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Abstract

Cutting and packing problems are combinatorial optimisation problems. The ma-

jor interest in these problems is their practical significance, in manufacturing and

other business sectors. In most manufacturing situations a raw material usually in

some standard size has to be divided or be cut into smaller items to complete the

production of some product. Since the cost of this raw material usually forms a

significant portion of the input costs, it is therefore desirable that this resource be

used efficiently. A hybrid general genetic algorithm is presented in this work to solve

one and two dimensional problems of this nature. The novelties with this algorithm

are:

A novel placement heuristic hybridised with a Genetic Algorithm is introduced

and a general solution encoding scheme which is used to encode one dimensional and

two dimensional problems is also introduced.
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Chapter 1

Introduction

Cutting and Packing (C&P) problems are combinatorial optimisation problems of

practical significance. In most manufacturing situations it is required that a single

resource be cut into smaller pieces. This process usually results in waste, it is

therefore desirable to reduce the waste that results as much as possible. Examples

of this phenomenon can be observed in the following industries: Glass, Paper, Steel,

semiconductor, Textile and many other industries.

1.1 Objectives of the study

The objectives of this work are as follows:

• Gain an understanding of what constitutes cutting and packing problems in

general.

• The study of those cutting and packing problems that are of manufacturing

1
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significance.

• Conduct a literature survey in this field .

• Gain an understanding of what Genetic Algorithms are.

• Design a general Genetic Algorithm aimed at solving these problems.

• Conduct computational experiments on test problems collected from various

literature sources.

1.2 Scope of the research

This work will only be limited to one dimensional and two dimensional problems.

All the problems dealt with in this work are listed and defined in section 2.4.

1.3 Overview of the thesis

In chapter 2 a general introduction to cutting and packing is offered and a review of

related work is also offered. The description of problems that are targeted in this

work is also given and a problem coding scheme that allows the general genetic

algorithm proposed in this work to uniquely solve these problems. In chapter 3 a

brief introduction to Genetic Algorithms is presented. A review of how genetic

algorithms have been used as solution procedures to C&P problems is also offered.

The design of the general genetic algorithm and the implementation of the

algorithm is dealt with in chapters 4 and 5. The results of computational tests and
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discussion of the results is offered in chapter 6. The conclusion and suggestions for

future research are offered in chapter 7.



Chapter 2

Cutting and Packing

Cutting and Packing problems are optimisation problems whose concern is the

optimal allocation of a set of multiple small items into a set of large containing

regions (objects), subject to a set of constraints. In disciplines such as Management

Science, Information and Computer Science, Engineering and Operations Research,

diverse terms are used to refer to problems of this nature (cutting problems,

knapsack problem, container and vehicle loading problems, bin packing problems,

assembly line balancing, etc). High material utilisation is of particular interest to

mass producing industries. Effective utilisation of the material has a financial

incentive. If a company is able to minimise waste that results from inefficient use of

material, there is a quantifiable saving in the cost of the raw material. This saving

can be passed on to the customer or can result in increased profits for the company.

In addition, the concerned company may be able to realise further savings in form

of reduced stock holding and warehousing capacity. It has always been an objective

4
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of decades of academic and industrial research that a means to solve manufacturing

problems of this nature be automated. Problems of this nature are common in the

sheet metal, lumber, textile and paper industries. In all the above mentioned

industries, it is usually more economical to produce large objects in only a few

standard sizes at first and later cut them into sizes requested by the customers,

than produce the required sizes directly. Other examples of problems of this nature

appear in areas that seem unrelated at all to the above stated examples, areas such

as land development, facilities layout and electrical circuit layout. Cutting and

Packing problems have been shown to be NP-complete (Non-deterministic

polynomial time) [Fowler et al. (1981),Garey and Johnson (1980)], therefore it is

impossible to solve them in polynomial time.

2.1 Types of Problems

“Cutting and Packing” has now become a term that is used to group subtly different

problems into a single field. A few examples of these problems are listed below:

Bin Packing

This problem is concerned with minimising the number of bins into which small

items need to be packed in. There are several different versions of this problem

appearing in single dimension or multiple dimensional items and bins. The solution

to this problem has several industrial applications. Example applications are wood

and glass industries, vehicle loading, vehicle routing. For detailed surveys on bin

packing (see [Coffman, Jr. et al. (1997), Lodi et al. (2002)]).
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Strip Packing

This problem involves packing rectangular or irregular items on to a strip of

unlimited height (usually a roll of material is assumed), the objective is to minimise

strip height. When packing rectangular items, it is required that the small items

edges be parallel to the edges of the strip. In this case the rectangular items may

be subjected to orientation constraints, (i.e only 90◦ rotations are allowed or no

rotation allowed). An example of orthogonal strip packing is shown in figure 2.1
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����������������������������An Example of   Orthogonal Strip Packing Problem

Figure 2.1: A partially packed layout, with those items outside the strip to be packed
into the strip.

Knapsack Problem

Given a container of fixed capacity and a set of small items, the requirement is to
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find the most valuable subset of the small items without violating the capacity

constraints of the container. For detailed discussions on knapsack problems (see

[Martello and Toth (1990)]).

Nesting

This problem is concerned with packing a set of irregular two dimensional shapes in

large two dimensional regions. The complication in this problem arises when the

small items are to be packed in irregular sheets (e.g. cow hides). The term nesting

is mainly used in the ship building industry.

Loading Problem

The loading of aeroplanes, trucks and containers are all examples of this three

dimensional problem, where small boxes have to be loaded to some large three

dimensional container efficiently. Additional constraints and objectives can be

involved, usually the constraints and objectives vary depending on the industry. An

example of the constraints would be to have boxes face a certain direction, because

they contain fragile items. An example of the objective would be to order the boxes

by the sequence in which they will be offloaded.

Marker Layout Problem

In the textile industries two-dimensional irregular shapes of the pieces of clothing

to be cut are packed on textile strips . The templates are used to find optimal

material utilisation. The term ”marker” is usually used to refer to the irregular

piece of clothing to be cut from the strip of fabric. In academic literature this is

sometimes usually referred to as the irregular cutting stock problem. In the leather

industries a further complicated version of this problem is encountered, where in
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addition to irregular small items we have multiple arbitrarily irregular sheets ( e.g.

cow hides). The quality and strengths of the sheets is not uniform, there might also

be defective regions on the sheets.

Assortment Problem

In this problem waist minimisation is approached from a different angle. Instead of

trying to minimise waist using available sheets. This problem is concerned with

determining what sheet sizes to keep in the warehouse so as to minimise waist.

2.2 Cutting Technology Constraints

When cutting rectangular shapes, another consideration is the cutting technology

of the cutting machine. There are two types of cutting achievable for these types of

problems i) Guillotine Cutting, (This constraint is particularly important in glass

and polystyrene industries for example), ii) Free cutting. Guillotine cuts only allow

a cut from one side of the larger rectangular object to the other, parallel to the

edges of the larger rectangular object. Figure 2.2 shows an example of two of

layouts. One can be cut with guillotine cuts whilst the other cannot.
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GUILLOTINABLE

NON-
GUILLOTINABLE

Figure 2.2: Guillotine Cuts vs. Non-Guillotine Cuts

This implies that small rectangular items have to be packed such that this

constraint is accommodated. With Free cutting this does not apply.

2.3 Typological Categorisation

In order to provide a comprehensive picture in the field of C&P (Cutting and

Packing), Dyckhoff proposed a typology that described problem types based on
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four characteristics [Dyckhoff and Finke (1992)]. The motivation for Dyckhoff to

carry out this task was due to the multitude of problems that exist within the C&P

field and the fact that many names are sometimes used to refer to the same

problem. Other reasons were to promote cross-fertilisation of research within the

academic community and minimise the time spent identifying suitable references.

Dyckhoff is credited for highlighting the common underlying structure of cutting

problems on one hand and packing problems on the other. Figure 2.3 summarises

the main features of Dyckhoff’s typology.

Figure 2.3: Summary of Dyckhoff’s Typological Categorisation
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Dimensionality

The first characteristic is the identification of the dimensionality of the problem.

This criterion deals with the minimal number (1, 2, 3, n>3) of geometric

dimensions necessary to describe problems. In one dimensional problems large

objects and small items are defined by their length. An example is cutting rods or

sewerage pipes, where an object of a given diameter is to be divided into shorter

parts. In two-dimensional problems small items and large objects are surfaces. Flat

materials (e.g. sheet metal or glass plates) must be cut into smaller sizes of the

same material thickness. Three-dimensional problems are typical loading problems

(see section 2.1). Multidimensional problems occur mainly in abstract C&P

problems. An example would be multi-period capital budgeting in the financial

sector. They can however, occur in loading when an item is to be stored within a

certain time frame, time is then considered the fourth relevant dimension.

Type of Assignment

The second characteristic is the type of assignment in the particular problem

concerned. Dyckhoff separates this criterion to two classes, indicated by B (

German for “Beladeproblem”). This means all large objects are to be used and a

selection of small items is to be assigned to large objects. The second category is V

(German for “Verladeproblem”) characterises a situation in which all small items

will be assigned to a selection of large objects.

Assortment of Objects

The third characteristic is the assortment of available objects (e.g. sheets in

two-dimensional packing). This characteristic is represented by three options,
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which are i) O stands for one large object ii) I for several but identical large objects

iii)D for several large objects. A perfect example of the first case is when a roll of

material is used. With multiple identical objects a new large object has to be

initiated once the current object is full, and changing the order in which we use

large objects has no effect on the produced solution quality. The situation in which

we have an assortment of different multiple objects, the order in which we use large

objects has a direct impact on the quality of solution produced, one also need to

identify when to initiate a new object if the current object becomes full.

Assortment of Items

The final characteristic is the assortment of small items (shapes in two-dimensional

packing). The types of assortment for items take the following form:

• (F) Few items (of different figures)

• (M) Many items of many different figures

• (R) Many items of relatively few figures

• (C)Congruent figures

Below are examples on how Dyckhoff’s classification scheme works for a few

problem types:

Two-dimensional strip packing problem can be classified as 2/V/O/M

One-dimensional knapsack problem is classified as 1/B/O/M
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Two-dimensional Bin Packing Problem is classified as 2/V/I/M

One -dimensional Cutting Stock Problem can be classified as 1/V/I/R

Many inconsistencies and shortcomings of Dyckhoff’s typology have been pointed

out as a result Dyckhoff’s typology has not been well received. A new typology is

being proposed that attempts to rectify some of the shortcomings of Dyckhoff’s

typology (see [Wäscher et al. (2006) ]). Another interesting way to characterise

typology is that introduced by Lodi et al. (2002) for two-dimensional problems,

which they term the three-field typology. For an example a two-dimensional strip

packing problem in which rectangular items are to be packed in a strip, rectangular

items have to be oriented and free cutting is required, would be written as

2SP|O|F. The diagram in Figure 2.4 gives an overview of C&P problems.
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Figure 2.4: Classification of C&P problems adapted from Hopper and Turton (1998)

2.4 Problem Descriptions

In figure 2.4 a diagram that attempts to give an overview of cutting and packing

problems is shown. The diagram mainly classifies Cutting and packing problems by
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the following characteristics: dimension, shape of items, applicable cutting

technology constraint. For rectangular items the cutting technology constraint can

be further divided into two i.e, guillotine-able and nonguillotine-able. The two

dimensional problems can be divided into cutting of regular or irregular shapes. In

irregular cutting the pieces to be cut out may take any shape as encountered in

clothing, shoe-leather, furniture, automobile and aerospace industries. When

cutting out regular shapes, the shapes may be rectangular or any other geometrical

shape, i.e. non-rectangular shapes, which are encountered in furniture, paper, and

sheet metal industries. This work is limited to only one-dimensional and

two-dimensional problems. Table 2.1 contains a lists of problems which will be

described formally in the following subsections . The acronyms stand for the

following problem types:

• BPP- Bin Packing problem

• CSP- Cutting Stock problem

• SPP-Strip packing problem

• ISPP- Irregular strip packing problem

Consider table 2.1, the following coding scheme: (Problem type, Dimension,

Orientation Constraint, Cutting Technology Constraint) is suggested by the table.

This problem coding scheme from henceforth would be shortened as (P, D, O, C).
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2.4.1 One-Dimensional Problems

Two problems will be dealt with in the one-dimensional category. The

one-dimensional cutting stock problem (1-CSP for short) and the one-dimensional

bin packing problem (1-BPP). The formal definition for the 1-CSP is, given a set

S = {1, ...,n} of items, each having a length li, with each item having an associated

demand di(i ∈S). These items have to be cut out of objects with stock length L,

li ≤ L ∀i ∈ S. The objective is to satisfy the demands whilst minimising wate

that might result from the cutting process. The definition for the 1-BPP is given a

set J = {1,...,n} of items each having positive weight wj(j ∈ J), one has to

partition the set J into a minimum number of subsets (bins), so that the sum of

the weights in each subset does not exceed a given capacity C, wj ≤ C ∀j ∈ J .

The two problems stated above are closely related. To illustrate the coding scheme

introduced in section 2.4 the problems described above could be coded as follows:

One-dimensional Bin Packing Problem- (BPP,1,*,* 1)

One-dimensional Cutting Stock problem- (CSP,1,*,*)

2.4.2 Two-Dimensional Problems

A formal definition of two-dimensional problems listed in table 2.1 is given in the

following subsections and all the problems that arise out of the combination of

various constraints.

1The * sign stands for a blank or not applicable
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2.4.2.1 Two-Dimensional Bin Packing Problem (2BPP)

The formal description of this problem is, We are given a set of items S, where each

item i(i ∈ S) has width wi and height hi, and an unlimited number of large objects

(rectangular bins) having identical width W and height H . The objective is to

place the items into bins without overlap, minimising the number of rectangular

bins used to place the items. Taking into account the constraints described above

for rectangular packing the following four types of 2BPP problems can be

distinguished:

• (BPP,2,2,F):the items may be rotated by 900 and no guillotine cutting is

required(F);

• (BPP,2,2,G):the items may be rotated by 900and guillotine cutting is

required(G);

• (BPP,2,1,F):the orientation of the items should be kept fixed and no

guillotine cutting required;

• (BPP,2,1,G):the orientation of the items should be kept fixed and guillotine

cutting required;

2.4.2.2 Two-Dimensional Strip Packing Problem (2SP)

We are given n items (small rectangles) each having width wi and height hi and one

large rectangular object (called a strip) whose width W is fixed, but its height is

assumed to be infinite. The objective is to minimise the packing height H of the
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strip such that all items can be packed into the strip without overlap. Similar to

the above stated problem Orientation and Cutting technology constraints have to

be taken into account. The resulting problems are as follows :

• (SPP,2,2,F)

• (SPP,2,2,G)

• (SPP,2,1,F)

• (SPP,2,1,G)

2.4.2.3 Two-Dimensional Irregular Strip Packing Problem (2ISP)

We are given n items of arbitrary shapes, and one object (called a strip ) with

constant width W and a height assumed to be infinite. The objective is to minimise

the packing height H of the strip such that all items are contained in the strip without

overlap. In this problem the major variant is the orientation constraint of the small

arbitrary shapes as shown in table 2.1.

2.5 Related Literature On One-Dimensional Prob-

lems

The solution procedures for the solution of one-dimensional cutting and packing

problems can be placed in two broad categories, which are i) Exact methods, ii)

Heuristic procedures.
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The exact methods consists of mathematical programming procedures. Gilmore

and Gommory are credited for having been the first to do work in this area for the

1-CSP [Gilmore and Gomory (1961)]. Most of the Linear Programming (LP)-based

procedures are inspired by the work of Gilmore and Gommory. This method is

based on the following Integer Programming(IP)-model:

minimise
∑

j Xj

subject to
∑

j

AijXj ≥ di ∀i ∈ (1, 2, . . ., n) (2.1)

The variable Xj indicates the number of times pattern j will be used. Aij indicates

how many times item i appears in pattern j, and di represent the demand

associated with each item i. In solving the above model Gilmore and Gommory

applied a two stage approach . The first stage involved the LP relaxation of the

1-CSP IP model. This is followed by a novel technique that was introduced by

Gilmore and Gommory called the column generation technique which is used to

generate columns that price out best at every pivot step , to accomplish this an

auxiliary problem (a knapsack problem) has to be solved at every step. For

simplified example of this approach see [Winston (2004)]. The alternative to

LP-based approaches is to use sequential heuristic approaches (SHP). These

procedures construct a solution by making one cutting pattern at a time. For more

details about this see [Haessler (1992)]. Another set of heuristics to mention is that

introduced by Coffman, Garey and Johnson (see [ Coffman, Jr. et al. (1997) ] ) to

solve instances of 1-BPP. These are mainly sequential heuristics, i.e a list of items
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is ordered in some way and items are placed in bins one item at a time. The major

difference is in how the items are ordered prior to placement and what criteria is

used to place each item in the bin. One of these heuristics is the First Fit

Decreasing (FFD) heuristic. In this heuristic the items list is ordered by decreasing

weight from largest to smallest first. Items are packed into the first bin that will

hold them, If no bin can hold an item a new bin is initialised. See algorithm 1 for

the description of this algorithm.

Algorithm 1 FFD(S,C)

//S set of items
//C Bin Capacity

1. sort S such that wi ≥ wi+1 ∀i ∈ S

2. Place item i in first bin that has enough space. if no bin has enough space,
open new bin (B := B + 1).

3. Repeat step 2 until all items in S are placed.

The other heuristic in this family of heuristics is the Best Fit Decreasing (BFD)

heuristic. With the BFD we sort the items in non-increasing order, The placement

criteria for the placement of items is the amount of space left after the placement of

an item in the bin, i.e. the bin with the least remaining space after placement. (In

the case of the tie we put the item in the lowest numbered bin as labeled from left

to right.)
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Algorithm 2 BFD(S,C)

//S set of items
//C Bin Capacity

1. sort S such that wi ≥ wi+1 ∀i ∈ S

2. Place item i in the bin that minimises unused space among those where it fits.
If no bin can accommodate i it is placed as in the FFD strategy.

3. Repeat step 2 until every item in S is placed.

See algorithm 2 for summary. Both of the above heuristics have a guaranteed worst

case performance of 11
9
OPT + 4, where OPT is the number of bins in the optimal

solution to the problem [Coffman, Jr. et al. (1997)].

2.6 Related Literature On Two-Dimensional Rect-

angular Cutting and Packing Problems

Solution approaches in literature can be broadly categorised into three methods (i)

exact methods, (ii) problem specific heuristics, (iii) metaheuristic algorithms.

2.6.1 Exact Methods

Exact methods mainly consist of mathematical programming techniques. The work

cited most is that of Gilmore and Gomory as their work is regarded to be seminal

in the field of cutting and packing and most LP-based approaches are further
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modifications of their work.

Gilmore and Gomory [Gilmore and Gomory (1965)] proposed the first model for

two-dimensional packing problems , where they extended the approach they used to

solve the one-dimensional cutting stock problem see ([Gilmore and Gomory (1961)]

and [Gilmore and Gomory (1963)]), They observed that the corresponding number

of columns can not be overcome as there was no efficient method for solving the

generalised knapsack problem for the two-dimensional problem. Despite this

observation they also observed that a wide class of cutting problems in industry

have restrictions that permit their knapsack problems to be solved efficiently, i.e.

Cutting is done in stages. Beasely [Beasley (1985)] looked at a two-dimensional

cutting problem in which profit is associated with each item and the objective is to

select a subset of items with maximum profit to be placed into a single bin.

2.6.2 Problem Specific Heuristics

In this section a summary for two-dimensional heuristics is provided.

