during the
time interval from August 28, 2006 to September 1, 2006. The
data consist of ten variables (six temperature readings, chloro-
phyll reading, light intensity, wind speed, and wind direction).
Fig. 5 shows the ten readings recorded by sensor nodes 102
and 103. We can see that three extreme constant levels are
observed in the chlorophyll reading of node 103, which deviates
considerably from that of node 102. At the end of the record, we
can also observe a sudden change of chlorophyll and thermister
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TABLE VI
AUC’S FOR DIFFERENT APPROACHES USING DIFFERENT DETECTION CRITERIA FOR B = 2 AND σdB = 10 dB

Fig. 5. Chlorophyll, temperature, light intensity, and wind speed and direction readings recorded by sensor nodes (left) 102 and (right) 103 at James Reserve
(Lake Fulmor), during the time interval from August 28, 2006 to September 1, 2006. For better visibility, the light intensity and wind direction and speed readings
are centered (mean removed) and scaled.

2 readings. According to [25] and [42], such abnormal readings
are possibly caused by sensor malfunction, unstable wireless
connection, or packet collisions. Since these constant abnormal
readings or sudden change can be treated similarly as the mean-
shift faults, they can also be detected by the proposed fault
detection algorithms in the wavelet domain, as mentioned in
Section II.

It is well known that the DWT of a discrete-time signal can be
efficiently computed using a tree-structure analysis filterbank,
which contains a set of two-channel analysis filterbanks [43],
[44]. Suppose that the reading of the pth variable at time t is

Fig. 6. Level-5 wavelet detail coefficients for the chlorophyll reading of node
103 shown in Fig. 5.
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TABLE VII
SUMMARY OF ABNORMAL READINGS AND CORRESPONDING WAVELET COEFFICIENTS

TABLE VIII
AUC’S OF DIFFERENT APPROACHES FOR NAMOS DATA SET [41]

denoted by xp(t). Then, its wavelet approximation and detail
coefficients at level γ can be computed, respectively, as

a(γ)
p (t) =

∞∑
n=−∞

h(n)a(γ−1)
p (2t − n)

d(γ)
p (t) =

∞∑
n=−∞

g(n)a(γ)
p (2t − n) (50)

where a
(0)
p (t) = xp(t) and h(n) and g(n) are the impulse

responses of the low-pass and high-pass filters of the two-
channel analysis filterbanks, respectively. For simplicity, we
employed the Haar wavelet with h(0) = h(1) = g(1) = 1/

√
2

and g(0) = −1/
√

2 to transform the measurements of all ten
variables. Fig. 6 shows the level-5 wavelet detail coefficients
of the chlorophyll readings at node 103 which exhibits obvious
abnormality. However, the details of other readings are omitted
due to page limitation. As expected, we can see from Fig. 6 that
the sudden rise (fall) of the readings results in negative (posi-
tive) impulse in the wavelet domain. Tables VII summarizes the
wavelet coefficients associated with the occurrence of abnormal
chlorophyll readings observed at node 103.

For each variable, the first 250 level-5 wavelet detail co-
efficients are used as the training data, while the remaining
coefficients are used as the testing data after scaling by the
standard deviation of the training data. Similar to Section IV,
we carry out the comparison of the proposed algorithms
with other PCA-based algorithms using identical experimental
procedures and settings, i.e., the forgetting factors, window
lengths, and threshold parameter are chosen as 0.99, 11, and ξ ∈
[0, 10], respectively. According to Kaiser’s rule, the number of
chosen PCs (or subspace dimension) is determined to be B = 5.
Tables VIII shows the AUC’s of different algorithms based on
either SPE + T 2 score-based detection criterion or its robust
counterpart. We can see that both the proposed R-OPASTr and
R-OPASTd outperform the PCA-based algorithms. Moreover,
the proposed robust detection criterion generally improves the

performance of the PCA-based algorithms. Similar findings can
be obtained for other detection criteria in general, but they are
omitted due to page limitation.

VI. CONCLUSION

New robust recursive ED and subspace-based algorithms for
fault detection in WSNs and related applications have been
proposed. The major advantages of algorithms developed under
the proposed approach are the following: 1) it computes recur-
sively the ED in the major subspace with a smaller dimension
and, therefore, facilitates online implementation with reduced
arithmetic complexity and improved adaptability to gradual
system change; 2) it has two different ways to update the
ED required, namely, R-OPASTr and R-OPASTd, which offer
different tradeoffs between fault detection accuracy and imple-
mentation complexity; and 3) it incorporates robust statistics in
the ED update, and hence, its capability to detect faulty sam-
ples is improved. Together with the proposed robust detection
criteria and their efficient recursive implementation, it is shown
through simulation and experimental results that the proposed
approach generally outperforms other PCA-based approaches
in both detection accuracy and implementation complexity. The
algorithms developed in this paper may also find applications in
process monitoring and other related applications.
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