7,845 research outputs found

    The Two-Dimensional, Rectangular, Guillotineable-Layout Cutting Problem with a Single Defect

    Get PDF
    In this paper, a two-dimensional cutting problem is considered in which a single plate (large object) has to be cut down into a set of small items of maximal value. As opposed to standard cutting problems, the large object contains a defect, which must not be covered by a small item. The problem is represented by means of an AND/OR-graph, and a Branch & Bound procedure (including heuristic modifications for speeding up the search process) is introduced for its exact solution. The proposed method is evaluated in a series of numerical experiments that are run on problem instances taken from the literature, as well as on randomly generated instances.Two-dimensional cutting, defect, AND/OR-graph, Branch & Bound

    Minimal proper non-IRUP instances of the one-dimensional Cutting Stock Problem

    Full text link
    We consider the well-known one dimensional cutting stock problem (1CSP). Based on the pattern structure of the classical ILP formulation of Gilmore and Gomory, we can decompose the infinite set of 1CSP instances, with a fixed demand n, into a finite number of equivalence classes. We show up a strong relation to weighted simple games. Studying the integer round-up property we computationally show that all 1CSP instances with n9n\le 9 are proper IRUP, while we give examples of a proper non-IRUP instances with n=10n=10. A gap larger than 1 occurs for n=11n=11. The worst known gap is raised from 1.003 to 1.0625. The used algorithmic approaches are based on exhaustive enumeration and integer linear programming. Additionally we give some theoretical bounds showing that all 1CSP instances with some specific parameters have the proper IRUP.Comment: 14 pages, 2 figures, 2 table

    A general genetic algorithm for one and two dimensional cutting and packing problems

    Get PDF
    Cutting and packing problems are combinatorial optimisation problems. The major interest in these problems is their practical significance, in manufacturing and other business sectors. In most manufacturing situations a raw material usually in some standard size has to be divided or be cut into smaller items to complete the production of some product. Since the cost of this raw material usually forms a significant portion of the input costs, it is therefore desirable that this resource be used efficiently. A hybrid general genetic algorithm is presented in this work to solve one and two dimensional problems of this nature. The novelties with this algorithm are: A novel placement heuristic hybridised with a Genetic Algorithm is introduced and a general solution encoding scheme which is used to encode one dimensional and two dimensional problems is also introduced

    Two-Dimensional Cutting Problem

    Get PDF
    This paper deals with two-dimensional cutting problems. Firstly the complexity of the problem in question is estimated. Then, several known approaches for the regular (rectangular) and irregular (not necessarily rectangular) cutting problems are described. In the second part, a decision support system for cutting a rectangular sheet of material into pieces of arbitrary shapes, is presented. The system uses two earlier described methods which prefer different types of data and the user may decide which one is more suitable for the problem in question. After brief description of system data files and its manual, some experimental results are presented

    The Two-Dimensional, Rectangular, Guillotineable-Layout Cutting Problem with a Single Defect

    Get PDF
    In this paper, a two-dimensional cutting problem is considered in which a single plate (large object) has to be cut down into a set of small items of maximal value. As opposed to standard cutting problems, the large object contains a defect, which must not be covered by a small item. The problem is represented by means of an AND/OR-graph, and a Branch & Bound procedure (including heuristic modifications for speeding up the search process) is introduced for its exact solution. The proposed method is evaluated in a series of numerical experiments that are run on problem instances taken from the literature, as well as on randomly generated instances

    The two-dimensional bin packing problem with variable bin sizes and costs

    Get PDF
    AbstractThe two-dimensional variable sized bin packing problem (2DVSBPP) is the problem of packing a set of rectangular items into a set of rectangular bins. The bins have different sizes and different costs, and the objective is to minimize the overall cost of bins used for packing the rectangles. We present an integer-linear formulation of the 2DVSBPP and introduce several lower bounds for the problem. By using Dantzig–Wolfe decomposition we are able to obtain lower bounds of very good quality. The LP-relaxation of the decomposed problem is solved through delayed column generation, and an exact algorithm based on branch-and-price is developed. The paper is concluded with a computational study, comparing the tightness of the various lower bounds, as well as the performance of the exact algorithm for instances with up to 100 items
    corecore