Two-dimensional heuristics mainly use a permutation coding scheme. These

algorithms mainly consist of two phases: (i) Construct a permutation and (ii) Place

items one by one onto the larger object(s) using some decoding procedure. For the

first phase, items are usually arranged in non-decreasing order based on a certain

property e.g. decreasing height, decreasing width or decreasing area. As to which

property is best to select is never known apriori. Hence many algorithms generate

several permutations with different criteria , and apply a decoding algorithm to all

such permutations. The second phase can be further classified to (i) Level-oriented
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algorithms, (ii) Non-level oriented algorithms.

2.6.2.1 Level-oriented algorithms

In level based algorithms items are first sorted by some criteria as discussed above.

Bin/Strip packing is obtained by placing items , from left to right, in rows forming

levels. The bottom of the strip/bin is the first level and subsequent levels are

produced by the horizontal line that coincides with the tallest item of the level

below. The most popular level algorithms are next fit, first fit and best fit, which

are natural analogues of the one-dimensional bin packing problem. Let

i (i = 1, 2, . . ., n) denote the current item to be placed and s be the level created

most recently.

• Next-fit Decreasing Height (NFDH) strategy: item i is placed left justified (i.e.

placed at the the left-most feasible position) if it fits, else a new level (s := s+1)

is initialised, and i is packed left justified into it.

• First-fit Decreasing Height (FFDH) strategy: item i is placed left-justified on

the lowest level (i.e first level) it will fit in. If none of these current levels can

accommodate item i, a new level is initialised as in NFDH algorithm.

• Best-fit Decreasing Height (BFDH) strategy: we check from level 1 to level s

if item i can be accommodated by any of these levels, item i is packed

left-justified at a level for which unused horizontal space is a minimum. If no

level can accommodate item i, a new level is initialised as in FFDH.
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Figure 2.5: Level Oriented Algorithms

The above strategies are illustrated in Figure 2.5 (In this figure items are sorted by

non-increasing height and numbered as such). The major difference between the

last two strategies compared with the first is that the last two strategies can always

turn to previously packed levels for packing a new rectangle, and NFDH always
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places subsequent rectangles at or above the current level. Level-oriented

algorithms were analysed by Coffman, Jr. et al. (1980) for the strip packing

problem and determined their worst-case behavior. Given an arbitrary list L of

rectangular items and an approximation algorithm A , let A(L) and OPT (L)

denote the actual strip packing height for the rectangles in L and minimum height

possible respectively. Coffman, Jr. et al. (1980) proved that, if the heights are

normalised such that maxj{hj} = 1, then

NFDH(L) ≤ 2 ·OPT (L) + 1 (2.2)

and

FFDH(L) ≤ 1.7 ·OPT (L) + 1 (2.3)

Both bounds are said to be tight (i.e the multiplicative constants on both equations

can not be further improved) and if the hjs are not normalised only the additive

term is improved. The resulting placements from these algorithms always satisfy

the guillotine cut constraint.

2.6.2.2 Non-Level oriented algorithms

The classical algorithm in this category is that proposed by Baker et al. (1980) in

1980 and some variants of this type of algorithm have been proposed the last

couple of decades. The characteristic of this algorithm is to place one item at a

time, at the lowest feasible position left-justified, this strategy is known as
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(a) Baker et al. (b) Jakobs (c) Liu and Teng

Figure 2.6: Bottom-Left Heuristics

Bottom-Left strategy. Baker et al. (1980) analysed the worst-case performance of

this algorithm for the strip packing problem and proved that using a poorly ordered

list of rectangular items can perform arbitrarily badly. If rectangular items are

ordered by decreasing width then

BL(L) ≤ 3 ·OPT (L) (2.4)

The bound can not be improved upon (see Figure 2.6 (a) for example). The other

versions of this heuristic are those proposed by [Jakobs (1996), Liu and Teng

(1999)]. In Jakobs’s algorithm a list of rectangular items L arranged in some order

is presented, items are packed into the strip one item at a time. For each item i,

first place the item at the top right corner of the strip and slide item i as far down

until it collides with either the borders of strip object or another item. Subsequent

to this slide the item as far left until it collides with the borders of the object or
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another rectangular item ( see an example in Figure 2.6 (b)). Liu and Teng [ Liu

and Teng (1999) ] algorithm is an improvement on Jakob’s work. The observation

made by Liu and Teng about Jakob’s algorithm was that for small problem

instances where optimal solution is known. Jakob’s heuristic was unable to find the

optimal solution even when all permutations were enumerated. The strategy

developed by Liu and Teng was that , the downward movement has priority such

that items slide leftwards only if no downward movement is possible (see Figure 2.6

(c)).

2.7 Related Work On Two-Dimensional Irregular

Problems

Despite decades of academic research in regular packing problems, the work for the

two-dimensional irregular problems is only recent. A major reason for this is the

extra dimension of complexity generated by the geometry. However the irregular

problem occurs within several important industries, examples include dye-cutting in

the engineering sector , parts nesting for shipbuilding, marker layout in the

garment industry, furniture and other goods. Published research usually

concentrates on a small application areas. These are usually industries in which the

raw material forms the large portion of the finished product. Although the number

of feasible positions and orientations for a given piece will differ for each application

area , the techniques used to solve one problem will be applicable to others. The

techniques fall mainly in three categories:
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• Items may be nested singly or in groups into a set of enclosing polygons,

which are then placed onto the stock sheet.

• Items may be considered one at a time and placed directly onto the stock

sheet.

• Items are randomly allocated on the stock sheet initially ( which may involve

some overlap), then the layout will be improved iteratively.

2.7.1 Nesting

The difficulty encountered when working with problems involving irregular items,

has led researchers to devise a strategy that avoids the difficulty altogether. Rather

than deal directly with this level of difficulty a number of researchers have

considered an alternative strategy in which irregular shapes are nested inside other

more regular shapes. The most popular shape for this is the rectangle, which is

then packed on the stock sheet using approaches similar to the rectangle packing

strategies described in section 2.6. Freeman and Shapira (1975) deal with this

problem of finding a minimum area convex polygon that can contain an irregular

item, a rectangle of minimum area is then sought which can contain the polygon.

This approach was popular in the ship building industry, where many shapes are

rectangular and have to be nested with irregular pieces. Adamowicz and Albano

(1976) proposed a two staged solution , where the first stage was nesting more than

one irregular items together. They placed a limit on the amount of waste that was

acceptable in any enclosure. If a shape could be nested on its own with this limit
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the enclosure is accepted. Otherwise an attempt is made to nest a shape with 1800

rotation of itself. Another alternative is that taken by Dori and Ben-Bassat (1984),

Where they divide the problem in two subproblems, the first is searching for an

appropriate set of convex paver polygons, the second subproblem is to find for

every irregular shape a paver polygon of optimal (minimal waste) circumscription.

2.7.2 Packing

The advantage of techniques presented above is the simplification of calculations

and speeds up computational time. However a better alternative has been shown to

be direct methods which base all calculations on suitable representations of the

pieces. In this technique items are considered one item at a time and packed

directly on the stock sheet according to a given placement policy. One example of

these approaches is that by Amaral et al. (1990) whose method select the next

piece to be placed dynamically. A sliding process is used to find a suitable position

for the next piece on the stock-sheet. Pieces are ordered in non-increasing order of

their areas, two different placement policies are used for small and large pieces.

Another example is that by Albano and Sapuppo (1980) who attempt to solve a

more challenging problem . They use a leftward placement policy and pieces can be

placed in a number of different orientations. They restrict pieces to be packed to

convex polygons which can be placed in any orientation. Thus the solution space is

represented by every permutation of piece types with each one placed at every

feasible position in every orientation. This results in a solution space which can not

be fully explored in feasible time. To limit the search , they guided the search by
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two bounds (i) Evaluation of the partial layout obtained so far, (ii) The second is

the rough estimate of waste which will be generated by the pieces that are not

packed yet. The branch which minimises the sum of the two is chosen next.

Milenkovic et al. (1992) observed and interviewed people who design markers in the

clothing industry, and sought to design algorithms that emulate skilled workers.

They partitioned their approach to three parts: Panel (large pieces) placement ,

compaction and trim (small pieces) placement . They note that large pieces of

similar dimensions are arranged in columns. They also note that the smaller pieces

are placed in between the larger pieces. They first identify those pieces thought to

be most difficult to place, combining these with other pieces forming columns of

four pieces per column. Each column is joined end to end with the previous column

so the total length required for the marker can be approximated by the total length

of the columns.

2.7.3 Improvement Methods

All the techniques we have considered so far conduct the search in feasible space.

Another approach which is increasingly gaining popularity is to produce an initial

layout ( which may be feasible but suboptimal, or infeasible) and then use small

alterations in order to improve it. Such approaches usually seek improvement or

incorporate metaheuristic techniques. Penalty functions are usually incorporated to

discourage infeasible solutions, e.g. an area of overlap might be proportionally used

in the evaluation function as the penalty factor. It is also desirable to reward tight

packing and pieces that are nested well. In an attempt to improve the packing
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neighbourhood moves might include displacing a piece, changing its orientation or

swapping two pieces e.t.c (see [Lutfiyya et al. (1992)],[ Marques et al. (1991)]).

2.8 Summary

In this chapter cutting and packing was introduced and example industries where

cutting and packing problems exist was given. A typological categorisation of C&P

problems was presented. It was also pointed out that as far as the typological work

is concerned it is still ongoing. A formal introduction to problems that will be

looked at in this work was presented. Literature that is related to these problems

has also been presented. A general coding scheme has been presented as well. This

general coding scheme suggests that a general procedure aimed at solving the

problems described above can be realised. A general Genetic Algorithm to achieve

this is fully explained in chapter 4.



Chapter 3

Genetic Algorithms Applied to

Cutting and Packing Problems

In chapter 2 an introduction to cutting and packing was offered and related work that

has been carried out in this field was also presented. In this chapter a brief description

is offered of what optimisation is. A section dedicated to a brief description of Genetic

Algorithms and a literature survey on how Genetic Algorithms have been used as a

solution procedure to tackle cutting and packing problems.

3.1 Optimisation

This section is meant to give a brief explanation of what optimisation is. Optimi-

sation can be loosely described as a process of evaluation of current options, with

the intention of finding the best option. In other words it is the minimisation or

maximisation of tasks. The nature of optimisation problems can be stated thus for

34
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minimisation problems given an objective function f and a search space S together

with its feasible part F ⊆ S find x∗ ∈ F such that

f(x∗) ≤ f(x) ∀x ∈ F

3.2 Genetic Algorithms

Genetic Algorithms (GAs for short) are mathematical procedures based on

analogies to the natural evolutionary process. However the evolutionary process

simulated by GAs is extremely simplified. Even though recent work reported on

GAs focuses on GAs as an optimisation procedure, Dejong cautioned that GAs are

not function optimisers but merely procedures that simulate the evolutionary

process [Dejong (1993)]. GAs belong to a class of probabilistic algorithms, yet they

are different from random algorithms and they combine elements of directed and

stochastic search. Algorithm 3 illustrates pseudo code of a simple GA.
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Algorithm 3 Simple GA

begin
t← 0
initialise P (t)
evaluate P (t)

While (!(termination-condition)) do
begin

t←t+1
select P (t) from P (t− 1)
alter P (t)

evaluate P (t)

end
end

A genetic algorithm is a probabilistic algorithm which maintains a population of

individuals, P (t) = {xt
1, . . ., x

t
n} , that are created and selected in an iterative

process. Each individual xt
i consist of a genome, a fitness and possibly some

auxiliary variables such as age and sex. The genome consists of a number of genes

that altogether encode a solution to some optimisation problem. The encoding is

the internal representation of the problem i.e. the data structure holding the genes.

Every member of the population xt
i is evaluated to measure its fitness. A new

population at iteration t + 1 is formed by selecting those individuals which have

more fitness. Some members of the population undergo transformations (“alter”

step in the pseudo code), this is achieved by means of some variation operators

(These are some times referred to as genetic operators) to form new solutions. The

transformations fall into two categories which are unary transformations ui that

create new individuals by a change in a single individual (mi : S → S ), and higher
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order transformations cj that create new individuals by combining parts from

several (two or more ) individuals (cj : S × . . .× S → S). These two

transformations are popularly known as mutation and crossover respectively. The

algorithm executes until some predefined halting condition is reached, the condition

might be the solution quality, number of generations or simply running out of time.

During the run of the algorithm the fitness of the best individual (hopefully)

improves over time. Ideally at the halting time the best individual found so far

should coincide with the discovery of the global optimum, however it is possible for

the best individual to converge at a local optimum which is usually the undesirable

result. Since GAs are population based search algorithms this means that at any

time during the search the fitness function has to evaluate the entire population.

This is a serious drawback of GAs as this results in long computational times. For

in depth discussions on GAs see [Goldberg (1989), Michalewicz (1996), Mitchell

(1998)].

3.2.1 Encoding

Encoding implies representing solutions in a format that will make search operators

or genetic operators maintain a functional link between parents and their offspring.

The encoding should make it possible for there to be a useful relationship between

parents and offspring. As to which encoding to use differs from from problem to

problem , it is fair to say no one encoding technique is best for all problems.

Popular examples of encodings are:

• Concatenated binary strings
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• Permutations- an example of a problem whose solution is coded using permu-

tations is the Travelling Salesperson Problem (TSP)

• Fixed length vector symbols

• Symbolic expressions

3.2.2 Fitness Evaluation

The fitness evaluation function is the sole means of judging the quality of the evolved

solutions. The fitness evaluation function is also necessary in the selection stage,

where fitter individuals stand a good chance of being selected as parents and can

pass their genetic material on to future generations.

3.2.3 Selection

The basic idea behind selection is that it should be related to the fitness of each indi-

vidual. The original scheme for its implementation is commonly known as roulette-

wheel selection, because a common method of accomplishing this procedure can be

thought of as a roulette wheel being spun once for each available slot in the next

population. Where each solution has a slice of the roulette allocated in proportion

to their fitness score (see Figure 3.1 for an example). In this scheme it is possible to

choose the best individual more than once, and chances are that the worse individual

has a very slim chance of being selected.
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Slice For 5th Individual

Slice For 1st Individual

Slice For 2nd Individual

Slice For 3rd Individual

Slice For 4th Individual

Figure 3.1: A roulette wheel with 5 slices

The other alternative to strict fitness-proportional selection is tournament selection

in which a set of τ individuals is chosen and compared , the best one being selected

for parenthood. It is easy to see that the best solution string will be selected every

time it is compared.

Another alternative is rank based selection known as rank selection. The fitness

assigned to each individual depends only on its position in the individuals rank and

not on the actual objective value. With linear ranking consider Nind the total

number of individuals in the population, Pos the position of the individual in the

population (least fit individual has Pos=1, the fittest individual Pos=Nind) and let

SP be selective pressure, by selective pressure we mean the ratio of probability the

best individual being selected to the probability of the average individual being

selected i.e. SP = Prob.[selecting fittest individual]
Prob.[slecting average string]

The fitness value for the individual is calculated as:

Fitnes(Pos) = 2− SP + 2 · (SP − 1) · (Pos−1)
(Nind−1)

SP ∈ [1, 2]

For all the discussion concerning these see Goldberg (1989).
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3.2.4 Variation Operators

Variation operators are means by which to give birth to new solutions or individuals.

This is one of the features that make GAs distinct from other search techniques. Not

only are GAs evaluating a population of solutions at a time, also these solutions are

bred to produce improved solutions. There is usually two types of variation operators

i) Crossover Operator , ii) Mutation operator.

3.2.4.1 Crossover Operator

Crossover operator is simply a matter of replacing some genes in one parent by the

corresponding genes of the other. Assume we have two individual solutions a and b,

consisting of six variables each, i.e

(a1, a2, a3, a4, a5, a6) and (b1, b2, b3, b4, b5, b6),

which represent two possible solutions to some problem. A one point crossover

would be performed by choosing a random crosspoint between positions 1, . . ., 5 and

a new solution is produced by combining pieces of the original ’parents’. For

example if the position 2 is chosen the offspring solutions would be

(a1, a2, b3, b4, b5, b6) and (b1, b2, a3, a4, a5, a6)

If we were to choose two cross points randomly between numbers 1, . . ., 5 for

example if the points were 2 and 4 the offspring solutions would be

(a1, a2, b3, b4, b5, a6) and (b1, b2, a3, a4, a5, b6). In the example presented above we did

not use binary strings for the solutions to emphasise that binary representation is
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not a critical aspect of GAs. Another aspect to crossover operator is that the

operation can involve more than two parents.

3.2.4.2 Mutation

Mutation is a one-parent variation operator. The mutation operator is an over sim-

plified analogue from natural evolution. It usually consists of making small random

perturbations to one or few genes. One of the major reasons for the mutation op-

erator in GAs is the introduction of population diversity during the genetic search.

Originally, with binary encoding, a zero would be changed into a one and vice versa.

With alphabets of higher cardinality, there are more options changes can be made

at random or following a set of rules.

3.3 Related work on GAs applied to Cutting and

Packing Problems

In this section a brief survey of published literature on the application of genetic

algorithms to cutting and packing problems is presented. Special emphasis is placed

on the encoding of the problem variables and variation operators as these tend to

affect the performance of the GA. The survey is by no means exhaustive. Smith

(1985) is credited for being the first researcher to apply GAs to packing problems.

At roughly the same time Davis (1985) summarised how GAs can be used to solve a

two-dimensional bin packing problem.
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3.3.1 Literature on GAs and One-dimensional Problems

Falkenauer and Delchambre (1992) attempted to solve the one dimensional bin

packing problem (see subsection 2.4.1 for description). They made the following

observation about using the classical GA:

The traditional crossover and mutation had a tendency to disrupt good evolved

solutions, waisting all the effort in the preceding genetic search.

To overcome this they proposed a grouping encoding scheme that took into account

the grouping of items that were to be packed into bins. The scheme was to divide

the chromosome into two parts the items part separated by a semi colon from the

objects (bins) part i.e.

Items Part: Objects Part

Consider the following example, the encoding

ADBCEB:BECDA

The first part before the semicolon can be interpreted as

Item 1 2 3 4 5 6

In Object (bin) A D B C E B

The second part lists all the objects used to pack items. With this encoding

Falkenauer and Delchambre (1992) proposed a special crossover and mutation

which only worked with the objects part of the chromosome. The variation
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operators make use of two heuristic procedures First Fit (FF) and the First Fit

Decreasing(FFD) heuristic (see section 2.5). An example of crossover carried out by

Falkenauer and Delchambre (1992) is given below. Consider the two object parts of

the chromosomes shown below

ABCDEF (first parent)

abcd (second parent)

Two random sites are chosen as crossover positions in each chromosome, yielding

for example

A|BCD|EF and

ab|cd|

The bins between the crossover sites in the second parent are injected into the first

parent into the first crossing site, which yields

AcdBCDEF

This results in infeasible solution because some items appear twice in the solution

and must be eliminated. Suppose the objects injected with bins c and d also appear

in bins C, E and F. These bins are then eliminated leaving the solution

AcdBD

It could be that with the elimination of those three bins items that were not

injected with the bins c and d have also been eliminated, Those items are thus

missing from the solution. To fix this problem the FFD heuristic is applied to

reinsert them yielding a solution like the one shown below for example:
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AcdBDx

Where x is one or more bins formed by the reinserted items. To carry out the

mutation a few random bins are selected and eliminated from the solution. The

items that composed the eliminated bins are now missing from the solution and the

FF heuristic is used to reinsert them back in random order. Hinterding and Khan

(1995) used a GA to solve a multi stock one-dimensional cutting stock problem.

They extended the work of Falkenauer and Delchambre (1992) where they devised

a group based mapping for solutions an example of which is demonstrated in Figure

3.2. This representation is such that a valid group of items implies the stock length

it should be cut from. This is the smallest stock length from which the group of

items can successfully be cut from. This results in a chromosome of variable length.

