242 research outputs found

    Heuristic for the design of fault tolerant logical topology.

    Get PDF
    Wavelength division multiplexing (WDM) in optical fiber networks is widely viewed as the savior for its potential to satisfy the huge bandwidth requirement of network users. Optical cross connect (OCX) in WDM network facilitates the switching of signal on any wavelength from any input port to any output port. As a result, it is possible to establish ligthpaths between any pair of nodes. The set of lightpaths established over fiber links defines logical topology. In our thesis, we proposed a heuristic approach for the design of fault tolerant logical topology. Our design approach generalizes the design protection concept and enforces wavelength continuity constraint in a multi-hop optical network. In our work, we first designed logical topology for fault free state of the network. We, then, added additional lightpaths for each single link failure scenario. Numerical results clearly show that our approach outperforms Shared path protection and Dedicated path protection. Our simulation result shows that our approach is feasible for large networks. (Abstract shortened by UMI.) Paper copy at Leddy Library: Theses & Major Papers - Basement, West Bldg. / Call Number: Thesis2005 .S24. Source: Masters Abstracts International, Volume: 44-03, page: 1413. Thesis (M.Sc.)--University of Windsor (Canada), 2005

    Optimización metaheurística para la planificación de redes WDM

    Get PDF
    Las implementaciones actuales de las redes de telecomunicaciones no permiten soportar el incremento en la demanda de ancho de banda producido por el crecimiento del tráfico de datos en las últimas décadas. La aparición de la fibra óptica y el desarrollo de la tecnología de multiplexación por división de longitudes de onda (WDM) permite incrementar la capacidad de redes de telecomunicaciones existentes mientras se minimizan costes. En este trabajo se planifican redes ópticas WDM mediante la resolución de los problemas de Provisión y Conducción en redes WDM (Provisioning and Routing Problem) y de Supervivencia (Survivability Problem). El Problema de Conducción y Provisión consiste en incrementar a mínimo coste la capacidad de una red existente de tal forma que se satisfaga un conjunto de requerimientos de demanda. El problema de supervivencia consiste en garantizar el flujo del tráfico a través de una red en caso de fallo de alguno de los elementos de la misma. Además se resuelve el Problema de Provisión y Conducción en redes WDM con incertidumbre en las demandas. Para estos problemas se proponen modelos de programación lineal entera. Las metaheurísticas proporcionan un medio para resolver problemas de optimización complejos, como los que surgen al planificar redes de telecomunicaciones, obteniendo soluciones de alta calidad en un tiempo computacional razonable. Las metaheurísticas son estrategias que guían y modifican otras heurísticas para obtener soluciones más allá de las generadas usualmente en la búsqueda de optimalidad local. No garantizan que la mejor solución encontrada, cuando se satisfacen los criterios de parada, sea una solución óptima global del problema. Sin embargo, la experimentación de implementaciones metaheurísticas muestra que las estrategias de búsqueda embebidas en tales procedimientos son capaces de encontrar soluciones de alta calidad a problemas difíciles en industria, negocios y ciencia. Para la solución del problema de Provisión y Conducción en Redes WDM, se desarrolla un algoritmo metaheurístico híbrido que combina principalmente ideas de las metaheurísticas Búsqueda Dispersa (Scatter Search) y Búsqueda Mutiarranque (Multistart). Además añade una componente tabú en uno de los procedimiento del algoritmo. Se utiliza el modelo de programación lineal entera propuesto por otros autores y se propone un modelo de programación lineal entera alternativo que proporciona cotas superiores al problema, pero incluye un menor número de variables y restricciones, pudiendo ser resuelto de forma óptima para tamaños de red mayores. Los resultados obtenidos por el algoritmo metaheurístico diseñado se comparan con los obtenidos por un procedimiento basado en permutaciones de las demandas propuesto anteriormente por otros autores, y con los dos modelos de programación lineal entera usados. Se propone modelos de programación lineal entera para sobrevivir la red en caso de fallos en un único enlace. Se proponen modelos para los esquemas de protección de enlace compartido, de camino compartido con enlaces disjuntos, y de camino compartido sin enlaces disjuntos. Se propone un método de resolución metaheurístico que obtiene mejores costes globales que al resolver el problema en dos fases, es decir, al resolver el problema de servicio y a continuación el de supervivencia. Se proponen además modelos de programación entera para resolver el problema de provisión en redes WDM con incertidumbres en las demandas

