6,282 research outputs found

    Kernel methods in genomics and computational biology

    Full text link
    Support vector machines and kernel methods are increasingly popular in genomics and computational biology, due to their good performance in real-world applications and strong modularity that makes them suitable to a wide range of problems, from the classification of tumors to the automatic annotation of proteins. Their ability to work in high dimension, to process non-vectorial data, and the natural framework they provide to integrate heterogeneous data are particularly relevant to various problems arising in computational biology. In this chapter we survey some of the most prominent applications published so far, highlighting the particular developments in kernel methods triggered by problems in biology, and mention a few promising research directions likely to expand in the future

    A decision-theoretic approach for segmental classification

    Full text link
    This paper is concerned with statistical methods for the segmental classification of linear sequence data where the task is to segment and classify the data according to an underlying hidden discrete state sequence. Such analysis is commonplace in the empirical sciences including genomics, finance and speech processing. In particular, we are interested in answering the following question: given data yy and a statistical model π(x,y)\pi(x,y) of the hidden states xx, what should we report as the prediction x^\hat{x} under the posterior distribution π(x∣y)\pi (x|y)? That is, how should you make a prediction of the underlying states? We demonstrate that traditional approaches such as reporting the most probable state sequence or most probable set of marginal predictions can give undesirable classification artefacts and offer limited control over the properties of the prediction. We propose a decision theoretic approach using a novel class of Markov loss functions and report x^\hat{x} via the principle of minimum expected loss (maximum expected utility). We demonstrate that the sequence of minimum expected loss under the Markov loss function can be enumerated exactly using dynamic programming methods and that it offers flexibility and performance improvements over existing techniques. The result is generic and applicable to any probabilistic model on a sequence, such as Hidden Markov models, change point or product partition models.Comment: Published in at http://dx.doi.org/10.1214/13-AOAS657 the Annals of Applied Statistics (http://www.imstat.org/aoas/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Modeling dependent gene expression

    Full text link
    In this paper we propose a Bayesian approach for inference about dependence of high throughput gene expression. Our goals are to use prior knowledge about pathways to anchor inference about dependence among genes; to account for this dependence while making inferences about differences in mean expression across phenotypes; and to explore differences in the dependence itself across phenotypes. Useful features of the proposed approach are a model-based parsimonious representation of expression as an ordinal outcome, a novel and flexible representation of prior information on the nature of dependencies, and the use of a coherent probability model over both the structure and strength of the dependencies of interest. We evaluate our approach through simulations and in the analysis of data on expression of genes in the Complement and Coagulation Cascade pathway in ovarian cancer.Comment: Published in at http://dx.doi.org/10.1214/11-AOAS525 the Annals of Applied Statistics (http://www.imstat.org/aoas/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Machine Learning and Integrative Analysis of Biomedical Big Data.

    Get PDF
    Recent developments in high-throughput technologies have accelerated the accumulation of massive amounts of omics data from multiple sources: genome, epigenome, transcriptome, proteome, metabolome, etc. Traditionally, data from each source (e.g., genome) is analyzed in isolation using statistical and machine learning (ML) methods. Integrative analysis of multi-omics and clinical data is key to new biomedical discoveries and advancements in precision medicine. However, data integration poses new computational challenges as well as exacerbates the ones associated with single-omics studies. Specialized computational approaches are required to effectively and efficiently perform integrative analysis of biomedical data acquired from diverse modalities. In this review, we discuss state-of-the-art ML-based approaches for tackling five specific computational challenges associated with integrative analysis: curse of dimensionality, data heterogeneity, missing data, class imbalance and scalability issues

    Exploring Patterns of Epigenetic Information With Data Mining Techniques

    Get PDF
    [Abstract] Data mining, a part of the Knowledge Discovery in Databases process (KDD), is the process of extracting patterns from large data sets by combining methods from statistics and artificial intelligence with database management. Analyses of epigenetic data have evolved towards genome-wide and high-throughput approaches, thus generating great amounts of data for which data mining is essential. Part of these data may contain patterns of epigenetic information which are mitotically and/or meiotically heritable determining gene expression and cellular differentiation, as well as cellular fate. Epigenetic lesions and genetic mutations are acquired by individuals during their life and accumulate with ageing. Both defects, either together or individually, can result in losing control over cell growth and, thus, causing cancer development. Data mining techniques could be then used to extract the previous patterns. This work reviews some of the most important applications of data mining to epigenetics.Programa Iberoamericano de Ciencia y Tecnología para el Desarrollo; 209RT-0366Galicia. Consellería de Economía e Industria; 10SIN105004PRInstituto de Salud Carlos III; RD07/0067/000

    Applications of Hidden Markov Models in Microarray Gene Expression Data

    Get PDF
    Hidden Markov models (HMMs) are well developed statistical models to capture hidden information from observable sequential symbols. They were first used in speech recognition in 1970s and have been successfully applied to the analysis of biological sequences since late 1980s as in finding protein secondary structure, CpG islands and families of related DNA or protein sequences [1]. In a HMM, the system being modeled is assumed to be a Markov process with unknown parameters, and the challenge is to determine the hidden parameters from the observable parameters. In this chapter, we described two applications using HMMs to predict gene functions in yeast and DNA copy number alternations in human tumor cells, based on gene expression microarray data
    • …
    corecore