The crossover operation for this problem is a modification Faulkners’ Grouping

crossover [Falkenauer and Delchambre (1992)]. This crossover works as follows :

An insertion point is randomly chosen in parent1 and a segment is chosen from

parent2. The offspring is constructed by first copying into it genes from parent1 up

to the insertion point. Then genes are copied from the segment in parent2 into the

offspring, lastly genes from parent1 after the insertion point are then copied into

the offspring. It should be pointed out that only those items not yet included into

the offspring chromosome are copied into the offspring. At the end of the above

described process the list of items not yet included in the offspring chromosome is

included using the first fit(FF) heuristic.
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10 15 6,56,5,2 7,6 10,5

Chromosome

Stock Lengths :   12, 13, 15

Chromosome Decoding

Items         To be cut from     Waste
           stock size

     10      12 2

     6, 5, 2       13 0

     15       15 0

      6, 5       12 1

      7,6        13 0

      10,5        15 0

Figure 3.2: Hinterding and Khan (1995)’s representation



3.3. Related work on GAs applied to Cutting and Packing Problems 46

3.3.2 Related work on GAs applied to two-dimensional rect-

angular problems

One of the most popular approaches used by most researchers in using GAs when

solving cutting and packing problems is a two-stage procedure, a hybrid genetic

algorithm. In this the GA manipulates the encoded solutions, these solutions are

then evaluated by the decoding algorithm, which transforms the encoded solutions

into the corresponding physical layouts. The decoding procedure used can either

be deterministic or heuristic. However the decoding procedure results in the loss of

information from one generation to the next. This is because the domain knowledge

is built into the decoding procedures.

3.3.2.1 GAs on Non-guillotine able Packing Problems

Jakobs (1996) proposed a hybrid genetic algorithm that allocates rectangular figures

to a rectangular board of a fixed width and unlimited height with the aim of min-

imising the height of the occupied area. The GA is combined with the deterministic

procedure that decodes the solutions to corresponding physical layouts. The decod-

ing procedure used by Jakobs (1996) is the Bottom Left (BL) placement heuristic (see

sub subsection 2.6.2.2 for explanation). Jakobs used a permutation π as a solution

representation where the fitness function is determined by:

f : π → R+

Since the height is not sufficient for the comparison of different packings, the fitness

function also takes into account the largest resulting contiguous remainder see
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Contiguous Remainder Contiguous Remainder

Solution A Solution B

Figure 3.3: Contiguous Remainder of the packing Patterns

Figure 3.3 for illustration. In the illustration shown in Figure 3.3 let solution A be

represented by π1 and solution B be represented by π2, In this situation it can be

said that f(π1) > f(π2) i.e. π1 is a better packing than π2 .

The contribution by Liu and Teng (1999) was aimed at improving the decoder used

by Jakobs (1996), everything else remaining as proposed by Jakobs. Hopper and

Turton (1999) designed a hybrid genetic algorithm using the permutation

representation. The decoding procedure they used could access enclosed areas in

the partial layout and placed the new items in the first bottom left position with

sufficient area.
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3.3.2.2 GAs on guillotine able Packing Problems

Kroger (1995) proposed a representation that ensures packing patterns are guillotine

able. The relative arrangement of the rectangles is described as a slicing tree struc-

ture. In the tree leaf -nodes correspond to a rectangles to be packed, whereas all

other nodes represent the hierarchy of guillotine cuts needed for the packing scheme.

Apart from guaranteeing a guillotine able solution this representation contains the

complete subtrees which can be manipulated separately. The fitness of the string is

related to the height of the packing pattern.

A special crossover operator has been developed that preserve the knowledge that is

stored in the subtrees. The mutation operator involved five different operators

which are applied randomly, these involve swapping of adjacent subtrees, inversions

of cut-line and rectangle orientation.

Hwang et al. (1994) used a permutation based representation to tackle the strip

packing problem. They used a level-oriented heuristic as a decoder. See subsection

2.6.2.1 for typical level-oriented algorithms.

3.3.3 Related work on GAs applied to two-dimensional Ir-

regular Packing problems

Two dimensional Irregular packing problems involve packing arbitrary shapes in well

defined objects of fixed width and unbounded height. In most solution approaches

the arbitrary items are approximated by polygons consisting of a list of vertices.

Geometric algorithms are then made use of to determine feasible positions in the
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Figure 3.4: An example of a grid model

partial layout and eventually calculate the overlap. Another shape approximation

technique is the grid approximation technique, where items are approximated by a

list of equal sized squares using 2D matrices. An example of a grid approximation

technique is shown in figure 3.4.

Work presented in this dissertation will only focus on shape approximation using

polygons.

Jakobs (1996) extended his work on packing rectangular objects (see sub subsection

3.3.2.1 ) to packing polygons. He used a three step approach:
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• Enclose Polygons into rectangles

• Apply a hybrid GA to the rectangles enclosing polygons as described in su

bsubection 3.3.2.1

• Shrinking-step: Shift the polygons closer to each other

The final step is only arrived at when there is no longer any improvement brought

about by the GA, i.e. the Shrinking-step deals with the irregular aspect of the

problem. This algorithm moves polygons closer together using the idea of the BL-

heuristic (see sub subsection 2.6.2.2), the polygons are shifted alternately as far

as possible to the bottom and to the left whilst avoiding overlap and also tests

reflections of the original polygons. Bounsaythip and Maouche (1997) applied a

binary tree representation to a problem from the textile industry. The shapes are

approximated with a special encoding technique that describes the contour of the

polygon relative to the enclosing rectangle using a set of integer values which they

called comb-coded shapes. For every side of the four sides of the rectangle such a

contour is generated. The nodes on the tree contains information that indicates at

which side of the stationary shape will the second shape be placed and its orientation.

Petridis and S.Kazarlis (1994) developed a genetic algorithm with a dynamic fitness

function, which does not make use of the decoding algorithm in the nesting process.

The solution was encoded using binary strings for each reference vertex of the items

om the layout. This encoding allowed for the traditional crossover operators to be

used. This meant that overlapping could occur, a penalty function was used to

discourage overlaps. The fitness function is dynamic, increasing the penalty term
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gradually as the search continues in order to move the population away from invalid

solutions towards the end of the search. Petridis and S.Kazarlis (1994) tested their

algorithm on jigsaw problems consisting of less than 15 pieces. Comparison showed

that the optimal solution was more often found using the dynamic fitness function.

3.4 Summary

In this chapter a brief definition for optimisation was given. A summary of Genetic

Algorithms was offered and how they work. A literature survey was offered on how

Genetic Algorithms have been applied to solve various cutting and packing problems.



Chapter 4

The General Genetic Algorithm

Cutting and packing was introduced in chapter 2 and examples of relevant

industries where cutting and packing problems need to be solved was provided. In

chapter 3 Genetic algorithms were introduced and how they can be applied as

optimisation procedures. Relevant work on how GAs were applied to cutting and

packing problems was also presented. In this chapter a general GA is presented and

a general solution encoding that is meant to represent all problems defined in

section 2.4 is also presented. Algorithm 4 presents the idea behind the general

genetic algorithm presented in this work and comments directing the reader to

relevant sections where aspects of the algorithm are discussed in full detail.

52
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Algorithm 4 General Genetic Algorithm

begin
t← 0
initialise P (t) // See section 4.2 for discussion
evaluate P (t) // See section 4.5 for discussion

While (!(termination-condition)) do
begin

t←t+1
select P (t) from P (t− 1)
alter P (t) // see section 4.4 for discussion

evaluate P (t)

end
end

4.1 Solution Representation

In section 3.3 a survey was presented on related work where different solution

representations were presented and explained. In this section a generic solution

representation is presented, which serves as a template solution for all the problems

defined in section 2.4. The general solution representation consists of two parts.

Problem Code Problem Specific Encoding

The problem code part is the 4-tuple code introduced in section 2.4. The code

consists of the following fields (Problem type, Dimension, Orientation Constraint,

Cutting Technology Constraint), this code augments the problem specific encoding

for every problem. The interpretation of this code was fully explained, the
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advantage of using this code is the ability to uniquely identify a problem with

associated constraints.

A general representation for the problem specific part of the solution representation

is given below

{(x1, i1, φ1), (x2, i2, φ2), . . ., (xn, in, φn)}

The interpretation of every variable in the above given representation is problem

specific. In other words every problem solution’s representation is in this format.

The full solution representation can be written as

−→
X = [(P, D, O, C), {(x1, i1, φ1), (x2, i2, φ2), . . ., (xn, in, φn)}]

4.1.1 Interpretation of the solution for one-dimensional prob-

lems

In subsection 2.4.1 two one dimensional problems were defined, viz. 1D Bin packing

problem, 1D Cutting stock problem. It was also stated that the two problems are

closely related. The approach taken in this work is to look at these two problem

types as one problem, i.e the one dimensional cutting stock problem is converted to

one dimensional bin packing problem.

The meaning of the solution presented above for the one dimensional bin packing

problem can be explained as follows:
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P=BPP

D=1

O=*(blank)

C=*

xk= the bin in which item ik is assigned to

ik= is the index of the item assigned to bin xk.

φk=*

The general standard representation for the one dimensional bin packing problem is

given by

−→
X1 = [(BPP, 1, ∗, ∗), {(x1, i1, ∗), (x2, i2, ∗), . . . ., (xn, in, ∗)}]

The one dimensional problem is mainly a grouping problem, i.e we need to fit items

from the item set to a smallest number of bins (groups). In such a situation the

order of items should not matter. The approach taken in this work is the optimal

grouping of items to a bin. An example to illustrate this solution encoding is

provided below. Suppose we have bins of capacity 10 and a list of item sizes

L = [3, 6, 2, 1, 5, 7, 4, 9]. One possible way to pack these items is shown in figure

4.1. Using the encoding introduced above the solution shown in figure 4.1 can be

represented as
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−→
X = [(BPP, 1, ∗, ∗), {(1, 1, ∗), (1, 2, ∗), (2, 3, ∗), (2, 4, ∗), (2, 5, ∗), (3, 6, ∗), (4, 7, ∗), (5, 8, ∗)}]

3 6

2 1 5

7

4

9

Figure 4.1: A possible solution for one dimensional bin packing problem, where the
shaded areas represent waste.

4.1.2 Representation for 2D problems

The representation for 2D problems follows from the general representation

introduced in section 4.1, which is

−→
X = [(P, D, O, C), {(x1, i1, φ1), (x2, i2, φ2), . . ., (xn, in, φn)}]

For two dimensional problems the solution representation is evaluated by means of

a placement heuristic which is fully explained in section 4.5. What this implies is
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the problem specific part of the encoding can be considered ordered based

representation, i.e. items are considered one item at a time for the placement. Let

(xi, yi) be the bottom left corner of the rectangular item chosen as the reference for

the rectangular item to be placed and be the reference vertex v(xi, yi) if the item to

be placed is the polygon. These items are to be placed in rectangular regions. Let

the bottom left corner of the containment region (stock sheet) be the origin (0, 0)

with it’s four sides parallel to the X− and Y− axes respectively. The meaning for

the problem specific part variables is provided below:

xk= The x-coordinate value of the reference vertex for the

kth item

ik= The index of the kth item

φk= is the orientation of the kth item.

Now that the meaning of the variables for the encoding has been explained below

the coding for each of the two dimensional problems defined in subsection 2.4.2 is

presented.

Two dimensional Bin packing problems

For the problems described in sub subsection 2.4.2.1 the solution encoding is given

below:

Items may be rotated by 900 and no guillotine cutting required:

−→
X2 = [(BPP, 2, 2, F ), {(x1, i1, φ1), (x2, i2, φ2), . . . ., (xn, in, φn)}],
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φi ∈ {0
0, 900}

Items may be rotated by 900 and guillotine cutting is required:

−→
X3 = [(BPP, 2, 2, G), {(x1, i1, φ1), (x2, i2, φ2), . . ., (xn, in, φn)}],

φi ∈ {0
0, 900}

Items may not be rotated and no guillotine cutting required:

−→
X4 = [(BPP, 2, 1, F ), {(x1, i1, φ1), (x2, i2, φ2), . . ., (xn, in, φn)}],

φi = 00

Items may not be rotated and guillotine cutting required:

−→
X5 = [(BPP, 2, 1, G, ) {(x1, i1, φ1), (x2, i2, φ2), . . . ., (xn, in, φn)}],

φi = 00

Two dimensional Strip packing problems

Problems in this category were defined in sub subsection 2.4.2.2, the solution

encoding for each problem is illustrated below:

Items may be rotated by 900 and no guillotine cutting required:

−→
X6 = [(SPP, 2, 2, F ), {(x1, i1, φ1), (x2, i2, φ2), . . ., (xn, in, φn)}],

φi ∈ {0
0, 900}

Items may be rotated by 900 and guillotine cutting is required:

−→
X7 = [(SPP, 2, 2, G), {(x1, i1, φ1), (x2, i2, φ2), . . ., (xn, in, φn)}],

φi ∈ {0
0, 900}

Items may not be rotated and no guillotine cutting required:

−→
X8 = [(SPP, 2, 1, F ), {(x1, i1, φ1), (x2, i2, φ2), . . ., (xn, in, φn)}],

φi = 00
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Items may not be rotated and guillotine cutting required:

−→
X9 = [(SPP, 2, 1, G), {(x1, i1, φ1), (x2, i2, φ2), . . ., (xn, in, φn)}],

φi = 00

Two dimensional Irregular Strip packing problems

As mentioned already in sub subsection 2.4.2.3 that, the major variant in this

problem is the orientation constraint of the items. The following problems in this

category can be coded as shown below:

Item orientation is fixed:

−−→
X10 = [(ISPP, 2, 1, ∗), {(x1, i1, φ1), (x2, i2, φ2), . . ., (xn, in, φn)}],

φi = 00

Item orientation can be rotated by 1800:

−−→
X11 = [(ISPP, 2, 2, ∗), {(x1, i1, φ1), (x2, i2, φ2), . . ., (xn, in, φn)}],

φi ∈ {0
0, 1800}

Item can be rotated at fixed 900 increments:

−−→
X12 = [(ISPP, 2, 4, ∗), {(x1, i1, φ1), (x2, i2, φ2), . . . ., (xn, in, φn)}],

φi ∈ {0
0, 900, 1800, 2700}

4.2 Initial Population Generation

In section 3.2 it was mentioned that at any time during the search a GA maintains

a population of solutions. In the pseudo code presented in algorithm 4 the initial

step is the initialisation of the population. In this section the population

initialisation process for the problems described above is explained.
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4.2.1 Initial Population generation for one dimensional prob-

lems

The usual way to generate the initial population is generating the population

randomly. The problem with this procedure for the one dimensional problems dealt

with here would be the generation of infeasible solutions. What is needed is the

generation of solutions, which is both random and does not violate any of the

constraints. For that purpose the First Fit (FF) heuristic is used as an initial

population generator. Where items are randomly ordered and packed into bins

using the FF heuristic. The version of the FF heuristic where items are arranged by

non-increasing order was presented in section 2.5.

4.3 Initial Population generation for two dimen-

sional problems

To generate the initial population it is ensured that every individual belonging to

the initial population of solutions is feasible. In section 4.1 a general problem

representation was introduced, which enables us to both uniquely identify problems

and encode all the problems considered in this work in a standard format. For

every item in the two dimensional problems, was represented by a 3-tuple

(xk, ik, φk). Each variable in this 3-tuple has been described. xk was defined as the

x-coordinate of the reference vertex for each item (the bottom left corner for

rectangular items). For rectangular items the only feasible values for xk are in the
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interval Pxi
= [0, W − wk] where W is the width of the container and wk is the

width of the rectangular item rk see figure 4.2 for illustration. The same goes with

the third element of the 3-tuple, φk is always a member of a feasible set of

orientation constraints, for example in problems where rectangular items can only

be rotated by 900 , the set of feasible constraints Oc consists of only two elements,

i.e. Oc = {0o, 90o}.

R

Xr

R

Xr

Set of Feasible x values

Figure 4.2: A set of Feasible x co-ordinates for rectangular items

The same argument holds for polygonal items, i.e. there is a set of feasible
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x-coordinate positions for the reference vertex of each polygon item for the

containment constraint and a set of feasible orientation constraints for each item.

To generate initial population the following procedure is followed:

1. Randomly order items.

2. Randomly choose a feasible x-coordinate of the reference vertex for each item

from the set of feasible x-coordinates .

3. Randomly choose an orientation from the set of feasible orientation constraints

for each item.

4.4 Variation Operators in the general GA

A GA always has to have a means to pass on knowledge obtained so far about the

search to future generations. The variation operators mainly introduce diversity in

the genetic material that has to be passed on to future generations. The variation

operators which are popularly known as crossover and mutation. In this section

variation operators used in this algorithm are explained.

4.4.1 Variation Operators for 1D problems

For one dimensional problems a crossover operator has been designed which takes

into account the grouping nature of these problems, i.e. items have to be packed

into bins (groups). The operator is such that the offspring inherits as much

information from both parents. Let
−−→
X1A and

−−→
X1B be two parents and let NBinA and
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NBinB be the number of bins used in
−−→
X1A and

−−→
X1B respectively. For example

suppose we have bins of capacity 10 and a list of item sizes

L = [3, 6, 2, 1, 5, 7, 4, 9].

Let

−−→
X1A =

[(BPP, 1, ∗, ∗), {(1, 1, ∗), (1, 2, ∗), (2, 3, ∗), (2, 4, ∗), (2, 5, ∗), (3, 6, ∗), (4, 7, ∗), (5, 8, ∗)}]

and

−−→
X1B =

[(BPP, 1, ∗, ∗), {(1, 6, ∗), (1, 1, ∗), (2, 2, ∗), (2, 3, ∗), (3, 7, ∗), (3, 4, ∗), (4, 8, ∗), (5, 5, ∗)}]

be two parent solutions and let child be the resulting offspring from the crossing of

the two parents. The offspring would be produced as follows:

1. A binary vector Vb is randomly created whose dimension is max{NBinA, NBinB}

. Vector Vb will be used in the following step as a selection mechanism:

For this example the dimension of Vb = max{5, 5}, dim(Vb) = 5, say the vector

is randomly generated to be Vb = [1 1 0 1 0].

2. Vb is used to select from
−−→
X1A those bins that correspond to vector positions

in Vb whose entry is 1, and from
−−→
X1B those bins that correspond to vector

positions in Vb whose entry is 0:

According to this example this implies bins 1, 2 and 4 are selected from
−−→
X1A

and bins 3 and 5 are selected from
−−→
X1B for transfer to the offspring solution.

3. Transfer those bins selected from both parents to the offspring one bin at a

time, in transferring the bins we ensure that there is no conflict, i.e. no items
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already present in the offspring solution are duplicated:

First and second bin are transfered from
−−→
X1A to child, so far no conflict has

resulted. The third bin to be transfered is bin 3 from
−−→
X1B contains items [7 4].

If we transfer the bin as it is, a conflict will result because item 4 is already

part of the child solution. This bin is transfered with out item 4. So far the

offspring solution is

child = [(BPP, 1, ∗, ∗), {(1, 1, ∗), (1, 2, ∗), (2, 3, ∗), (2, 4, ∗), (2, 5, ∗), (3, 7, ∗)}]

After the transfer of all bins has been carried out the offspring will be

child = [(BPP, 1, ∗, ∗), {(1, 1, ∗), (1, 2, ∗), (2, 3, ∗), (2, 4, ∗), (2, 5, ∗), (3, 7, ∗)}]

4. After the above mentioned steps have been carried out it may be that some

items are missing from the offspring solution, the FF (First Fit) heuristic is

used to complete the partial offspring solution:

For an example the child solution above has items 6 and 8 missing, these items

are allocated using the FF heuristic.