    Risk-Aware Planning for Sensor Data Collection

    Get PDF
    With the emergence of low-cost unmanned air vehicles, civilian and military organizations are quickly identifying new applications for affordable, large-scale collectives to support and augment human efforts via sensor data collection. In order to be viable, these collectives must be resilient to the risk and uncertainty of operating in real-world environments. Previous work in multi-agent planning has avoided planning for the loss of agents in environments with risk. In contrast, this dissertation presents a problem formulation that includes the risk of losing agents, the effect of those losses on the mission being executed, and provides anticipatory planning algorithms that consider risk. We conduct a thorough analysis of the effects of risk on path-based planning, motivating new solution methods. We then use hierarchical clustering to generate risk-aware plans for a variable number of agents, outperforming traditional planning methods. Next, we provide a mechanism for distributed negotiation of stable plans, utilizing coalitional game theory to provide cost allocation methods that we prove to be fair and stable. Centralized planning with redundancy is then explored, planning for parallel task completion to mitigate risk and provide further increased expected value. Finally, we explore the role of cost uncertainty as additional source of risk, using bi-objective optimization to generate sets of alternative plans. We demonstrate the capability of our algorithms on randomly generated problem instances, showing an improvement over traditional multi-agent planning methods as high as 500% on very large problem instances

    Topological optimization of fault-tolerant networks meeting reliability constraints.

