594 research outputs found

    08431 Abstracts Collection -- Moderately Exponential Time Algorithms

    Get PDF
    From 19/10/200819/10/2008 to 24/10/200824/10/2008, the Dagstuhl Seminar 08431 ``Moderately Exponential Time Algorithms \u27\u27 was held in Schloss Dagstuhl~--~Leibniz Center for Informatics. During the seminar, several participants presented their current research, and ongoing work and open problems were discussed. Abstracts of the presentations given during the seminar as well as abstracts of seminar results and ideas are put together in this paper. The first section describes the seminar topics and goals in general. Links to extended abstracts or full papers are provided, if available

    RASCAL: calculation of graph similarity using maximum common edge subgraphs

    Get PDF
    A new graph similarity calculation procedure is introduced for comparing labeled graphs. Given a minimum similarity threshold, the procedure consists of an initial screening process to determine whether it is possible for the measure of similarity between the two graphs to exceed the minimum threshold, followed by a rigorous maximum common edge subgraph (MCES) detection algorithm to compute the exact degree and composition of similarity. The proposed MCES algorithm is based on a maximum clique formulation of the problem and is a significant improvement over other published algorithms. It presents new approaches to both lower and upper bounding as well as vertex selection

    Computational methods for finding long simple cycles in complex networks

    Get PDF
    © 2017 Elsevier B.V. Detection of long simple cycles in real-world complex networks finds many applications in layout algorithms, information flow modelling, as well as in bioinformatics. In this paper, we propose two computational methods for finding long cycles in real-world networks. The first method is an exact approach based on our own integer linear programming formulation of the problem and a data mining pipeline. This pipeline ensures that the problem is solved as a sequence of integer linear programs. The second method is a multi-start local search heuristic, which combines an initial construction of a long cycle using depth-first search with four different perturbation operators. Our experimental results are presented for social network samples, graphs studied in the network science field, graphs from DIMACS series, and protein-protein interaction networks. These results show that our formulation leads to a significantly more efficient exact approach to solve the problem than a previous formulation. For 14 out of 22 networks, we have found the optimal solutions. The potential of heuristics in this problem is also demonstrated, especially in the context of large-scale problem instances

    Matching

    Get PDF

    GraphMineSuite: Enabling High-Performance and Programmable Graph Mining Algorithms with Set Algebra

    Full text link
    We propose GraphMineSuite (GMS): the first benchmarking suite for graph mining that facilitates evaluating and constructing high-performance graph mining algorithms. First, GMS comes with a benchmark specification based on extensive literature review, prescribing representative problems, algorithms, and datasets. Second, GMS offers a carefully designed software platform for seamless testing of different fine-grained elements of graph mining algorithms, such as graph representations or algorithm subroutines. The platform includes parallel implementations of more than 40 considered baselines, and it facilitates developing complex and fast mining algorithms. High modularity is possible by harnessing set algebra operations such as set intersection and difference, which enables breaking complex graph mining algorithms into simple building blocks that can be separately experimented with. GMS is supported with a broad concurrency analysis for portability in performance insights, and a novel performance metric to assess the throughput of graph mining algorithms, enabling more insightful evaluation. As use cases, we harness GMS to rapidly redesign and accelerate state-of-the-art baselines of core graph mining problems: degeneracy reordering (by up to >2x), maximal clique listing (by up to >9x), k-clique listing (by 1.1x), and subgraph isomorphism (by up to 2.5x), also obtaining better theoretical performance bounds

    Algorithms and experiments: The new (and the old) methodology

    Get PDF
    The last twenty years have seen enormous progress in the design of algorithms, but little of it has been put into practice. Because many recently developed algorithms are hard to characterize theoretically and have large running_time coefficients, the gap between theory and practice has widened over these years. Experimentation is indispensable in the assessment of heuristics for hard problems, in the characterization of asymptotic behavior of complex algorithms, and in the comparison of competing designs for tractable problems. Implementation, although perhaps not rigorous experimentation, was characteristic of early work in algorithms and data structures. Donald Knuth has throughout insisted on testing every algorithm and conducting analyses that can predict behavior on actual data, more recently, Jon Bentley has vividly illustrated the difficulty of implementation and the value of testing. Numerical analysts have long understood the need for standardized test suites to ensure robustness, precision and efficiency of numerical libraries. It is only recently, however, that the algorithms community has shown signs of returning to implementation and testing as an integral part of algorithm development. The emerging disciplines of experimental algorithmics and algorithm engineering have revived and are extending many of the approaches used by computing pioneers such as Floyd and Knuth and are placing on a formal basis many of Bentley's observations. We reflect on these issues, looking back at the last thirty years of algorithm development and forward to new challenges: designing cache_aware algorithms, algorithms for mixed models of computation, algorithms for external memory, and algorithms for scientific research
    corecore