Then the result of the crossing of the two parent solutions will be

child =

[(BPP, 1, ∗, ∗), {(1, 1, ∗), (1, 2, ∗), (2, 3, ∗), (2, 4, ∗), (2, 5, ∗), (3, 7, ∗), (4, 6, ∗), (5, 8, ∗)}]

GAs at times tend to stagnate at a local optimum. This normally occurs in later

generations when individuals have converged to a dominant individual. To

discourage this tendency the mutation operator is used to diversify the population .

The mutation for the one dimensional problems is as follows:
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1. We randomly generate an integer number Nb in the interval [1, NBin]. Where

NBin is the number of bins in the parent solution.

2. The bin numbered Nb is scattered .

3. The items that constituted Nb are randomly ordered and repacked using the

FF heuristic to complete the offspring solution.

4.4.2 The variation operators for 2D Problems

In subsection 4.1.2 it is stated that the fitness evaluation (Which will be explained

in section 4.5) of all solutions is done through a placement heuristic. This implies

that the solution representation for 2D problems is of ordered nature, and the

horizontal position (x-coordinate) of each item is also part of the encoding. The

variation operators for the 2D problems take all of these into consideration.

4.4.2.1 Crossover Operator

As a crossover operator for 2D problems two crossover variants are used, viz.

cross−var1 and cross−var2. The choice always has to be made as to which one to

use, i.e. a coin has to be flipped to decide which of these two variants will be

operational. A partially mapped crossover ( PMX, see Michalewicz and Fogel

(2000)) is slightly modified and applied for that purpose.

cross var1

In subsection 4.1.2 the solution representation for 2D problems was represented

with item characteristics that are part of the encoding, i.e. the x-coordinate of the
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reference vertex and the orientation of the item. The cross var1 allows for the

orientation, x-coordinate of the reference vertex components of the solution to be

directly inherited from one parent. The ordering of the items is then achieved

through breeding between both parents. Let
−−→
Xp1 and

−−→
Xp2 be two parent solutions

representing n items and let O1 be the offspring that results out of the breeding of

the parents. For example consider the following situation where

−−→
Xp1 =

[(SPP, 2, 2, F ), {(0, 6, 00), (9, 3, 900), (5, 2, 900), (2, 4, 00), (10, 5, 900), (3, 1, 900)}]

and

−−→
Xp2 = [(SPP, 2, 2, F ), {(1, 1, 900), (5, 2, 900), (4, 3, 00), (6, 5, 900), (2, 4, 00), (8, 6, 00)}]

. We need to arrange efficiently a layout of 6 items.

The cross var1 works as follows:

1. Copy the x co-ordinate of the reference vertex and orientation of every item

from solution
−−→
Xp2 to the offspring O1 :

In this example, at this stage the offspring becomes

O1 = [(SPP, 2, 2, F ), {(1, X, 900), (5, X, 900), (4, X, 00), (6, X, 900), (2, X, 00), (8, X, 00)}],

(the symbol ’X’ can be interpreted as “at present unknown”).

2. Generate two random positions p1 and p2, such that 1 ≤ p1 < p2 ≤ n :

For example say p1 is generated to be 4 and p2 to be 5.

3. Create a one to one mapping between item indexes in positions p1-p2 from both

parents:
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The series of mappings for this example is:

5↔ 4, 4↔ 5

4. Copy every item index between positions p1 and p2 from
−−→
Xp2 to O1 to corre-

sponding positions:

After the copying the offspring becomes

O1 = [(SPP, 2, 2, F ), {(1, X, 900), (5, X, 900), (4, X, 00), (6, 5, 900), (2, 4, 00), (8, X, 00)}]

5. For every item index from
−−→
Xp1 not in O1 is copied with its position in the

order to O1 starting from the leftmost index to the right most excluding p1-p2

positions, conflict is avoided by making use of the mapping in stage 3:

The final solution becomes:

O1 = [(SPP, 2, 2, F ), {(1, 6, 900), (5, 3, 900), (4, 2, 00), (6, 5, 900), (2, 4, 00), (8, 1, 00)}]

From the description of this variant of crossover it should be obvious that, there is

a possibility that infeasible solutions might be introduced into the population. To

counteract this a penalty function is used to degrade the quality of infeasible

solutions, more about this in section 4.5.

cross var2

The major difference between these variants of crossover is that cross var1 allows a

situation where breeding involves both item characteristics in the solution

representation and the ordering of the items for the packing. cross var2 on the

other hand is mainly concerned with the ordering of the items without separating

the item characteristics and the ordering, i.e. when items change positions in the
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ordering , the item moves with the characteristics that define it. In other words the

whole 3-tuple (xk, ik, φk) moves. The parents used to demonstrate cross var1 will

again be used to demonstrate cross var2 . cross var2 breeds offspring as follows:

1. Generate two random positions p1 and p2, such that 1 ≤ p1 < p2 ≤ n :

For example, say the random process results in p1 = 3 and p2 = 5.

2. Create a one-to-one mapping of item indexes from both solutions in positions

p1 − p2:

For this example that would be:

2↔ 3 , 4↔ 5 and 5↔ 4.

3. Copy from parent
−−→
Xp1 items in position p1 − p2 with their related characteris-

tics:

This results in a partial offspring solution, which is

O2 = [(SPP, 2, 2, F ), {(X, X, X), (X, X, X), (5, 2, 900), (2, 4, 00), (10, 5, 900), ((X, X, X)}]

,(the symbol ’X’ can be interpreted as “at present unknown”).

4. We complete the solution by copying items from parent
−−→
Xp2 starting from left

to right excluding those items in positions p1 − p2 and try and avoid conflict

by using the mapping in stage 2 :

The resulting offspring finally is:

O2 = [(SPP, 2, 2, F ), {(1, 1, 900), (9, 3, 900), (5, 2, 900), (2, 4, 00), (10, 5, 900), ((8, 6, 00)}]
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4.4.2.2 2D Mutation Operator

The 2-swap mutation operator which is usually made use of in sequencing problems

( see Michalewicz and Fogel (2000) for the TSP example) has been adapted and

modified as the mutation operator for 2D problems. The operator works as follows:

1. Randomly choose two items item1 and item2.

2. Randomly generate a number num ∈ {0, 1} to decide if the orientation of the

chosen items will be randomly perturbated.

3. If num = 1 change the orientation of both items randomly (This applies if

more than one orientation is allowed).

4. Exchange the position of item1 with that of item2 .

4.5 Fitness Function

The fitness function is the mechanism used to judge the quality of the evolved

solutions. The general fitness function can be summarised in equation 4.1.
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max f(X) =















































































































































































































































































f1(X) if problemcode =















(BPP, 1, ∗, ∗)

(CSP, 1, ∗, ∗)

f2(X) if problemcode =















(SPP, 2, 2, F )

(SPP, 2, 1, F )

f3(X) if problemcode =















(SPP, 2, 2, G)

(SPP, 2, 1, G)

f4(X) if problemcode =















(BPP, 2, 2, F )

(BPP, 2, 1, F )

f5(X) if problemcode =















(BPP, 2, 2, G)

(BPP, 2, 1, G)

f6(X) if problemcode =































(ISPP, 2, 1, ∗)

(ISPP, 2, 2, ∗)

(ISPP, 2, 4, ∗)

(4.1)
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4.5.1 Evaluation of one dimensional problems

Function f1 is the fitness function for one dimensional problems, which is defined

below.

Let effi be the measure of efficiency of bin i, let N be a total number of bins used

and C be bin capacity and wi be the weight of item i.

effk =

∑

i∈Bin k wi

C

f1 =

∑N

i=1 effi

N
(4.2)

What this means is the most efficient use of bins gets rewarded most, i.e. the

algorithm seeks to maximise f1.

4.5.2 Evaluation of nonguillotine-able 2D Strip packing prob-

lems

For the evaluation of the 2D strip packing problems a placement heuristic is made

use of, which considers one item at a time. Items are placed on the strip in the

order in which they appear in the solution string. The function f2 is the evaluation

of the 2D strip packing problem in which guillotine cutting is not a requirement.

The placement heuristic for function f2 works as follows:

For each item k the following steps are carried out in turn:
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1. Item ik is placed at the topmost position at horizontal position xk, with the

orientation of item k being that reflected by φk.

2. Item ik is slid as far down as possible, until it collides with either the bottom

edge of the strip or another item.

3. Item ik is slid as far left as possible until it collides with another item or the

left edge of the strip. This becomes the final position of the item ik.

To demonstrate the above heuristic consider the solution

−→
X =

[(SPP, 2, 2, F ), {(0, 6, 00), (9, 3, 900), (5, 2, 900), (2, 4, 00), (10, 5, 900), (15, 1, 900)}]

consisting of 6 rectangular items to be packed on strip whose width is 20 units. The

item dimensions are given in table 4.1. Figure 4.3 shows how solution
−→
X would be

decoded using the placement heuristic discussed above.

Item (ik) Height Width
1 2 12
2 7 12
3 8 6
4 3 6
5 5 5
6 3 12

Table 4.1: Item dimensions example



4.5. Fitness Function 73

1

2

3
4

5

6

First Item to be placed from the solution string

(0,0) X

Y 6

Second Item to be placed from the solution string

3

(0,0) X

Y

6

Third Item to be placed from the solution string
(0,0) X

Y

6

3

(0,0) X

Y

6

3

(0,0) X

Y

6

2

Fourth Item to be placed from the solution string

4

(0,0) X

Y

6

3
2

(0,0) X

Y

6

3
2

Fifth Item to be placed from the solution string

(0,0) X

Y

6

3
2

4

5

(0,0) X

Y

6

3
2

4

(0,0) X

Y

6

3
2

4

5

Sixth Item to be placed from the solution string

(0,0) X

Y

6

3
2

4

5

1

(0,0) X

Y

6

3
2

4

5 1

Figure 4.3: Placement-Heuristic Example for Strip packing problem without guillo-
tine cutting.
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In section 3.1 it is mentioned that the search space S consist of two subsets the

feasible part F ⊆ S and the infeasible part U ⊆ S. In the discussion on cross-over

operator for 2D problems in sub subsection 4.4.2.1 it is mentioned that cross var1

can introduce infeasible solutions into the population. There are two possible

violations of constraints that can occur in 2D problems, viz. overlap constraint,

containment constraint. It is the violation of the latter constraint that cross var1 is

guilty of, i.e placement of items outside the borders of the strip. In the design of

the fitness function for 2D problems this has to be taken into account. Taking this

into account the fitness function for 2D strip packing problems is given by:

f2(X) =















P2(X) if X ∈ U

Eff(X) if X ∈ F

P2(X) is a penalty function used as a constraint handling mechanism. Any solution

in violation of the above mentioned constraint is “killed”, i.e. the solution is made

undesirable. Eff(X) measures the efficiency of the packing. The total area of

items to be packed is given by

A = Σn
i=1wihi (4.3)

Ideally the total area of the strip occupied by the items is supposed to be A , but in

most instances this is not the case. A is a continuous lower bound for every

instance I of this problem. Let Ap be the area that results after all items have been

placed on the strip. Ap is given by
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Figure 4.4: Example of packing Height

Ap = hpW (4.4)

where hp is the packing height see figure 4.4 for an example of packing height.

Eff(X) =
A

Ap

(4.5)

Eff(X) reflects the efficient use of the strip, i.e. those individuals in the

population that use the strip efficiently are rewarded the most. The lowest packing

height possible is given by
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hL =
A

W
(4.6)

It is desirable that an individuals packing height be close as possible to this height.

To make infeasible solutions undesirable we move them as further from this bound

by a factor K, such that we choose a penalty packing height hpenalty, where

hpenalty = KhL � hL.

P2(X) =
A

Whpenalty

(4.7)

4.5.3 Evaluation of guillotine-able 2D Strip Packing Prob-

lems

The function f3 is the fitness function for strip packing problems with guillotine

constraint. This function is also evaluated by means of a placement heuristic, the

only difference is the guillotine cutting constraint should be taken into account

when placing items. Items are placed such that the guillotine constraint is never

violated. An observation that is of great help when placing items on the strip with

guillotine cutting required, is that guillotine cutting subdivides the strip into blocks

whose top edge and bottom edge is parallel to the bottom edge of the strip, see

figure 4.5 for illustration. Blocks consist of rectangular items and waisted space.

The placement heuristic to evaluate guillotine packing is similar to the placement

heuristic for f2 explained above. The only difference is taking the guillotine

constraint into consideration. The placement heuristic works as follows:
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Strip

Block 1Block Height

Strip Width

Block 2

Block 3

Figure 4.5: An example of Guillotine Block Packing
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For every item ik as sequenced by the solution string the following steps are

carried out:

1. Item ik is placed at the topmost position at horizontal position xk, with the

orientation of item k being that reflected by φk.

2. Item ik is slid as far down as possible, until the item either collides with the

bottom horizontal edge of the strip or collides with another item.

3. Item ik is checked if it is in violation of the guillotine constraint, if it is Item

ik’ s vertical position is corrected to satisfy the guillotine constraint.

4. Item ik is shifted as far left as possible until it collides with another item or

the vertical left edge of the strip.

The fitness function f3 is also given by

f3(X) =















P3(X) if X ∈ U

F3(X) if X ∈ F

P3(X) is a penalty function used to “kill” infeasible solutions and is worked out as

P2(X). F3(X) is a function whose purpose is to value efficiently packed blocks and

efficiently packed overall layout.

F3(X) = Eff(X) + qB(X) (4.8)

,

0 < q ≤ 1
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q is a weighting determined by the user to value the the efficiently packed block.

where Eff(X) is as described in equation 4.5. Let EffBi be an efficiency of block

Bi, and HBi be the height of block Bi. Let Ai be the area of rectangle ri. Let

NBlocks be the total number of blocks in a layout.

EffBk =
Σrk∈Bk

Ak

WHBk

(4.9)

Then B(X) is given by

B(X) =
ΣNBlocks

i=1 EffBi

NBlocks

(4.10)

4.5.4 Fitness function for 2D Bin packing problems

For 2D bin packing problems both the guillotine-able and the nonguillotine-able

versions, the placement heuristic presented in the section above is still used as a

decoder. The strip packing problem above can be looked at as a problem where one

needs to pack small rectangular items to a single open ended bin and 2D bin

packing problem as the problem where small rectangular items have to be packed

to multiple identical bins. The approach taken in this work is to partition the strip

to an infinite number of identical bins. Below more details about this process are

provided.



4.5. Fitness Function 80

4.5.4.1 Evaluation of nonguillotine-able 2D Bin Packing Problems

For the evaluation of these problems we take the strip packing approach presented

in section 4.5.2. The placement heuristic which gives the fitness function f4 is as

described below:

For each item ik as sequenced by the solution string the following steps are carried

out in turn:

1. Item ik is placed at the topmost position at horizontal position xk, with the

orientation of item ik being reflected by φk.

2. Item ik is slid as far down as possible until it collides with the bottom edge of

the strip or collides with another item. If item ik is the first item then the first

bin is opened and stays open until all items are placed.

3. If item ik is not the first item, then item ik has collided with an item in some

bin k already opened, item ik is checked if it can be wholly contained in bin k.

If item ik can not be wholly contained by bin k item ik is placed in bin k + 1

which is immediately on top of bin k if no such bin exists a new one, bin k + 1

is opened.

4. After the final vertical position of item ik is decided upon in some bin, item ik

is shifted as far to the left as possible until it collides with either the vertical

left edge of the strip or some other item in the same bin. This becomes the

final position for item ik.
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To illustrate this heuristic consider the following example. Suppose we have bins of

dimensions 100× 100. with items of the following sizes in table 4.2.Consider the

following individual to be decoded by the above placement heuristic explained

above.

−→
X =

[(BPP, 2, 2, F ), {(0, 6, 00), (9, 3, 900), (5, 2, 900), (48, 4, 00), (10, 5, 900), (15, 1, 900)}],

Figures 4.6 to 4.10 illustrate how
−→
X is decoded by the placement heuristic for the

2D bin packing problem.

Item (ik) Height Width
1 25 7
2 27 47
3 24 13
4 34 48
5 1 21
6 93 76

Table 4.2: Items dimensions for 2D bin packing problem
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First Item to be placed from the solution string

6

Figure 4.6: Placement of the first item
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6

Second  Item to be placed from the solution string

3

Bin 1

Bin 2

Bin 1

6

3
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Third  Item to be placed from the solution string

2

Figure 4.7: Placement of the second and third items
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Figure 4.8: Placement of the fourth item
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Figure 4.9: Fifth and sixth item to be placed on the solution string.
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Figure 4.10: The complete layout represented by
−→
X

f4(X) =















P4(X) if X ∈ U

F4(X) if X ∈ F

(4.11)

where P4 is the penalty function to penalise those individuals that place items

outside the borders of the bins, and F4 is the function that evaluates the packing

efficiency of the bins and the packing efficiency of the strip that they partition. As

indicated before the penalty function is a mechanism used to make infeasible

individuals look unattractive. Let EffBink be the efficiency of the kth bin, and let

Ai be the area of rectangle ri and Wand H be the bin width and height

respectively.



4.5. Fitness Function 87

EffBink =
ΣAi∈BinkAi

HW

The most inefficient assignment for problem instance I would result if every bin

Bink was assigned a single item from the list of items. The total number of bins

used for the packing would be equal to the number of items n. The set of

efficiencies E, would consist of n elements i.e

E = {EffBin1, EffBin2, . . ., EffBinn} which can be expressed as

E = { A1

HW
, A2

HW
, . . ., An

HW
} The penalty function P4 is given by

P4(X) = min{E} (4.12)

That is in an attempt to degrade infeasible solutions, they are all assigned the worse

possible efficiency for problem instance I. Let NBin be the number of bins used in

the layout. Let BE(X) be the average bin efficiency for the entire layout, i.e.

BE(X) =
ΣNBin

i=1 EffBini

NBin

(4.13)

The function F4(X) to evaluate feasible individuals is given by:

F4(X) = BE(X) + qEff(X) (4.14)

where Eff(X) is as described in equation 4.5, 0 < q < 1.
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4.5.4.2 Evaluation of guillotine-able 2D Bin Packing Problems

Evaluation of the two dimensional bin packing problem with a guillotine constraint

is evaluated by means of the same heuristic that has been presented in this work.

To be precise in section 4.5.2 the evaluation placement heuristic for 2D

guillotine-able strip packing problems is presented. The same heuristic is used with

one modification, i.e. a limit is put on the size of the strip, i.e the bin height

becomes the height. The fitness function, f5 for the guillotine-able bin packing

problem is similar to the ones presented previously and is given by:

f5 =















P5(X) if X ∈ U

F5(X) if X ∈ F

(4.15)

P5 is a penalty function, whose purpose is similar to other penalty functions

presented previously. P5 is computed in the same way as P4 in equation 4.12 above.

Let Effk be the efficiency of the bin with items arranged with a guillotine pattern

for bin k and let Ak be the area of item k. Let W and H be the width and height

of the bin respectively. Let Nbin be the total number of bins used in the layout.

Effk =
Σi∈bin kAi

HW

F5(X) =
ΣNbin

i=1 Effi

Nbin

(4.16)
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4.5.5 Evaluation of 2D Irregular Strip packing Problems

In sub subsection 2.4.2.3, the 2D irregular strip packing problem was defined as a

problem where one is given a set I consisting of n 2-D pieces that have arbitrary

irregular shapes. These shapes have to be packed on a strip of constant width and

height assumed to be infinite. This problem is prevalent in one form or another in

industries such as the textile industries, shoe-leather cutting, furniture industry,

aerospace industries and machine building. The approach taken in this work is to

approximate the irregular 2-D pieces with polygons. This therefore means we have

a set of pieces P of polygons, P = {P1, P2, . . ., Pn}. The objective is to place the

pieces in P on a strip such that the packing height is minimised, i.e. efficient

utilisation of area. The fitness function f6 for the 2D Irregular Strip packing

Problems is also achieved by means of a placement heuristic which is very similar

to the placement heuristic used in the problems above, with one minor variation,

because of the arbitrariness of the geometry of the pieces the shift left stage is not

part of this placement heuristic. The placement heuristic is as follows:

For each item ik as sequenced by the solution string the following steps are carried

out in turn:

1. Item ik is placed at the topmost position at horizontal position xk, with the

orientation of item ik being that reflected by φk.