    Get PDF
    The relevant entities in a network are its nodes, and the links between them. In general, the goal is to achieve a reliable communication between dierent pairs of nodes. Examples of applications are telephonic services, data communication, transportation systems, computer systems, electric networks and control systems. The predominant criterion for the design of a reliable and survivable system is the minimum-cost in most contexts. An attractive topic for research is to consider a minimum-cost topological optimization design meeting a reliability threshold. Even though the cost has been the primary factor in the network design, recently, the network reliability has grown in relevance. With the progress of Fiber-To-the-Home (FTTH) services for the backbone design in most current networks, combined with the rapid development of network communication technologies, and the explosive increase of applications over the Internet infrastructure, the network reliability has supreme importance, for traditional communication systems but for the defense, business and energy, and emergent elds such as trusted computing, cloud computing, Internet of Things (IoT) and Next Generation Networks (NGN), the fault tolerance is critical. We can distinguish two main problems to address in the analysis and design of network topologies. First, the robustness is usually met under multi-path generation. Therefore, we require certain number of node-disjoint paths between distinguished nodes, called terminals. The second problem is to meet a minimum-reliability requirement in a hostile environment, using the fact that both nodes and links may fail. Both problems are strongly related, where sometimes the minimum-cost topology already meets the reliability threshold, or it should be discarded, and the design is challenging. This thesis deals with a topological optimization problem meeting reliability constraints. The Generalized Steiner Problem with Node-Connectivity Constraints and Hostile Reliability (GSP-NCHR) is introduced, and it is an extension of the well-known Generalized Steiner Problem (GSP). Since GSP-NCHR subsumes the GSP, it belongs to the class of N P-Hard problems. A full chapter is dedicated to the hardness of the GSP-NCHR, and an analysis of particular sub-problems. Here, the GSP-NCHR is addressed approximately. Our goal is to meet the topological x requirements intrinsically considered in the GSP-NCHR, and then test if the resulting topology meets a minimum reliability constraint. As a consequence a hybrid heuristic is proposed, that considers a Greedy Randomized construction phase followed by a Variable Neighborhood Search (VNS) in a second phase. VNS is a powerful method that combines local searches that consider dierent neighborhood structures, and it was used to provide good solutions in several hard combinatorial optimization problems. Since the reliability evaluation in the hostile model belongs to the class of N P-Hard problems, a pointwise reliability estimation was adopted. Here we considered Recursive Variance Reduction method (RVR), since an exact reliability evaluation is prohibitive for large-sized networks. The experimental analysis was carried out on a wide family of instances adapted from travel salesman problem library (TSPLIB), for heterogeneous networks with dierent characteristics and topologies, including up to 400 nodes. The numerical results show acceptable CPU-times and locally-optimum solutions with good quality, meeting network reliability constraints as well.En una red las entidades relevantes son nodos y conexiones entre nodos, y en general el principal objetivo buscado es lograr una comunicación segura entre nodos de esta red, ya sea para redes telefónicas y de comunicación de datos, de transporte, arquitectura de computadores, redes de energía eléctrica o sistemas de comando y control. La optimización relativa al costo de una red y la contabilidad de la misma, relacionada con la supervivencia de esta, son los criterios predominantes en la selección de una solución para la mayor parte de los contextos. Un tema interesante que ha atraído un gran esfuerzo es cómo diseñar topologías de red, con un uso mínimo de recursos de red en términos de costo que brinde una garantía de contabilidad. A pesar que por años el costo ha sido el factor primario, la contabilidad ha ganado rápidamente en relevancia. Con sistemas de transmisión de fibra óptica de alta capacidad formando la columna vertebral de la mayoría de las redes actuales y junto con el rápido desarrollo de la tecnología de comunicación de redes y el crecimiento explosivo de las aplicaciones de Internet, la contabilidad de la red parece cada vez más importante, tanto para áreas tradicionales como la industria de defensa, finanzas y energía, y áreas emergentes como la computación contable, la computación en la nube, internet de las cosas (IoT) y la próxima generación de Internet, la supervivencia del tráfico por sobre los fallos de red se ha convertido aún en más crítica. En ese sentido podemos diferenciar, a grandes rasgos, dos de los principales problemas a resolver en el análisis y diseño de topologías de red. Primeramente la obtención de una red óptima en algún sentido, siendo este definido por ejemplo mediante la obtención de la máxima cantidad posible de caminos disjuntos entre pares de nodos, esto sujeto a determinadas restricciones definidas según el contexto. El segundo problema es la evaluación de la contabilidad de la red en función de las contabilidades elementales de los nodos y conexiones entre nodos que componen la red. Estas contabilidades elementales son probabilidades de operación asociadas a los nodos y conexiones entre nodos. Ambos problemas están fuertemente relacionados, pudiendo tener que comparar en el proceso de búsqueda de redes óptimas la contabilidad entre soluciones candidatas, o luego de obtener una solución candidata tener que evaluar la contabilidad de la misma y de esta forma descartarla o no. El presente trabajo se centra en la resolución del problema enfocado en ambos puntos planteados. Para ello modelamos el problema de diseño de la topología de red sobre la base de un modelo de nido como Generalized Steiner Problem with Node-Connectivity Constraints and Hostile Reliability (GSP-NCHR) extensión del más conocido Generalized Steiner Problem (GSP). El presente problema es NP-duro, dedicamos un capítulo para presentar resultados teóricos que lo demuestran. Nuestro objetivo es atacar de forma aproximada el modelo GSP-NCHR de tal modo de poder resolver la optimización de la red y luego medir la contabilidad de la solución obtenida. Para ello optamos por desarrollar la metaheurística Variable Neighborhood Search (VNS). VNS es un método potente que combina el uso de búsquedas locales basadas en distintas definiciones de vecindad, el cual ha sido utilizado para obtener soluciones de buena calidad en distintos problemas de optimización combinatoria. En lo referente al cálculo de contabilidad de la red, nuestro modelo GSP-NCHR pertenece a la clase NP-duro, por eso desarrollamos Recursive Variance Reduction (RVR) como método de simulación, ya que la evaluación exacta de esta medida para redes de tamaño considerable es impracticable. Las pruebas experimentales fueron realizadas utilizando un conjunto amplio de casos de prueba adaptados de la librería travel salesman problem (TSPLIB), de heterogéneas topologías con diferentes características, incluyendo instancias de hasta 400 nodos. Los resultados obtenidos indican tiempos de cómputo altamente aceptables acompañados de óptimos locales de buena calidad

    Advanced meta-heuristic approaches and their application to operational optimization in forest wildfire management