2. Item ik is slid as far down as possible, until it collides with either the bottom

edge of the strip or another item. This becomes the final position of the piece

ik.
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To illustrate this heuristic consider the solution

−→
X = [(ISPP, 2, 2, ∗), {(4, 1, 00), (6, 4, 00), (2, 6, 00), (6, 3, 00), (0, 2, 00), (5, 5, 00)}],

Figures 4.11 to 4.14 illustrate how the above solution can be decoded.

2

5 6

3

4

Placement of the first Item

1

1

1

Figure 4.11: A List of Items to be placed and placement of Item1
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Figure 4.12: Placement of Item 4 and Item 6
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Figure 4.13: Placement of Item 3 and Item 2
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Figure 4.14: Placement of the last Item

The fitness function f6 of the irregular strip packing problem is

f6(X) =















P6(X) if X ∈ U

F6(X) if X ∈ F

(4.17)

Let Ak be the area of piece Pk. The total area A of the pieces is

A = Σn
i=1Ai

Let hp be the packing height , The packing area Ap is

Ap = hpW

where W is the width of the strip. Function F6 is given by
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F6(X) =
A

Ap

The penalty function P6 for this problem is computed in the same way as penalty

function P2 in equation 4.7.

4.6 Summary

In this chapter the general genetic algorithm is explained and the general solution

representation which functions as a template solution encoding for all problems

looked at in this work. All the aspects of the general genetic algorithm are also

presented.



Chapter 5

Implementation Issues

A general genetic algorithm was presented in chapter 4, where the general solution

representation for all problems dealt with in this work was presented. The variation

operators were also presented and the general fitness function, how various solu-

tions get evaluated depending on the problem was also presented. In this chapter

implementation issues are looked at. The algorithm presented in chapter 4 was im-

plemented in MATLAB. MATLAB’s genetic algorithm and direct search toolbox was

used for the running of the genetic algorithm. A CD accompanying this document

has all the necessary functions for the general genetic algorithm.

5.1 Computational Geometry

The two dimensional problems mainly consist of two dimensional small items to be

assigned to two dimensional large objects. At this stage it would be proper to

consider how to represent polygonal geometric objects (Recall rectangles are four

94
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sided convex polygons)

A survey on computational Geometry will not be offered in this work, as most of it

is outside the scope of this work. To represent geometric structures it is necessary

to be able to represent the most fundamental component of geometric object, i.e.

the point. The textbooks represent the point in one way or another. For example

Sedgewick (1992) represents a point as a C++ struct, O’Rourke (1998) represents a

point as a typedef of an integer. Usually a cartesian co-ordinate representation of a

point is used. One of the primitive operations needed for a point is to rotate it. Let

(x, y) be the co-ordinates of a point P , Hearn and Baker (1997) have shown that if

point P is rotated by angle θ about the origin. The new co-ordinates of the rotated

point (x
′

, y
′

) are given by







x
′

y
′






=







cos θ − sin θ

sin θ cos θ













x

y






(5.1)

To rotate a point (x, y) about any arbitrary point (xr, yr), by angle θ the

co-ordinates (x
′

, y
′

) of the rotated point are given by

x
′

= xr + (x− xr) cos θ − (y − yr) sin θ

y
′

= yr + (x− xr) sin θ + (y − yr) cos θ (5.2)

One of the most common requirements is the rotation of a polygon about one of its

vertices, pv. Each vertex of the polygon has to be rotated except pv. From what
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has been explained above this is reduced to rotating a set of points. An arbitrary

polygon is generally represented by a list of points to represent each vertex [ see

O’Rourke (1998), Sedgewick (1992)]. The last vertex in the list is assumed to be

connected to the first. The vertices are usually ordered in counterclockwise order.

Now that the polygon representation has been defined there are fundamental

operations that need to be performed on a polygon. These operations are usually

referred to as primitive functions. One of the important primitive is to calculate the

area of a triangle, given its vertices. An algorithm to do this is presented by

O’Rourke (1998). Knowing how to work out the area of a triangle from the list of

its vertices, from this an area of a polygon can be calculated. To do this an

arbitrary vertex on the polygon is chosen and joined to all other vertices on the

polygon forming triangles. The polygon area is now reduced to summing the area

of the triangles. This procedure can be used to calculate the area of both convex

and non-convex polygons. Another useful primitive is what is referred to as the left

predicate, which is used to decide a relationship between three points, to illustrate

this consider figure 5.1, if we want to determine the relationship between points

P1, P2 and P3 , i.e is P3 left of the line segment
−−−→
P1P2 or on the right or collinear

with points P1 and P2. The left predicate calculates the area of the triangle

formed by the three points. If the area is positive it indicates that P3 is to the left

of the line segment
−−−→
P1P2. If the area is zero , the three points are collinear. If the

area is negative it shows that P3 is to the right of
−−−→
P1P2.

Another important primitive is given two line segments (where a line segment is

represented by two vertices) −→a and
−→
b on a plane, do the segments intersect?
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P1

P2

P3

Figure 5.1: Left Predicate

Figure 5.2 shows an example of situations where the intersection between line

segments has to be determined. O’Rourke (1998) describes an algorithm to do just

this and states that in this situation it is necessary to leave the comfortable world

of integer co-ordinates and return to the floating point values of representing the x

and y-coordinates of the point of intersection.
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(a) (b)

(c)
(d)

Figure 5.2: Line segment intersection

Now that the primitive operations on the polygon have been defined, higher level

operations can now also be defined. Another important primitive in the area of

cutting and packing is finding the convex hull of a polygon. A convex hull can be

defined as follows:

Given a set Pp of points Pp = {p1, p2, . . .pn} find a minimum convex polygon PC

that can enclose the points in the interior of the polygon. Figure 5.3 shows an
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Figure 5.3: Convex hull of a set of points

example of a convex hull of a set of points.

The convex hull of a polygon P is a minimum convex polygon that can be wrapped

around vertices of the polygon P . This can be visualised as stretching an elastic

band around a shape . Figure 5.4 shows the convex hull of polygon P1 , the convex

hull, represented by the dashed line has been made slightly larger for illustration.

There are a number of algorithms available for the calculation of the convex hull.

For more details on algorithms for the calculation of the convex hull see O’Rourke

(1998); Preparata and Shamos (1985). For all the two dimensional problems in the
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P1

Figure 5.4: Convex Hull of P1, shown with a dashed edges

field of cutting and packing, a very important constraint is that the small items

should be allocated to the big objects without overlap. A very crucial operation in

cutting and packing is to decide if two arbitrary polygons intersect or overlap. The

detection of overlap can be done in two ways depending on the requirements. The

first method is just to return a boolean indicating if overlap has occurred or not.

The second is more complex, but sometimes useful operation, is to return the

polygon that represents the intersection area. In addition to this a consideration is

to be made for convex and non-convex polygons. This operation is a lot more

complex for non-convex polygons. The simplest way to go about this task, though

not necessarily the best, is to use brute force, test each and every edge of a polygon

against every edge of the other polygon. However one degenerate case has to be

taken into account, i.e. if one polygon totally includes another. In O’Rourke (1998)
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an algorithm is presented to detect intersection between two convex polygons. The

algorithm involves two lines “chasing” each other around the edges of the polygons

and plotting points as the heads of the lines are advanced. At termination the

algorithm returns the overlap area. This method is also described in Preparata and

Shamos (1985). The implementation of algorithms for intersection detection is a

very delicate process. For example if one polygon is touching another polygon

should an intersection be reported? How to handle a situation when polygons

intersect only at the vertices?

5.2 Representation of the Problems

The mathematical definition of problems dealt with in this work is given in section

2.4. In this section the representation of these problems in MATLAB is presented.

5.2.1 Representation of One-dimensional problems

The one dimensional bin packing problem was presented as a set of items J each

item having a positive weight or size wi (i ∈ J). It is required to partition set J

into a minimum number of subsets (bins), so that the sum of items in each bin

does not exceed the given capacity C. A one dimensional bin packing problem is

represented by the following Matlab structure. The Problemtype field is assigned

a string “1BPP”, this field is mainly used in distinguishing one problem from another

when generating the initial population.

OneBinPacking Problem{
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Width: //Bin Capacity

Items: // 1× n Vector for Item sizes

worse eff: // worse possible assignment

Problemtype: // A string representing the prob-

lem type description

}

An example of a Matlab structure representing a one dimensional bin packing prob-

lem is shown in figure 5.5.

BinPacking(1)

width: 150
          items: [1x250 double]

      worse_eff: 0.1333
    problemtype: '1BPP'

Figure 5.5: A Matlab structure showing the one-dimensional bin packing problem

5.2.2 Representation of Two-dimensional Problems

The common factor in all two dimensional problems is that a set consisting of two

dimensional items (polygons or rectangles). These items have to be placed into a set

containing two dimensional objects (regions). The object(s) set might consist of a

single element e.g. strip packing problem or multiple elements e.g. two dimensional

bin packing problem. Before the representation of the problem is presented, the
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Representation of small items will be presented first.

Representation of a point

To represent a point P (x, y) a 1× 2 vector [x y] is used. For example to represent a

line segment we need two points P1(x1, y1) and P2(x2, y2) . A 2× 2 square matrix

A =







x1 y1

x2 y2






would be used to represent a line segment.

Representing Polygons

A polygon is a region of a plane bounded by line segments forming a simple closed

curve. An alternative definition would be as follows.

Let v0, v1, v2, . . ., vn−1 be n points on a plane. The points are ordered cyclical, i.e.

v0 follows vn−1. Let e0 = v0v1, . . ., ei = vivi+1, en−1 = vn−1v0 be n segments

connecting the points. Then these segments bound a polygon iff

1. The intersection of each pair of segments adjacent in the cyclic ordering is the

single point shared between them: ei ∩ ei+1 = vi+1

2. Non adjacent segments do not intersect: ei ∩ ej = Ø for all j 6= i + 1.

The points vi are known as vertices and the segments ei are called the edges .

This definition is that of a simple polygon, non simple polygons do not fulfill the

above stated conditions. In tis work only simple polygons will be worked with as we

have little use for nonsimple polygons. To implement the above definition of a

polygon an n× 2 matrix is used where n is the number of vertices of the polygon.

For example a rectangle is a four sided convex polygon the following matrix would

represent a rectangle.
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polygon =



















x0 y0

x1 y1

x2 y2

x3 y3



















Where the entries of the matrix are vertices of the four corners of the rectangle,

figure 5.6 illustrates this further.

V0 V1

V2V3

e0

e1

e2

e3

Figure 5.6: Representation of a rectangle

To fully represent a polygon the following Matlab structure is used:

Polygon{

polygon ; // Matrix representing the polygon

Refpoint; // Reference point of polygon

Vertex no; // Vertex number of Refpoint
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Hopper_1(1).Polygons(1)

      polygon: [4x2 double]
     refpoint: [0 0]
    Vertex_no: 1
         Area: 24

Figure 5.7: A Matlab structure for a polygon

Area; // Area of a polygon

}

An example of a polygon structure is shown in figure 5.7.

5.2.3 Representation of two dimensional bin packing prob-

lems

In sub subsection 2.4.2.1 four variants of the two dimensional bin packing problem

are presented each variant represented by a unique problem code, in this section the

Representation of these problems is presented.

Problem type (BPP,2,1,F)

To represent this problem type the following Matlab structure is used:

Problem BPP 2 1 F{

Width; // Bin width
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Height; // Bin Height

StartHeight;//Initial Vertical position for each rectangle

Polygon[n]; // An array of Polygon structures

Orientations; // Number of feasible orientations=1

Worse eff ; // Worse possible efficiency (penalty function)

Problemtype; //A string representing the problem type

}

The StartHeight field is the initial vertical position for each rectangle. This position

is worked out to be 10 times the continuous lower bound, i.e.

StartHeight = 10(
⌈

Σn

i=1
wihi

W

⌉

)

Problem type (BPP,2,2,F)

To implement this problem a structure similar to the one presented above is made

use of. The only difference is the size of the Polygon[n] array and the number of

feasible orientations, because rectangles in this problem can be rotated by 900 the

Orientations field has the value 2. The size of the Polygon[n] array doubles, i.e

it becomes Polygon[2n]. Where for every odd entry in the array n represents the

00 orientation of rectangle ri and every even entry 2n represents the 900 rotation of

the rectangle ri.

The structure for this type of problem is:

Problem BPP 2 2 F{

Width; // Bin width
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Height; // Bin Height

StartHeight; //Initial Vertical position for each rectangle

Polygon[2n]; // An array of Polygon structures

Orientations; // Number of feasible orientations=2

Worse eff ; // Worse possible efficiency (penalty function)

Problemtype; //A string representing the problem type

}

The guillotine-able versions of this problem are implemented analogously. The Prob-

lemtype field is assigned a string “2DBPP-G” to distinguish the problems.

5.2.4 Representation of two dimensional strip packing prob-

lems

To Represent the variants of the strip packing problem the following Matlab structure

is used:

Strippacking Problem{

Width; // Strip width

Polygon[Orientations*n];// An array of polygon structures

LB Area; // Total Area of rectangles

Orientations; // Number of feasible orientations

StartHeight; //Initial Vertical position for each rectangle

Problemtype; //A string representing the problem type

}
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The above structure changes depending which variant of this problem is being solved.

The size of the Polygon[Orientations*n] array depends on the number of feasi-

ble orientations for each rectangle. An example of the Representation of problem

(SPP,2,2,F) is given in figure 5.8

Hopper_1(1)

           width: 20
        Polygons: [1x32 struct]

         LB_Area: 400
     startheight: 2000

    orientations: 2
     problemtype: '2DSPP-F'

Figure 5.8: A Matlab structure for the two dimensional strip packing problem

5.2.5 Representation of two dimensional Irregular strip pack-

ing problems

The Representation of the two dimensional irregular strip packing problem is similar

to the strip packing in almost every respect, the difference is in the number of feasible

orientations. In the irregular problem, because the shapes of the small items are

irregular and arbitrary the number of possible feasible orientations can be very large.

In this work the largest number of feasible orientations for this problem is 4. The two

dimensional irregular strip packing problem is represented by the following structure:

Irregular Strippacking Problem{
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Width; // Strip width

Polygon[Orientations*n];// An array of polygon structures

LB Area; // Total Area of Polygons

Orientations; // Number of feasible orientations

StartHeight; //Initial Vertical position for each polygon

Problemtype; //A string representing the problem type

}

An example of a Matlab structure representing the two dimensional irregular problem

is shown in figure 5.9.

marques

                width: 104
             Polygons: [1x96 struct]

              LB_Area: 7194
          startheight: 691.7308

         orientations: 4
          problemtype: '2DISPP'

Figure 5.9: A Matlab structure for a two dimensional irregular strip packing problem
with 4 feasible orientations

5.3 Implementing the solution representation

In section 4.1 a general solution representation is introduced it is stated that the so-

lution consists of two parts problem code and problem specific encoding . The general
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solution representation is

−→
X = [(P, D, O, C), {(x1, i1, φ1), (x2, i2, φ2), . . ., (xn, in, φn)}].

In this section the representation of the general solution is presented.

Representation of problem code

The problem code is represented by a 1× 4 vector

PC =

[

P D O C

]

Table 5.1 shows values that P can assume and table 5.2 shows values that C can

assume.

P Problem Type
1 Strip Packing problem
2 Bin Packing problem
3 Irregular strip packing problem

Table 5.1: P Values

C Cutting Constraint
0 Not applicable (*)
1 Guillotine Cutting Constraint (G)
2 Free Cutting (F)

Table 5.2: C Values

Representation of problem specific encoding

A 3× n matrix is used to represent the problem specific encoding, where n is the

number of items. an example of the matrix is shown below
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PSE =













x1 x2 . . . xn

i1 i2 . . . in

φ1 φ2 . . . φn













For one dimensional problems the orientation entries φk are blanks, 0 is used to

represent blanks.

5.4 Initial Population Generation

The generation of the initial population of solutions for every problem has been

implemented in the same Matlab function M-file called CreatePopulationgeneration.

The code and commentry for the M-file function is shown in figure B.27.

5.5 Crossover Operator

The crossover operator for both 1D and 2D problems was implemented in a single

Matlab M-file function, generalxover.Matlab code for the function is shown in figure

B.28.

5.6 Slide and collision detection algorithm

For all two dimensional problems prior the evaluation of a solution, for every item

the following operation has to be carried out. An item is slid as far down as possible
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until it collides with either the bottom edge of the container or collides with another

item. In this section an algorithm to achieve this is presented. Let L be a list of n

polygons items to be placed to some large object. Let PPL be a set of items placed

already and Pc be a candidate polygon to be placed. Let PPC be a set of polygons

placed already that are in the collision path of polygon Pc. The algorithm is shown

in algorithm 5.

Algorithm 5 Slide &Collision Detection Algorithm

For i = 1 to n

Pc = L(i)
Place Pc at position (xi, Pc.startheight)
Select PPC ⊆ PPL

Find the highest Vertex Vymax(x, y) ∈ PPC

Ymax = V
max

(y)
Place Pc at position (xi, Ymax)
Use binary search to place Pc as near as possible to the
highest polygon in PPC

End

To further explain how set PPC is selected consider the situation in figure 5.10.

The candidate polygon Pc is P5, the set PPL = {P1, P4, P6, P3, P2}. The polygons in

the collision path of P5 are in set PPC = {P4, P3}.
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Figure 5.10: Placement of Pc

To select PPC from PPL one alternative would be to continually test for overlap on

all polygons in PPL as Pc is being slid downwards, but this would be inefficient.

The approach taken in this work is an observation that if polygon i is in collision

path of polygon k then there will be an overlap between the horizontal projection

of polygon i, proji and the horizontal projection of polygon k, projk, i.e

proji ∩ projk 6= Ø

An example of this situation is shown in figure 5.11.
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(a) Projection Overlap

i

Proj_i Proj_k

k

(b) Projections non-Overlap

i

Proj_i Proj_k

k

Figure 5.11: Overlap of Horizontal Projections
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5.7 The Fitness Function

The general fitness function stated in equation 4.1 has been implemented in a Matlab

m-file function Eval function. The code for the function is shown in figure B.29.

5.8 Summary

In this chapter implementation details have been offered. A short review of geom-

etry is offered. Matlab structure has been used to represent both the one and two

dimensional problems that have to be solved. The representation of geometric prop-

erties for small items is discussed. The implementation of variation operators and

sample m-file code is also presented. The slide and collision algorithm has also been

presented.



Chapter 6

Computational Experiments

In order to evaluate the performance of the general GA presented in this work

problem instances have been collected from literature. All experiments were

conducted on a 3.4 GHz Pentium 4 processor. The algorithm was coded in Matlab

and run using Matlab’s genetic algorithm and direct search toolbox. For every

problem the population size was set at 100 individuals, although this tended to

slow down the speed of the algorithm. The GA was run for 2000 generations for

every problem. After repeated runs for most problems it was decided that the

crossover fraction should be between 0.3-0.45, the crossover fraction was kept at 0.3

for all problems. With 2 individual spots in the population reserved for elite

children, i.e. two best individuals in every generation. A tournament of size 2 was

used as a selection criteria. The stopping criteria was for the algorithm to run for

2000 generations if the best fitness does not improve after 1000 generations the

algorithm stops or if the best fitness does not improve after 2000 seconds the

116
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algorithm stops. Almost all datasets used in this work can be downloaded from

ESICUP (Euro special interest group on cutting and packing) home site

(http://www.apdio.pt/sicup/).

6.1 Results for 1D problems

6.1.1 1D Bin Packing Problem

Problem datasets for the 1D bin packing problem are considered in E.Falkenauer

(1996). The problems instances generated in Falkenauer’s work consisted of two

classes. The first class consist of integer item sizes uniformly distributed between

20 and 100, with bin capacity being 150. The second class consisted of items

ranging from 25 to 50 in size with bin capacity of 100. The experiments were

conducted on 19 problem instances of the class1 and 20 problem instances of the

class2. The problem datasets are listed in appendix A in section A.1. The results of

the experiments are listed in tables 6.1 and 6.2. For each problem tables A and A.1

gives.

• Problem number

• The theoretical minimum number of bins (Continuous Lower bound) LB =
⌈

Σn

i=1
wi

C

⌉

.

• Time=The entire period of time from start to when the algorithm stopped.

• z= The number of bins returned by the algorithm.
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• PR= Performance ratio, a ratio of the solution returned by the general algo-

rithm z over the lower bound LB given by PR = z
LB

.

Problem Number LB Time(s) z PR

1 99 1147.5 104 1.05
2 100 1128.4 104 1.04
3 102 1123.5 107 1.05
4 100 1097.7 104 1.04
5 101 1153.4 105 1.04
6 101 1223.1 106 1.05
7 103 1200.7 107 1.04
8 105 1226.9 110 1.05
9 101 1202.5 105 1.04
10 105 1376.7 110 1.05
11 101 1646.8 106 1.05
12 105 1692.8 110 1.05
13 101 1299.6 106 1.05
14 99 1132.6 104 1.05
15 105 1188.5 110 1.05
16 97 1078 102 1.05
17 100 1087 104 1.04
18 100 1094.7 105 1.05
19 102 1106.7 107 1.05

Table 6.1: Class1 Results
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Problem Number LB Time(s) z PR

1 21 256.7 22 1.05
2 21 245.11 21 1
3 21 244.9 21 1
4 20 246.07 22 1.1
5 21 249.68 21 1
6 21 241.08 21 1
7 21 250.98 22 1.05
8 20 280.58 22 1.1
9 20 245.54 21 1.05
10 21 281.4 22 1.05
11 20 249.56 22 1.1
12 20 254.27 22 1.1
13 20 258.42 21 1.05
14 21 253.25 22 1.05
15 21 284.04 22 1.05
16 20 251.03 22 1.1
17 21 250.68 22 1.05
18 21 425.05 21 1
19 20 257.25 22 1.1
20 20 398.47 22 1.1

Table 6.2: Class2 Results

6.1.2 1D Cutting Stock Problem

The test problems that were used for this problem type are considered in Hinterding

and Khan (1995). The total items requested range from 20 to 126. For more details

about problems see Appendix A, section A.2. The results for this problem type are

listed in table 6.3. The table lists the Problem Number, LB the theoretical

minimum number of bins that can be used which is given by
⌈

Σn

i=1
dili

L

⌉

. The Stocks

obtained by the algorithm z, the execution time and the performance ratio PR .
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Problem Number LB z Time(s) PR

1 9 9 138.48 1
2 23 23 265.57 1
3 16 16 196.22 1
4 20 20 259.69 1
5 54 54 528.49 1

Table 6.3: 1D CSP results

6.2 Results for 2D strip packing problems

6.2.1 Results for NonGuillotine-able Problems

The results considered here are that for the variant (SPP,2,1,F), i.e the variant

where the small rectangles can not be rotated. The test problems used in this work

are considered in Martello et al. (2003). The problems consist of 38 problems

collected from various sources. The number of items to be packed ranges from 10 to

200. These test problem can also be downloaded from ESICUP home site. The

results for this problem type are shown in table 6.4. For each problem table 6.4

gives:

• Problem number and values of n (number of rectangles)

• LB the lower bound.

• z Best solution found by the general Genetic Algorithm.

• Total search time Time .

• PR the performance ratio.
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An example of a layout generated by the general Genetic Algorithm is shown in

figure 6.1, the layouts for the first 27 problems in table 6.4 are shown in appendix

B, section B.1.
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Problem no. n LB z Time(s) PR

1 16 20 23 3581.9 1.15
2 17 20 23 2212.5 1.15
3 16 20 23 2026.4 1.15
4 25 15 18 2121.8 1.2
5 25 15 18 2042.3 1.2
6 25 15 17 2967.1 1.13
7 28 30 36 2150.5 1.2
8 29 30 37 3166.7 1.23
9 28 30 39 2333.9 1.3
10 16 23 25 2204.3 1.08
11 23 63 72 2653.6 1.14
12 62 636 730 8011.7 1.15
13 10 1016 1016 1105.1 1
14 20 1133 1215 4028.5 1.07
15 30 1803 1866 3818.7 1.03
16 50 2934 3340 5658.2 1.138
17 10 23 23 1165.5 1
18 17 30 30 2082 1
19 21 28 31 2494.6 1.11
20 7 20 20 869.82 1
21 14 36 36 2245.6 1
22 15 31 35 1699.9 1.13
23 8 20 20 971.27 1
24 13 33 34 3009.8 1.03
25 18 49 56 3192.1 1.14
26 13 80 80 1754.3 1
27 15 52 61 1959.3 1.17
28 22 87 87 2246.9 1
29 20 30 34 2383.6 1.13
30 40 57 65 2623.9 1.14
31 60 84 100 4363 1.19
32 80 107 130 4703.2 1.21
33 100 134 167 4086.9 1.25
34 40 36 44 3121.2 1.22
35 80 67 85 3001.1 1.27
36 120 101 133 4858.7 1.32
37 160 126 160 6903.4 1.27
38 200 156 209 4352.7 1.34

Table 6.4: Strip Packing Problem (SPP,2,1,F) results
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Figure 6.1: Layout example

The test problems for the (SPP,2,2,F) variant are taken from Hopper and Turton

(2001). The test data consists of 21 problems presented in seven different sized

categories (each category has three different problems of similar size and object

dimension). These test problems are very difficult to solve as they are “perfect

packings” obtained by cutting a given rectangle of fixed dimensions into smaller

rectangular items. Table 6.5 shows results obtained by the general genetic

algorithm. For problems in each category table 6.5 gives:

• Problem categories C1-C7

• The problem size n.

• The Optimum height of the packing for each test problem.

• The height obtained by the general algorithm z.

• The search time taken by the algorithm.
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• PR the performance ratio.

Category Problem n Optimum Heights z Time(s) PR

C1
P1
P2
P3

16
17
16

20
20
20

22
23
23

2587.2
2112.5
2346.3

1.1
1.15
1.15

C2
P1
P2
P3

25
25
25

15
15
15

19
19
19

2207.4
2211.7
2525.4

1.27
1.27
1.27

C3
P1
P2
P3

28
29
28

30
30
30

36
34
36

3045.9
3173.8
2496.2

1.2
1.13
1.2

C4
P1
P2
P3

49
49
49

60
60
60

70
72
75

10122
3136.3
2661.9

1.17
1.2
1.25

C5
P1
P2
P3

73
73
73

90
90
90

117
124
109

2567.4
3764.8
8170.9

1.3
1.38
1.21

C6
P1
P2
P3

97
97
97

120
120
120

159
160
160

3796.5
3422.1
3387.5

1.33
1.33
1.33

C7
P1
P2
P3

196
197
196

240
240
240

330
346
352

6249.2
10911
5294.4

1.38
1.44
1.47

Table 6.5: Strip Packing Problem results where items can be rotated by 900

A layout example for one of these problems is shown in figure 6.2, the layouts for

problems in categories C1-C5 are shown in appendix B, section

B.2.
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Figure 6.2: An example of layout for nonguillotine-able problems with 900 rotations

6.2.2 Results for Guillotine-able Strip packing problems

The test problems for guillotine-able strip packing are contributed by Hopper and

Turton in 2002, The data have been generated from a 200× 200 square which is a

“perfect packing”. The dataset consists of 35 problems in all but a subset of these

has been solved in this work. The problem sizes range from 17 to 199 items, the

results are displayed in table 6.6. The table gives the following results:

• The problem size n.

• The Optimum height of the packing for each test problem

• The height obtained by the general algorithm z.

• PR the performance ratio.



6.3. Results for 2D Bin Packing Problem 126

problem n Optimum height z time(s) PR

1 17 200 259 5583.5 1.29
2 17 200 257 5017.5 1.28
3 17 200 239 13583 1.19
4 17 200 244 19428 1.22
5 17 200 242 23941 1.21
6 25 200 250 34453 1.25
7 29 200 299 3009.8 1.5
8 49 200 333 4202.8 1.665
9 73 200 375 4306.3 1.875
10 97 200 343 3192.3 1.715

Table 6.6: The results for guillotine-able strip packing problem where the rectangles
can be rotated

The sample layouts for the problems in table 6.6 are shown in appendix B, section

B.3.

6.3 Results for 2D Bin Packing Problem

The test problems used in this work have been adopted from Lodi et al. (1999).

These test problems are featured in website http:

//www.or.deis.unibo.it/research_pages/ORinstances/ORinstances.htm. The

test problems consist mainly of 10 classes the first six classes have been generated

with he following properties:

Class1: wj and hj uniformly random in [1,10], W=H=10;

Class2: wj and hj uniformly random in [1,10], W=H=30;

Class3: wj and hj uniformly random in [1,35], W=H=40;
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Class4: wj and hj uniformly random in [1,35], W=H=100;

Class5: wj and hj uniformly random in [1,100], W=H=100;

Class6: wj and hj uniformly random in [1,100], W=H=300;

The following four classes of problems were generated in the following manner:

Items belong to one of four types:

Type 1: wj uniformly random in [2
3
W, W ],hj uniformly random in [1, 1

2
H ];

Type 2: wj uniformly random in [1, 1
2
W ],hj uniformly random in [2

3
H, H ];

Type 3: wj uniformly random in [1
2
W, W ],hj uniformly random in [1

2
H, H ];

Type 4: wj uniformly random in [1, 1
2
W ],hj uniformly random in [1, 1

2
H ];

For the 4 remaining classes W=H=100 , while items are as follows:

Class 7: type 1 with probability 70%, type 2, 3, 4 with probability 10% each.

Class 8: type 2 with probability 70%, type 1, 3, 4 with probability 10% each;

Class 9: type 3 with probability 70%, type 1, 2, 4 with probability 10% each;

Class10: type 4 with probability 70%, type 1, 2, 3 with probability 10% each;

Each class has five values of n: 20, 40, 60, 80, 100. For each class and value of

n, ten instances were generated. In total there is a set of 500 test problems for each

class.

Since this work was conducted under limited resources, it was decided to test our

algorithm on class 1 for the (BPP,2,1,F) variant of the problem. The results are
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Figure 6.3: Layout for the two dimensional bin packing problem

shown in table 6.7. Table 6.7 gives averages of the performance ratio, PR of the

solution by the general genetic algorithm z to the lower Bound Lo =
Σn

i=1
wihi

WH
, for

problems of size n. The average total execution time for each problem size. Figure

6.3 shows one of the layouts genereted by this algorithm.

n PR Time(s)
20 1.2283 3278
40 1.3588 5543.7
60 1.3874 8974.1
80 1.3820 13543
100 1.368 19314

Table 6.7: 2D Bin Packing with free cutting and fixed orientation results



6.4. Results for 2D Irregular strip packing problem 129

Sample layouts for this problem are shown in appendix B, section B.4. The

computational results for the problem variant (BPP,2,2,F) are shown in table 6.8.

n PR Time(s)
20 1.208 2816.8
40 1.309 8285.9
60 1.3864 15153
80 1.3447 14629
100 1.4308 23996

Table 6.8: 2D Bin Packing with free cutting and where rectangles can be rotated

The computational results for the guilloteneable variant of this problem are shown

in table 6.9.

n PR Time(s)
20 1.2083 716.9584
40 1.3095 1775.2
60 1.3864 2609.7
80 1.3447 3973.2
100 1.4308 2946

Table 6.9: Results for guillotine-able Bin Packing Problems

6.4 Results for 2D Irregular strip packing problem

To test the general genetic algorithm on this type of problem, test problems for

this type of problem which are also featured in ESICUP website were used. Four

test problems were used to test this algorithm all derived from the textile industry.

These problem details are listed in table 6.10. The table shows the literature source
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that brought the problem to the attention of the academic community. The problem

name, the number of shapes that have to be packed and the sheet width and the

orientation constraints for each problem.

Problem Source Problem Name Shapes Sheet Width Rotational Constraints

Oliveira et al. (2000) Shirts 99 40 0,180 Absolute
Oliveira et al. (2000) Trousers 64 79 0,180 Absolute

Albano and Sapuppo (1980) Albano 24 4900 90 Incremental
Marques et al. (1991) Marques 24 104 90 Incremental

Table 6.10: Details about Irregular test problems in experiments

The summary of the results for this problem are listed in table 6.11. For the test

problems that this algorithm was tested on, the packing efficiencies have been above

60%. An interesting study would be to compare these results to the best available

results for these problems as the optimum for all of them is currently unknown.

Problem Name Packing Efficiency Time(s)

Shirts 61% 3409.8
Trousers 64% 4005
Albano 74% 2889
Marques 72% 3001

Table 6.11: Summary of results for Irregular Problems

A textile marker layout designed by the general Genetic Algorithm in this work is

shown in figure 6.4.

The rest of the layouts generated by this algorithm are shown in appendix B,

section B.6.
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Figure 6.4: A textile marker layout generated by the general Genetic Algorithm
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6.5 Discussion

The results presented above suggest a big room for improvement. For most problems

a lower bound has been used as a measure to reflect the quality of the solution.

It would be very interesting to compare the solutions found by the algorithm with

actual optimum solutions. The total execution time has been disappointingly very

long, however the execution times have been measured to give an overall picture and

for the sake of completeness. Over all the solution quality provided by the general

algorithm range from unacceptable deviation from the lower bound of above 40% to

above average solutions of below 30%.

The results for the 1D problems are acceptable as the deviation from lower bound

is less than 5%. Another feature of this algorithm is its sensitivity to input size of

the problem. A perfect example of this is when trying to solve the 2D strip packing

problem, where the deviation from the lower bound was almost directly

proportional to the input size.

6.6 Summary

The computational results for the general genetic algorithm have been offered for all

problem that were the target of this work. The performance of the algorithm was

shown to vary from problem to problem. Another disappointment is the lamentably

long execution times for most 2D problems.
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Conclusion

A study has been carried out on one-dimensional and two-dimensional cutting and

packing problems. This included the definition of what cutting and packing problems

are and examples of cutting and packing problems. In section 2.4 mathematical

descriptions of all problems to be tackled in this work are defined. It was also

pointed out that cutting and packing problems are NP-complete, therefore can not

be solved in polynomial time.

A literature survey is offered in chapter 2 on some of the algorithms that have been

used to solve these problems.

The objective of gaining an understanding of what genetic algorithms are, was well

achieved. Chapter 3 dealt exclusively with genetic algorithms and how they have

been applied on cutting and packing problems.

A general Genetic Algorithm was designed, details about how this algorithm works

are dealt with in chapter 4. A novel general solution encoding has been introduced

133
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and a novel heuristic placement procedure has also been introduced in the design of

this algorithm. A coding scheme that allows the algorithm to identify a problem

with its constraints is also effectively made use of.

Computational tests were carried out for all problems dealt with in this work. The

results have shown that the algorithm is a mixture of successes and failures.

Successes in that the algorithm returned quality solutions for some problems and

for some problems the solution quality was disappointing. The run time was also

disappointing, but this should have been expected as the algorithm was

implemented in MATLAB which is an interpreted language.

The following is recomended future work:

• An alternative implementation of this algorithm could fasten up the time taken

for the running of the algorithm.

• The placement heuristic for two dimensional problems should give the down-

ward movement a priority, i.e slide leftwards only if no downward movement is

possible.

• To continue testing the algorithm on a variety of test problems both test prob-

lems from literature and real world problems.

• To do a comparative study between layouts generated by a human expert and

those generated by the general genetic algorithm.
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Problem Datasets

A.1 1D Bin Packing test problems

A.1.1 Class 1 Problems

1.

Bin Capacity 150

Number of Items (n) 250

Items

42 69 67 57 93 90 38 36 45 42

33 79 27 57 44 84 86 92 46 38
85 33 82 73 49 70 59 23 57 72
74 69 33 42 28 46 30 64 29 74
41 49 55 98 80 32 25 38 82 30
35 39 57 84 62 50 55 27 30 36
20 78 47 26 45 41 58 98 91 96
73 84 37 93 91 43 73 85 81 79
71 80 76 83 41 78 70 23 42 87
43 84 60 55 49 78 73 62 36 44
94 69 32 96 70 84 58 78 25 80
58 66 83 24 98 60 42 43 43 39
97 57 81 62 75 81 23 43 50 38
60 58 70 88 36 90 37 45 45 39
44 53 70 24 82 81 47 97 35 65
74 68 49 55 52 94 95 29 99 20
22 25 49 46 98 59 98 60 23 72
33 98 80 95 78 57 67 53 47 53
36 38 92 30 80 32 97 39 80 72
55 41 60 67 53 65 95 20 66 78
98 47 100 85 53 53 67 27 22 61
43 52 76 64 61 29 30 46 79 66
27 79 98 90 22 75 57 67 36 70
99 48 43 45 71 100 88 48 27 39
38 100 60 42 20 69 24 23 92 32

Table A.1:
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2.

Bin Capacity 150

Number of Items (n) 250

Items

84 36 65 84 34 68 64 33 69 27

47 21 85 88 59 61 50 53 37 75
64 84 74 57 83 28 31 97 61 36
46 37 96 80 53 51 68 90 64 81
66 67 80 37 92 67 64 31 94 45
80 28 76 29 64 38 48 40 29 44
81 35 51 48 67 24 46 38 76 22
30 67 45 41 29 41 79 21 25 90
62 34 73 50 79 66 59 42 90 79
70 66 80 35 62 98 97 37 32 75
91 91 48 26 23 32 100 46 29 26
29 26 83 82 92 95 87 63 57 100
63 65 81 46 42 95 90 80 53 27
84 40 22 97 20 73 63 95 46 42
47 40 26 88 49 24 92 87 68 95
34 82 84 43 54 73 66 32 62 48
99 90 86 28 25 25 89 67 96 35
33 70 40 59 32 94 34 86 35 45
25 76 80 42 91 44 91 97 60 29
45 37 61 54 78 56 74 74 45 21
96 37 75 100 58 84 85 56 54 71
52 79 43 35 27 70 31 47 35 26
30 97 90 80 58 60 73 46 71 39
42 98 27 21 71 71 78 76 57 24
91 84 35 25 77 96 97 89 30 86

Table A.2:
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3.

Bin Capacity 150

Number of Items (n) 250

Items

81 39 75 66 85 36 60 56 50 75

75 37 87 95 21 99 42 57 31 37
42 40 69 91 45 97 84 90 52 43
68 53 37 65 79 73 92 87 20 20
73 42 52 20 24 76 71 72 21 21
82 92 78 87 50 41 31 73 89 59
88 40 71 69 45 57 49 68 84 32
69 77 92 98 57 39 32 23 99 91
48 21 70 43 73 69 65 57 67 28
84 42 61 92 82 34 74 55 60 69
26 25 67 77 67 79 47 84 50 21
87 83 44 88 78 53 78 37 47 52
32 88 85 82 55 41 60 66 78 72
34 64 20 60 100 62 80 34 68 38
32 32 37 82 98 90 58 97 56 34
70 39 56 69 36 20 99 84 53 27
88 53 42 45 42 31 54 60 55 27
36 31 39 91 45 97 26 80 41 56
70 97 48 87 23 32 75 100 97 51
78 78 21 72 72 79 46 30 48 27
95 48 67 58 46 92 21 82 91 40
56 24 94 44 91 92 81 24 84 44
83 37 98 85 88 95 29 35 100 55
48 27 20 66 62 52 88 59 97 91
81 81 86 48 43 60 72 88 90 48

Table A.3:
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4.