    Get PDF
    La última década ha sido testigo de un aumento vertiginoso de la cantidad y frecuencia de desastres a gran escala, principalmente debido a los fenómenos devastadores derivados de paradigmas climatológicos y ambientales a gran escala como el calentamiento global. De entre ellos son las inundaciones, huracanes y terremotos los desastres de mayor frecuencia de aparición y fatales consecuencias durante este período, tal como certifican los más de 20.000 muertos a consecuencia de un terremoto en la región de Gujarat (India) en 2001, o las 230.000 y 316.000 pérdidas humanas de los terremotos de Indonesia y Haití en 2004 y 2010, respectivamente. En este contexto, el enfoque de esta tesis se centra en una casuística concreta de desastre a media-gran escala cuya frecuencia y severidad han crecido de manera igualmente preocupante en los últimos tiempos: los incendios, definidos como un fuego de grandes dimensiones no voluntariamente iniciado por el ser humano, y que afecta a aquello que no está destinado a quemarse. Pese a la diversidad de iniciativas, campañas y procedimientos orientados a la minimización del impacto y las consecuencias de los incendios, varios sucesos fatales acontecidos en los últimos años han puesto en duda la efectividad de las políticas actuales de gestión de recursos contra incendios como aeronaves, vehículos terrestres, equipamiento de comunicaciones radio, logística de abastecimiento y las brigadas desplegadas en el área afectada. Un ejemplo manifiesto de esta falta de eficacia es la muerte de once bomberos ocurrida en un incendio de 130 kilómetros cuadrados en la zona de Guadalajara (España) en 2005, oficialmente atribuida a una deficiente coordinación entre el puesto de mando y los equipos de extinción debida, fundamentalmente, a problemas de cobertura en los sistemas de radiocomunicación. Aunque la causa de esta falta de coordinación ha sido cuestionada por las autoridades y los agentes involucrados desde entonces, lo cierto es que este suceso supone un ejemplo evidente de la necesidad de estudiar y desarrollar herramientas algorítmicas que ayuden al personal de comandancia a ejecutar óptimamente sus tareas de coordinación y control. Desafortunadamente la coyuntura de crisis económica mundial que azota con especial fuerza los países del Sur de Europa ha mermado dramáticamente las partidas presupuestarias para la prevención y extinción de incendios en beneficio de programas nacionales de reducción de déficit. A consecuencia de estos recortes, el coste ha irrumpido con fuerza como un criterio de extrema relevancia en la planificación operativa de este tipo de desastres: desde la perspectiva de un problema de optimización, los recursos contra incendios son actualmente gestionados con el objetivo fundamental de maximizar su efectividad contra incendios, sujeto a la restricción de que el coste agregado asociado a las decisiones tomadas no supere un determinado umbral presupuestario. Pese a que estas restricciones de coste están bien acotadas, en la práctica la mayoría de los procedimientos de gestión de recursos contra incendios están fuertemente determinados por la capacidad limitada del ser humano para tomar decisiones ágiles en escenarios de elevada complejidad y heterogeneidad. Por los motivos anteriormente expuestos, la presente Tesis doctoral propone la adopción de algoritmos meta-heurísticos para solventar eficientemente problemas de optimización que modelan procesos de gestión de recursos contra incendios. Esta familia de algoritmos de optimización es capaz de explorar el espacio solución de un problema dado merced a la aplicación iterativa de mecanismos inteligentes de búsqueda explorativa y explotativa, produciendo soluciones que sacrifican calidad por una complejidad computacional menor en comparación con la resultante de procesos determinísticos de búsqueda exhaustiva. En particular la Tesis plantea la búsqueda por harmonía (del inglés Harmony Search) como la técnica meta-heurística de optimización común a las herramientas diseñadas para la gestión de recursos en dos escenarios diferentes: ? El primer escenario analizado contempla el despliegue óptimo de redes de comunicación inalámbrica para la coordinación de equipos de extinción en incendios forestales de gran escala. Desde el punto de vista formal, el problema del despliegue dinámico de retransmisores que caracteriza matemáticamente este escenario consiste en estimar el número y localización de los retransmisores radio que deben ser desplegados en el área afectada por el incendio, de tal modo que el número de nodos móviles (i.e. recursos) con cobertura radio es maximizado a un coste del despliegue mínimo. A fin de reflejar la diversidad de equipamiento de retransmisión radio existente en la realidad, este problema es reformulado para considerar modelos de retransmisor con diferentes características de cobertura y coste. El problema resultante es resuelto de manera eficiente mediante sendos algoritmos mono- y bi-objetivo que conjugan 1) la Búsqueda por Harmonía como método de búsqueda global; y 2) una versión modificada del algoritmo de agrupación K-means como técnica de búsqueda local. El desempeño de los métodos propuestos es evaluado mediante experimentos numéricos basados en datos estadísticos reales de la Comunidad de Castilla la Mancha (España), merced a cuyos resultados queda certificada su practicidad a la hora de desplegar infraestructura de comunicación en este tipo de desastres. ? El segundo escenario bajo estudio se concentra en el despliegue y planificación óptima de vehículos aéreos de extinción de incendios basados en estimaciones predictivas del riesgo de incendio de una cierta área geográfica. De manera enunciativa, el problema subyacente busca la asignación de recursos a aeródromos y aeropuertos con restricciones de capacidad que maximice la utilidad de dichos recursos en relación al riesgo de incendio y minimice, a su vez, el coste de ejecutar dicha asignación. La formulación de este problema también considera, dentro de la definición de dicha función de utilidad, la distancia relativa entre aeropuerto, punto de potencial riesgo de incendio y el recurso acuífero (lago, río o mar) más cercano. Para su resolución eficiente se propone el uso de algoritmos de optimización basados, de nuevo, en la Búsqueda por Harmonía, incorporando además métodos voraces de reparación capacitiva. La aplicabilidad práctica de estos métodos es validada mediante experimentos numéricos en escenarios sintéticos y un caso práctico que incluye valores reales del riesgo de incendio, posiciones de recursos acuíferos e instalaciones aeroportuarias. En resumen, esta Tesis evidencia, desde un punto de vista práctico, que la meta-heurística moderna supone una solución algorítmica computacionalmente eficiente para tratar problemas de gestión de recursos contra incendios sujetos a restricciones de coste