Bin Capacity 150

Number of Items (n) 250

Items

38 60 53 55 90 48 55 57 59 25

51 22 43 31 52 89 96 58 63 27
46 43 30 44 71 66 64 28 83 88
42 92 95 36 24 62 44 82 59 31
96 44 61 78 72 62 76 65 22 41
27 85 80 72 100 29 27 43 83 32
33 53 95 99 20 23 72 50 50 27
89 53 75 81 34 27 69 48 84 37
69 54 51 49 49 54 100 55 45 83
61 96 91 37 53 76 50 66 70 87
92 35 53 95 47 56 55 86 32 99
83 88 41 63 77 60 66 53 79 81
96 34 99 47 74 87 44 77 52 99
69 64 94 38 69 61 98 40 84 89
49 64 53 41 34 85 35 55 61 68
100 75 98 36 44 57 24 60 45 48
60 94 71 70 64 62 93 20 69 37
63 61 26 54 89 46 54 50 32 71
62 40 26 59 62 27 60 50 74 34
40 70 56 23 66 57 43 45 65 25
82 82 37 66 47 44 94 23 24 51
100 22 25 51 95 58 97 30 79 23
53 80 20 65 64 21 26 100 81 98
70 85 92 97 86 71 91 29 63 34
67 23 33 89 94 47 100 37 40 58

Table A.4:
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5.

Bin Capacity 150

Number of Items (n) 250

Items

73 39 49 79 54 57 98 69 67 49

38 34 96 27 92 82 69 45 69 20
75 97 51 70 29 91 98 77 48 45
43 61 36 82 89 94 26 35 58 58
57 46 44 91 49 52 65 42 33 60
37 57 91 52 95 84 72 75 89 81
67 74 87 60 32 76 85 59 62 39
64 52 88 45 29 88 85 54 40 57
91 55 60 37 86 21 21 43 77 75
92 33 59 74 40 36 62 21 56 38
22 45 94 68 83 86 75 21 40 44
74 52 61 95 20 79 76 32 21 91
83 39 31 81 41 90 74 100 38 33
74 40 80 39 22 46 58 65 67 37
82 64 26 80 74 20 62 82 40 28
72 45 62 72 89 31 92 63 89 33
25 54 66 100 20 90 87 48 28 46
76 50 66 30 26 23 40 70 57 92
52 54 27 58 66 65 93 83 37 62
94 29 66 98 20 66 42 52 90 22
30 34 65 81 90 44 88 51 97 79
58 46 65 40 68 64 34 59 99 82
86 88 52 76 76 50 51 92 59 22
60 69 45 66 50 62 59 90 54 55
92 23 97 73 39 88 34 92 74 90

Table A.5:
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6.

Bin Capacity 150

Number of Items (n) 250

Items

55 28 45 71 56 45 63 26 20 34

78 26 21 99 50 52 29 52 84 78
84 89 93 83 97 35 29 80 99 86
63 100 87 54 48 72 98 43 81 96
77 92 32 66 82 52 30 52 97 56
44 67 60 79 78 90 38 99 42 97
63 39 69 67 91 38 37 51 98 30
77 78 35 33 94 36 59 85 98 80
79 68 61 27 95 83 91 90 38 93
22 35 38 100 26 35 64 40 79 49
88 41 28 62 78 65 90 35 50 62
91 57 60 50 28 77 97 35 40 21
73 30 75 50 27 58 59 94 60 55
89 84 91 65 99 89 83 47 52 24
66 98 51 21 23 78 41 99 52 36
69 70 91 54 38 98 57 64 76 61
31 27 23 22 61 65 35 37 75 54
97 45 78 22 79 76 81 78 41 59
28 58 90 78 57 63 24 27 79 67
88 49 57 78 87 66 91 37 51 49
84 32 62 36 52 72 59 77 54 46
57 69 81 80 99 87 33 45 43 66
28 30 54 23 79 69 56 24 82 58
37 56 82 23 78 63 64 37 66 36
41 71 48 42 26 45 26 86 64 54

Table A.6:
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7.

Bin Capacity 150

Number of Items (n) 248

Items

49 45 86 74 64 73 93 34 97 80

24 87 100 75 89 78 46 31 68 63
78 28 96 54 64 31 65 90 41 47
71 51 63 44 93 46 83 68 57 89
35 99 39 24 69 64 25 85 65 81
61 40 64 88 43 99 53 98 70 38
75 23 80 72 97 89 80 38 30 34
22 61 48 22 28 99 55 89 67 24
27 91 90 20 36 77 44 24 60 96
83 53 76 27 91 58 78 23 31 99
42 64 39 73 43 36 76 97 41 90
24 82 55 93 63 61 39 73 54 77
100 46 69 74 41 32 56 68 98 61
28 21 30 47 43 54 33 31 38 49
40 44 93 20 81 71 36 71 36 42
56 85 23 86 88 95 61 41 34 74
37 82 30 98 86 37 93 100 69 25
54 47 58 50 87 90 45 71 70 38
49 42 33 78 48 94 99 100 84 91
27 69 52 64 99 30 34 55 96 92
48 88 76 38 73 90 99 45 84 94
82 28 35 94 100 44 23 58 23 35
84 75 30 58 61 100 63 99 85 60
78 56 76 61 59 93 83 84 89 59
75 32 21 62 27 64 44 83

Table A.7:
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8.

Bin Capacity 150

Number of Items (n) 250

Items

68 90 38 98 44 66 76 67 65 81

95 62 34 33 56 75 40 72 49 95
59 40 53 27 70 27 72 92 79 66
92 47 87 32 51 94 22 79 75 70
58 85 37 68 69 47 63 37 53 90
85 88 68 100 86 93 26 44 77 72
46 58 44 49 100 72 76 74 78 30
79 30 88 29 70 69 26 53 86 48
55 30 95 22 79 94 54 43 84 51
80 90 61 43 71 72 82 83 91 56
42 45 80 73 62 95 53 40 42 63
80 79 86 59 22 62 72 51 60 55
56 92 56 55 51 34 100 89 64 99
87 74 38 28 50 86 92 98 30 30
89 51 65 31 60 85 79 39 27 61
84 41 53 77 77 94 86 91 49 47
35 28 82 73 34 92 51 35 51 47
64 89 72 89 22 52 75 85 73 83
56 58 57 64 50 66 26 80 61 54
40 89 46 45 59 51 79 73 95 42
21 64 73 68 65 100 50 81 55 71
44 63 76 36 73 74 98 36 97 23
58 50 70 75 97 76 24 72 34 36
67 45 55 94 63 100 95 54 40 62
68 87 48 37 85 73 62 22 23 33

Table A.8:
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9.

Bin Capacity 150

Number of Items (n) 250

Items

81 41 27 95 46 69 45 39 32 98

41 46 100 86 84 39 67 34 92 59
43 21 56 88 26 35 51 22 100 96
49 95 38 62 63 97 42 62 100 43
44 77 97 94 68 23 50 36 89 58
97 27 64 65 54 58 24 35 33 63
32 50 58 90 44 50 48 21 72 75
21 74 28 95 77 69 96 24 57 85
72 96 50 83 65 62 99 93 23 77
94 31 50 33 79 73 23 55 44 78
84 66 31 59 97 95 22 76 90 66
29 100 90 92 50 49 47 43 37 40
60 52 54 99 34 46 88 97 85 39
32 51 95 54 99 86 48 90 28 25
86 39 74 26 38 60 41 67 80 33
37 62 71 87 31 72 84 84 53 85
32 24 88 54 28 36 91 61 29 68
69 35 30 88 85 87 70 70 59 26
73 27 44 27 35 38 65 21 69 59
35 70 40 84 42 92 24 46 78 60
76 43 49 79 65 24 28 43 26 93
62 91 21 21 32 34 86 27 79 34
88 93 58 77 62 87 99 61 83 75
99 93 39 85 31 69 48 67 50 24
49 82 97 86 21 86 41 100 84 77

Table A.9:
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10.

Bin Capacity 150

Number of Items (n) 250

Items

87 70 43 62 40 37 71 34 29 70

41 78 74 51 71 47 21 32 37 80
48 93 22 46 96 44 94 99 100 65
61 34 25 35 60 52 90 81 93 74
85 43 21 89 100 56 55 88 52 63
40 41 62 35 77 72 75 93 55 95
54 87 38 84 83 88 37 65 58 89
89 48 85 25 100 28 20 96 52 100
94 94 69 94 39 62 86 43 61 88
78 72 71 31 45 72 87 60 91 100
66 44 83 23 22 81 22 55 67 73
68 42 83 40 86 63 33 24 54 48
41 56 48 29 51 78 85 68 35 99
74 42 26 49 65 92 51 43 97 91
24 79 30 58 76 59 92 94 43 31
87 59 56 74 91 88 85 70 59 80
54 66 55 61 64 80 53 80 44 74
22 91 91 83 51 57 20 83 46 54
56 76 24 41 26 37 91 52 94 94
49 61 69 79 38 78 25 57 70 81
57 34 22 58 99 39 99 29 34 58
94 46 41 56 86 92 81 82 38 42
99 59 73 57 59 67 44 29 53 54
40 83 55 66 72 80 25 92 78 97
28 99 73 66 44 59 95 53 81 83

Table A.10:
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11.

Bin Capacity 150

Number of Items (n) 250

Items

92 61 32 31 38 29 44 90 68 35

78 56 25 26 61 90 20 43 37 65
63 39 95 87 83 97 41 87 69 75
82 45 80 78 89 98 32 24 55 63
92 33 95 80 27 62 97 36 73 67
35 82 37 61 82 45 26 56 91 53
71 78 33 20 26 97 90 30 44 86
82 25 56 34 54 97 91 42 74 83
38 44 44 26 66 35 45 80 42 97
26 61 59 92 92 81 33 86 87 100
69 25 51 32 94 50 42 21 90 52
32 66 77 22 64 51 41 81 54 70
67 84 72 47 92 82 96 58 80 95
36 60 42 41 51 29 99 57 21 48
30 65 55 62 60 49 80 63 25 35
54 27 68 64 35 52 87 40 52 41
59 56 77 41 43 73 87 56 76 29
46 39 92 40 72 54 20 56 68 27
23 62 45 95 90 27 36 79 88 51
95 96 66 57 96 25 33 84 67 75
78 61 53 42 72 40 60 99 32 99
70 39 90 73 71 23 61 49 100 35
45 34 84 49 100 75 46 85 83 93
90 68 20 100 73 25 66 70 40 83
37 29 29 87 95 42 95 100 96 55

Table A.11:
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12.

Bin Capacity 150

Number of Items (n) 250

Items

65 58 79 76 84 63 91 81 30 57

71 67 33 27 99 36 48 66 68 66
40 87 99 59 42 50 51 87 98 64
32 41 56 85 87 95 46 75 37 54
58 82 57 26 94 31 71 95 27 29
38 37 55 94 70 90 29 98 27 95
98 95 98 51 47 71 27 61 49 66
93 89 34 60 33 97 74 95 44 96
88 89 84 52 50 53 90 94 98 46
62 68 45 77 49 82 51 95 33 94
98 75 47 42 64 34 51 68 27 42
87 65 44 62 84 75 70 44 84 54
92 58 50 61 95 59 22 24 56 59
45 54 43 70 97 97 29 42 55 67
91 26 61 65 28 26 54 96 49 46
100 68 58 43 36 78 40 22 41 82
46 58 29 97 62 69 57 67 85 32
93 43 47 99 20 81 70 91 23 80
43 81 22 76 95 29 60 50 99 38
79 20 67 63 89 85 97 100 33 100
43 31 57 45 48 72 26 66 30 81
43 62 86 64 89 22 100 73 38 63
43 62 86 64 89 22 100 73 38 63
80 98 71 82 28 67 88 57 44 78
74 47 57 96 47 82 55 90 63 55

Table A.12:
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13.

Bin Capacity 150

Number of Items (n) 248

Items

87 100 69 94 71 91 74 76 68 82

96 85 96 85 79 71 56 86 46 55
44 35 29 42 65 49 82 73 70 63
94 63 71 86 27 93 80 42 45 93
69 76 61 29 81 46 42 74 45 88
96 40 31 47 82 60 43 20 80 69
46 90 34 81 59 43 61 28 56 32
90 60 66 70 77 43 92 85 45 74
40 51 48 30 41 63 71 43 24 91
48 65 41 34 47 88 73 57 50 68
80 34 70 96 80 26 77 53 82 78
74 87 69 97 87 64 31 77 25 60
20 66 48 80 77 90 69 61 93 41
35 28 68 59 27 34 24 56 42 29
52 42 27 83 78 40 37 21 77 43
45 76 53 36 61 52 53 41 76 83
49 38 71 64 89 48 32 69 80 88
41 46 37 60 63 20 47 40 93 46
84 77 92 51 87 49 75 58 61 83
53 22 79 80 92 96 49 53 22 50
71 73 66 23 70 76 93 46 39 40
93 41 36 60 35 25 99 79 52 22
66 44 68 73 60 56 76 95 53 37
68 87 20 38 95 86 47 68 66 37
44 47 77 26 90 97 86 57

Table A.13:
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14.

Bin Capacity 150

Number of Items (n) 248

Items

72 83 38 84 82 88 47 43 59 92

78 25 47 65 42 41 36 54 43 87
51 65 98 82 34 21 94 100 80 95
32 23 26 93 70 96 79 68 93 74
76 99 75 44 94 93 38 44 45 49
22 39 87 74 25 59 22 44 70 51
68 33 25 77 55 75 87 42 79 50
78 43 20 88 56 93 75 56 36 70
47 94 24 35 47 26 48 40 48 77
30 36 96 63 47 22 60 51 84 90
46 98 59 94 59 54 38 79 77 73
61 21 83 81 34 37 76 49 23 75
79 98 100 29 88 83 80 100 56 61
31 37 43 69 78 28 41 82 56 31
25 22 46 68 63 75 64 76 65 98
77 36 21 86 63 95 61 22 45 49
35 63 43 71 23 53 100 41 50 51
26 54 62 27 68 73 79 47 53 56
85 93 36 97 29 65 20 32 49 83
33 49 90 93 64 71 45 59 74 77
58 91 88 60 67 44 42 89 79 40
88 95 81 73 82 23 20 22 92 75
23 74 25 79 62 48 21 74 28 78
73 31 44 28 37 77 52 23 82 97
52 90 94 28 95 37 51 21

Table A.14:
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15.

Bin Capacity 150

Number of Items (n) 249

Items

29 31 81 61 24 92 70 56 100 61

85 83 53 44 70 65 25 39 71 26
63 99 64 97 88 54 91 53 96 44
49 94 63 65 90 37 30 28 53 83
41 54 89 32 49 40 80 63 89 74
89 20 25 75 31 56 92 85 40 97
56 100 55 35 27 96 89 29 44 26
49 73 72 50 52 77 35 97 79 45
75 62 91 50 37 25 65 97 62 74
81 72 100 57 49 83 23 92 63 55
81 64 88 50 74 52 25 97 48 43
49 33 86 35 71 21 90 95 88 80
93 73 60 96 65 56 32 88 67 69
63 26 51 59 85 41 91 70 92 44
53 49 91 33 57 26 99 24 48 52
92 43 46 47 96 36 88 55 76 51
87 44 58 34 69 43 56 37 74 82
64 75 99 36 54 76 72 21 33 61
87 54 82 94 87 46 71 83 71 44
87 20 31 67 93 100 94 97 64 63
36 89 48 34 41 42 74 30 48 73
37 100 49 58 50 86 79 91 98 63
24 82 24 48 26 98 82 75 62 55
82 87 74 87 32 73 28 95 84 29
82 68 70 49 88 23 78 96 50
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16.

Bin Capacity 150

Number of Items (n) 250

Items

73 99 36 56 65 46 60 32 77 41

32 94 77 63 35 78 24 95 96 81
86 75 36 21 48 28 95 62 91 40
26 88 43 45 22 54 28 48 88 80
35 81 69 94 96 95 67 30 29 59
40 65 31 74 39 57 95 46 32 82
55 36 47 85 80 36 31 40 82 53
59 57 31 82 72 38 69 53 74 79
97 42 49 74 86 37 89 63 75 84
38 42 59 80 23 20 95 46 98 97
64 66 84 24 25 20 68 32 38 48
27 74 86 54 81 73 77 40 48 81
86 59 87 60 27 81 22 29 62 41
76 57 31 79 30 83 29 65 97 49
52 42 20 85 89 93 39 29 33 21
26 73 28 28 38 33 96 50 73 53
31 100 27 85 37 42 79 60 95 21
87 34 46 88 57 41 66 38 79 27
85 72 83 82 94 56 24 83 32 49
78 30 33 50 37 49 25 44 86 22
54 38 81 77 39 47 22 51 40 70
83 86 69 73 31 80 84 70 55 68
27 25 25 27 48 30 83 42 26 63
72 74 83 55 36 44 95 81 73 53
63 47 88 86 48 21 89 74 70 63
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17.

Bin Capacity 150

Number of Items (n) 250

Items

56 68 67 56 44 64 75 96 80 58

75 50 43 42 31 94 64 77 89 30
45 74 53 57 56 47 31 55 58 28
72 27 35 68 68 82 67 47 24 49
40 67 96 80 88 39 93 32 47 81
99 38 51 97 31 55 40 63 93 78
30 39 55 67 24 72 71 43 31 79
77 42 73 62 93 90 50 98 36 76
72 35 48 53 33 64 51 32 82 68
55 51 84 72 50 30 21 25 43 55
56 65 73 24 100 21 47 97 90 83
75 43 61 51 32 74 63 91 21 92
71 74 42 100 21 63 72 42 54 57
42 81 68 79 38 47 21 22 55 61
40 35 76 83 100 31 62 36 75 82
50 80 38 68 21 84 72 67 84 98
39 68 86 63 98 67 75 37 35 41
63 67 57 26 53 36 56 92 89 76
49 23 23 49 24 56 74 34 64 100
82 25 30 72 82 68 67 57 57 40
33 40 27 52 89 52 97 31 48 50
57 37 77 32 97 67 93 70 20 38
71 49 78 40 94 21 66 96 86 85
99 79 85 77 68 37 41 68 27 100
96 74 46 79 43 59 50 39 42 80
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18.

Bin Capacity 150

Number of Items (n) 250

Items

87 62 73 65 73 72 77 85 33 39

58 100 87 24 35 34 28 70 49 36
65 27 75 99 99 59 79 99 90 64
42 82 58 56 89 80 97 82 44 92
29 39 90 99 68 40 23 95 39 77
59 74 94 67 72 90 60 49 21 20
49 33 85 84 50 95 52 31 46 96
73 66 33 90 77 79 27 91 54 62
44 78 35 62 97 25 79 31 26 87
30 24 31 24 53 90 66 21 58 28
81 61 100 33 95 77 77 75 52 58
95 47 27 29 74 84 49 25 57 90
61 59 99 70 33 25 54 66 32 20
32 47 28 71 33 55 81 56 21 83
67 46 96 50 94 55 57 100 35 50
21 97 30 34 57 74 99 63 40 96
83 37 59 72 59 50 84 88 22 97
81 22 55 31 66 23 88 89 28 77
78 41 93 94 45 84 48 75 38 68
34 37 40 78 60 94 58 71 70 30
77 34 96 58 70 61 27 55 48 80
26 59 31 55 80 75 73 48 22 35
97 46 98 48 49 28 67 94 46 46
37 45 48 42 31 67 23 98 58 55
24 60 48 95 93 49 56 90 31 24
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19.

Bin Capacity 150

Number of Items (n) 250

Items

71 39 69 32 82 75 60 39 80 61

43 34 80 69 21 59 82 54 26 51
96 76 76 45 41 73 91 23 98 90
59 43 52 48 87 97 51 72 77 59
83 65 40 79 30 31 99 40 42 66
47 67 50 72 62 95 75 81 36 36
70 89 95 62 56 23 37 50 46 30
64 94 65 55 24 28 96 31 57 72
96 63 40 79 89 97 50 37 93 52
86 74 47 84 77 48 54 97 70 29
40 74 71 46 46 63 48 74 25 77
46 80 35 56 65 49 38 26 81 80
73 38 27 97 47 88 42 62 45 33
78 35 63 25 74 63 41 81 68 78
52 30 22 100 42 53 60 58 92 74
67 72 30 48 65 23 94 99 67 57
73 44 63 53 87 54 62 100 30 20
25 94 85 68 59 82 52 100 89 49
74 44 23 39 21 65 80 93 36 97
74 37 52 94 60 77 57 71 61 92
98 86 55 89 24 88 53 85 39 89
64 45 52 71 79 23 50 95 55 36
95 41 36 94 52 36 76 72 52 42
27 61 55 64 30 22 53 71 51 37
96 74 63 54 81 77 55 29 89 41
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A.1.2 Class 2 Problems

1.
Bin Capacity 100

Number of Items (n) 60

Items

36.6 26.8 36.6 43 26.3 30.7 41.4 28.7 29.9 49.5

25.1 25.4 47.4 25.2 27.4 37 26.9 36.1 47.3 25.2
27.5 47.2 25.9 26.9 44.4 25.8 29.8 43.9 27.3 28.8
44.5 27.2 28.3 41.9 26.1 32 36.3 27.1 36.6 35.5
27.3 37.2 46.6 26.2 27.2 35.7 29.2 35.1 39.5 25.5
35 35 30.3 34.7 45 25.2 29.8 41 27.5 31.5

Table A.15:

2.
Bin Capacity 100

Number of Items (n) 60

Items

47.5 25.6 26.9 39.6 26.4 34 46.8 26.2 27 36.1

30 33.9 44.4 25.1 30.5 36.6 25.2 38.2 40.9 27.7
31.4 46.5 26 27.5 44.7 25.1 30.2 39.9 29.7 30.4
42.3 25.8 31.9 47.3 26 26.7 42.6 26.1 31.3 40.3
28.9 30.8 40.2 26.5 33.3 39.6 25.7 34.7 41.1 28.2
30.7 46.2 25.8 28 41.2 25.4 33.4 37.6 25.5 36.9

Table A.16:
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3.
Bin Capacity 100

Number of Items (n) 60

Items

49.4 25 25.6 42.9 26.6 30.5 37.8 26.8 35.4 48.2

25.1 26.7 46.4 25.9 27.7 39.8 27.6 32.6 39 26
35 48.2 25.1 26.7 43 26.2 30.8 40 26.1 33.9

49.8 25 25.2 36.2 28.8 35 49.8 25 25.2 45.9
26 28.1 40.1 27.1 32.8 36.7 28.8 34.5 35.2 27.9

36.9 47.6 26.1 26.3 47.9 25.4 26.7 43.6 28 28.4

Table A.17:

4.
Bin Capacity 100

Number of Items (n) 60

Items

37.8 27.5 34.7 46.2 26.1 27.7 42.9 27.3 29.8 49.5

25 25.5 37.1 26.2 36.7 39.1 29.3 31.6 49.3 25.2
25.5 40.5 25 34.5 46.1 25.8 28.1 47.8 25.7 26.5
35.4 27.8 36.8 45.1 25.6 29.3 48.5 25.4 26.1 47.7
25.8 26.5 36.9 27 36.1 37.5 26.8 35.7 41.4 25.4
33.2 45.9 26.3 27.8 45.6 26.3 28.1 42.6 27.7 29.7

Table A.18:

5.
Bin Capacity 100

Number of Items (n) 60

Items

37.9 29.3 32.8 47 25.1 27.9 41.1 25.3 33.6 41.4

27.6 31 41.8 28.6 29.6 37.8 29.6 32.6 42.8 28.1
29.1 45.5 26.4 28.1 49.4 25.2 25.4 47.8 25.8 26.4
40.9 28.7 30.4 42.5 25.6 31.9 40.2 25.2 34.6 40.3
28.3 31.4 40.1 28.4 31.5 43.4 28.2 28.4 49.6 25.1
25.3 49.1 25.3 25.6 49.8 25 25.2 37.9 26.4 35.7

Table A.19:
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6.
Bin Capacity 100

Number of Items (n) 60

Items

49.6 25 25.4 39.6 27 33.4 48.3 25.2 26.5 46.3

26.1 27.6 38.9 28.3 32.8 38 26.8 35.2 41.6 28.2
30.2 38.8 25.2 36 48.9 25.2 25.9 43.3 28.1 28.6
38 28.5 33.5 37.2 30.1 32.7 37.2 28.1 34.7 35.5

30.5 34 43.2 27.8 29 46.2 26.2 27.6 48.4 25.2
26.4 42.2 28.2 29.6 46.9 26.2 26.9 35.8 28.1 36.1

Table A.20:

7.
Bin Capacity 100

Number of Items (n) 60

Items

40.3 28.7 31 42.7 28.1 29.2 45.1 26.5 28.4 45

25 30 40 27.8 32.2 37.4 26.1 36.5 38 27.6
34.4 46.4 25.2 28.4 39.4 26.9 33.7 37.5 29.7 32.8
49.8 25 25.2 37.4 30.4 32.2 35.5 27.6 36.9 48.5
25.3 26.2 35.7 27.5 36.8 42.4 25.9 31.7 47.1 25
27.9 38.8 27.3 33.9 44.9 27.5 27.6 40.5 27.4 32.1

Table A.21:

8.
Bin Capacity 100

Number of Items (n) 60

Items

48 25.6 26.4 37.3 29.7 33 41.2 28.1 30.7 39.2

28.6 32.2 43.2 26.5 30.3 47.8 25.5 26.7 40.6 26.8
32.6 36.5 25.5 38 40.7 27.9 31.4 37.8 29.3 32.9
36.2 27.3 36.5 48.7 25.2 26.1 42.2 26 31.8 41
26.6 32.4 41 26.3 32.7 37 26 37 45.4 25
29.6 36.6 28.1 35.3 47.6 26 26.4 46.5 25.6 27.9

Table A.22:
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9.
Bin Capacity 100

Number of Items (n) 60

Items

48.5 25.6 25.9 49.1 25.1 25.8 35.3 31.2 33.5 49.8

25 25.2 36.1 29.3 34.6 37.8 25.2 37 45.1 25.6
29.3 43.9 26.9 29.2 45.3 26.3 28.4 39.8 25.9 34.3
39.1 25.5 35.4 46.2 25.2 28.6 36.3 25.4 38.3 38.1
27.8 34.1 45.4 25.1 29.5 35.6 28.3 36.1 45.3 27.2
27.5 35.7 27.5 36.8 46.8 25 28.2 35.2 28 36.8

Table A.23:

10.
Bin Capacity 100

Number of Items (n) 60

Items

35.1 25.8 39.1 35.9 25.9 38.2 37.6 30.8 31.6 44.5

27.5 28 42.6 27.6 29.8 46.8 25.9 27.3 45.3 25.8
28.9 44.3 25.3 30.4 38 26.1 35.9 37.7 30.4 31.9
48.3 25.4 26.3 45.1 26.1 28.8 37.3 26.3 36.4 41.7
27.6 30.7 36.3 29.4 34.3 44.2 25.4 30.4 41.2 25.6
33.2 36.9 26.2 36.9 42.9 25.2 31.9 39.7 26.6 33.7

Table A.24:

11.
Bin Capacity 100

Number of Items (n) 60

Items

40 27.7 32.3 41.9 28 30.1 38.8 25.7 35.5 39.8

25.1 35.1 42.3 25.7 32 35.7 26 38.3 42.4 26.6
31 44.8 26.8 28.4 41.7 25.1 33.2 36.6 29.9 33.5
36 31.8 32.2 44.1 27.4 28.5 47.8 25.7 26.5 46.4

26.5 27.1 42.8 28 29.2 47.2 25 27.8 49.1 25.3
25.6 44 26.6 29.4 40.3 25 34.7 43.9 27 29.1

Table A.25:
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12.
Bin Capacity 100

Number of Items (n) 60

Items

49.3 25.1 25.6 49.2 25.1 25.7 39.6 26.8 33.6 39.2

25.6 35.2 49.2 25.3 25.5 44.7 27 28.3 47 25.2
27.8 37.8 25.3 36.9 38.9 28 33.1 37.2 25.8 37
48.1 25.3 26.6 39.5 27.8 32.7 40.9 26.8 32.3 45
26.6 28.4 39.8 29.5 30.7 39.1 29.6 31.3 49.5 25.2
25.3 39.9 28.8 31.3 35.2 26.7 38.1 38.5 28.4 33.1

Table A.26:

13.
Bin Capacity 100

Number of Items (n) 60

Items

47.2 25.4 27.4 42 27.6 30.4 49.5 25.1 25.4 39.5

26.8 33.7 42.4 26.7 30.9 47 26 27 39.1 26.8
34.1 46.2 25.2 28.6 44 25.6 30.4 43.3 28.1 28.6
43.5 26.6 29.9 43.6 25 31.4 45 27.1 27.9 37.3
25.5 37.2 43.8 26.1 30.1 44.2 25.6 30.2 39.3 25.5
35.2 36.7 31.2 32.1 40.5 26.6 32.9 38.9 27.2 33.9

Table A.27:

14.
Bin Capacity 100

Number of Items (n) 60

Items

49.3 25.3 25.4 45.6 25.8 28.6 42.9 27.8 29.3 35.6

31.7 32.7 49.2 25.1 25.7 48.8 25.1 26.1 44.8 25.6
29.6 36.9 29.1 34 48 25.8 26.2 38.1 29.6 32.3
48.5 25.6 25.9 41.9 26.4 31.7 45.9 25.4 28.7 44.4
26 29.6 42.1 28 29.9 49.5 25 25.5 45.2 26.7

28.1 35 29.7 35.3 36.1 25.3 38.6 43.4 27.8 28.8

Table A.28:
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15.
Bin Capacity 100

Number of Items (n) 60

Items

47 26 27 46.4 25.8 27.8 36.7 26.6 36.7 49.2

25.1 25.7 49.1 25.2 25.7 41.5 28.2 30.3 42.9 26
31.1 45 27.3 27.7 48.4 25.4 26.2 39.9 27.4 32.7
44.8 27 28.2 36.1 25 38.9 36 30 34 41.5
25.1 33.4 35.3 31.1 33.6 46 25.9 28.1 47.4 25.4
27.2 40 26.4 33.6 36.5 26.9 36.6 41.2 27.9 30.9

Table A.29:

16.
Bin Capacity 100

Number of Items (n) 60

Items

44.2 26.7 29.1 44.8 25.2 30 46.3 26.6 27.1 45.1

26.1 28.8 39.2 27.9 32.9 45.4 25.8 28.8 43.1 27.3
29.6 47.1 25.5 27.4 49.1 25.2 25.7 48.5 25.3 26.2
40.9 29.2 29.9 48.7 25.2 26.1 38.3 28.1 33.6 42.6
25.1 32.3 36 31.2 32.8 48.1 25.6 26.3 47.2 25.4
27.4 45.1 25 29.9 38.9 26.4 34.7 41.3 29.1 29.6

Table A.30:

17.
Bin Capacity 100

Number of Items (n) 60

Items

40.2 26.4 33.4 49.8 25 25.2 43.9 27.9 28.2 48

25.1 26.9 40.2 28.4 31.4 43.2 25.3 31.5 42.9 27.5
29.6 38.2 26.4 35.4 49.2 25.3 25.5 45 27 28
43.6 25.6 30.8 41.2 27.4 31.4 48.2 25.5 26.3 47.8
25.8 26.4 45.5 26.6 27.9 48.1 25.2 26.7 49.7 25
25.3 44.4 27.4 28.2 43.2 26.8 30 40.8 26.3 32.9

Table A.31:
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18.
Bin Capacity 100

Number of Items (n) 60

Items

46.7 25.5 27.8 42.2 26.9 30.9 45.3 26.8 27.9 41.1

25.6 33.3 43.6 27 29.4 45.5 25.1 29.4 48.9 25.3
25.8 49.5 25 25.5 39.4 25.1 35.5 49.6 25 25.4
40.6 29.2 30.2 43.7 27.8 28.5 45.9 26.2 27.9 46.9
26.4 26.7 47.8 25.8 26.4 42.8 26.6 30.6 49.2 25.1
25.7 40.3 25.5 34.2 42.5 28.5 29 45.9 26 28.1

Table A.32:

19.
Bin Capacity 100

Number of Items (n) 60

Items

49.5 25 25.5 37.3 29.6 33.1 36.6 25.4 38 47.1

25.2 27.7 42 25.6 32.4 43.4 27.5 29.1 43.9 27.1
29 37.7 25.3 37 44.3 27.6 28.1 42.4 26.1 31.5

35.2 29 35.8 46.6 26.1 27.3 39.9 25.4 34.7 38.5
27.8 33.7 37.7 30.4 31.9 49.3 25.1 25.6 49.2 25.3
25.5 45.3 25.2 29.5 47.9 25.1 27 36.4 27.5 36.1

Table A.33:

20.
Bin Capacity 100

Number of Items (n) 60

Items

36.1 25.7 38.2 39.1 25.9 35 39.5 26.3 34.2 42.7

25.7 31.6 45.9 25.5 28.6 36.7 27 36.3 46 26.7
27.3 45.9 25.9 28.2 49.3 25.3 25.4 46 25.3 28.7
36.6 29.2 34.2 47 25.4 27.6 40.5 25.2 34.3 49.9
25 25.1 48.8 25.1 26.1 38.4 25.8 35.8 40.7 28.8

30.5 41.5 26.1 32.4 42.3 27.9 29.8 36.8 30.3 32.9

Table A.34:
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A.2 1D Cutting Stock test problems

1.

Stock Length 14

Number of Items 20

Item Length

Demand

3 4 5 6 7 8 9 10

5 2 1 2 4 2 1 3

Table A.35:

2.

Stock Length 15

Number of Items 50

Item Length

Demand

3 4 5 6 7 8 9 10

4 8 5 7 8 5 5 8

Table A.36:

3.

Stock Length 25

Number of Items 60

Item Length

Demand

3 4 5 6 7 8 9 10

6 12 6 5 15 6 4 6

Table A.37:

4.

Stock Length 25

Number of Items 60

Item Length

Demand

5 6 7 8 9 10 11 12

7 12 15 7 4 6 8 1

Table A.38:
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5.

Stock Length 4300

Number of Items 126

Item Length
2350 2250 2220 2100 2050 2000 1950 1900 1850

2 4 4 15 6 11 6 15 13

Demand
1700 1650 1350 1300 1250 1200 1150 1100 1050

5 2 9 3 6 10 4 8 3

Table A.39:



Appendix B

Layouts for 2D Problems

B.1 Layouts for Strip Packing Problems with fixed

orientation and free cutting

Figure B.1: Problems 1-3

170
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Figure B.2: Problems 4-6

Figure B.3: Problems 7-9

Figure B.4: Problems 10-12
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Figure B.5: Problems 13-15

Figure B.6: Problems 16-18

Figure B.7: Problems 19-21
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Figure B.8: Problems 22-24

Figure B.9: Problems 25-27
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B.2 Layouts for Strip Packing Problems with ro-

tatable orientation with free cutting

Figure B.10: Layouts for C1

Figure B.11: Layouts for C2
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Figure B.12: Layouts for C3

Figure B.13: Layouts for C4

Figure B.14: Layouts for C5
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B.3 Layouts for guillotine-able Strip Packing Prob-

lems with rotatable orientation

Figure B.15: Layouts for Guillotine-able Strip packing problems 1-3

Figure B.16: Layouts for Guillotine-able Strip packing problems 4-6
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Figure B.17: Layouts for Guillotine-able Strip packing problems 7-9
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B.4 Layouts for Bin Packing Problems with fixed

orientation and free cutting

Figure B.18: Layout1 with 20 Items
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Figure B.19: Layout2 with 40 Items
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Figure B.20: Layout3 with 60 Items
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B.5 Example Layouts for guillotine-able bin pack-

ing problems

Figure B.21: Example Layout for guillotine-able Bin Packing problem
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Figure B.22: Example2 Layout for guillotine-able Bin Packing problem
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B.6 Layouts for Irregular strip packing problem

Figure B.23: Layout for Shirts
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Figure B.24: Layout for trousers
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Figure B.25: Layout for Albano
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Figure B.26: Layout for Marques
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function pop=CreatePopulation(NVARS,FitnessFcn,options)

% This function creates a population of solutions for One Dimensional

%and Two Dimensional C&P Problems

%POP = CREATEPOPULATION(NVARS,FITNESSFCN,OPTIONS) creates a population

% of solutions POP each with a length of NVARS.

%

% The arguments to the function are

% NVARS: Number of variables

% FITNESSFCN: Fitness function

% OPTIONS: Options structure used by the GA

% by V.Mancapa

% A Problem global variable assigend to the problem

% that has to be solved.

global Problem

Pop_size=sum(options.PopulationSize);

for i= 1:Pop_size

%Create the ith individual

pop(i,:)=CreateIndividual(Problem);

end

Figure B.27: Function for generaton of population of solutions
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function xoverKids =generalxover(parents,options,NVARS,FitnessFcn,unused,thisPopulation)

% generalxover Custom crossover function for 1D and 2D C&P problems.

% XOVERKIDS = GENERALXOVER(PARENTS,OPTIONS,NVARS, ...

% FITNESSFCN,UNUSED,THISPOPULATION) crossovers PARENTS to produce

% the children XOVERKIDS.

%

% The arguments to the function are

% PARENTS: Parents chosen by the selection function

% OPTIONS: Options structure used by the GA

% NVARS: Number of variables

% FITNESSFCN: Fitness function

% THISPOPULATION: Matrix of individuals in the current population

%by V.Mancapa

nkids=length(parents)/2;

j=1;

for i=1:nkids

%Select Parent1 From this Population

parent1=thisPopulation(parents(j),:);

j=j+1;

%Select Parent2 From this Population

parent2=thisPopulation(parents(j),:);

j=j+1;

%Cross Parent1 and Parent2

xoverKids(i,:)=generalcrossover(parent1,parent2);

end

Figure B.28: Xover operator M-file function
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function IndividualScore=Eval_function(soln)

% A fitness function.

% IndividualScore = EVAL_FUNCTION(SOLN) Calculate the fitness

% of an individual for 1D and 2D C&P problems.

%By V.Mancapa

switch soln(1)

case 1

%Evaluation for one-dimensional bin packing problem

true_solution=[soln(5:end)];

IndividualScore=One_BPPEval(true_solution);

case 2

switch soln(2)

case 1

switch soln(3)

case 2

%Evaluation for 2D Strippacking problem without the guillotine constraint

true_solution=[soln(5:end)];

IndividualScore=StripPacking(true_solution);

case 1

%Evaluation for 2D Strippacking problem with the guillotine constraint

true_solution=[soln(5:end)];

IndividualScore=Guillotine_StripPacking( true_solution);

end

case 3

%Evaluation for Irregular Strippacking problem

true_solution=[soln(5:end)];

IndividualScore=IrregularStripPacking(true_solution);

case 2

switch soln(3)

case 2

%Evaluation for 2D Binpacking problem with free cutting

true_solution=[soln(5:end)];

IndividualScore=Two_Binpacking(true_solution);

case 1

%Evaluation for 2D Binpacking problem with guillotine cutting constraint

true_solution=[soln(5:end)];

IndividualScore=Two_D_Binpacking_Guillotine(true_solution);

end

end

end