    Advanced meta-heuristic approaches and their application to operational optimization in forest wildfire management

    Get PDF
    La última década ha sido testigo de un aumento vertiginoso de la cantidad y frecuencia de desastres a gran escala, principalmente debido a los fenómenos devastadores derivados de paradigmas climatológicos y ambientales a gran escala como el calentamiento global. De entre ellos son las inundaciones, huracanes y terremotos los desastres de mayor frecuencia de aparición y fatales consecuencias durante este período, tal como certifican los más de 20.000 muertos a consecuencia de un terremoto en la región de Gujarat (India) en 2001, o las 230.000 y 316.000 pérdidas humanas de los terremotos de Indonesia y Haití en 2004 y 2010, respectivamente. En este contexto, el enfoque de esta tesis se centra en una casuística concreta de desastre a media-gran escala cuya frecuencia y severidad han crecido de manera igualmente preocupante en los últimos tiempos: los incendios, definidos como un fuego de grandes dimensiones no voluntariamente iniciado por el ser humano, y que afecta a aquello que no está destinado a quemarse. Pese a la diversidad de iniciativas, campañas y procedimientos orientados a la minimización del impacto y las consecuencias de los incendios, varios sucesos fatales acontecidos en los últimos años han puesto en duda la efectividad de las políticas actuales de gestión de recursos contra incendios como aeronaves, vehículos terrestres, equipamiento de comunicaciones radio, logística de abastecimiento y las brigadas desplegadas en el área afectada. Un ejemplo manifiesto de esta falta de eficacia es la muerte de once bomberos ocurrida en un incendio de 130 kilómetros cuadrados en la zona de Guadalajara (España) en 2005, oficialmente atribuida a una deficiente coordinación entre el puesto de mando y los equipos de extinción debida, fundamentalmente, a problemas de cobertura en los sistemas de radiocomunicación. Aunque la causa de esta falta de coordinación ha sido cuestionada por las autoridades y los agentes involucrados desde entonces, lo cierto es que este suceso supone un ejemplo evidente de la necesidad de estudiar y desarrollar herramientas algorítmicas que ayuden al personal de comandancia a ejecutar óptimamente sus tareas de coordinación y control. Desafortunadamente la coyuntura de crisis económica mundial que azota con especial fuerza los países del Sur de Europa ha mermado dramáticamente las partidas presupuestarias para la prevención y extinción de incendios en beneficio de programas nacionales de reducción de déficit. A consecuencia de estos recortes, el coste ha irrumpido con fuerza como un criterio de extrema relevancia en la planificación operativa de este tipo de desastres: desde la perspectiva de un problema de optimización, los recursos contra incendios son actualmente gestionados con el objetivo fundamental de maximizar su efectividad contra incendios, sujeto a la restricción de que el coste agregado asociado a las decisiones tomadas no supere un determinado umbral presupuestario. Pese a que estas restricciones de coste están bien acotadas, en la práctica la mayoría de los procedimientos de gestión de recursos contra incendios están fuertemente determinados por la capacidad limitada del ser humano para tomar decisiones ágiles en escenarios de elevada complejidad y heterogeneidad. Por los motivos anteriormente expuestos, la presente Tesis doctoral propone la adopción de algoritmos meta-heurísticos para solventar eficientemente problemas de optimización que modelan procesos de gestión de recursos contra incendios. Esta familia de algoritmos de optimización es capaz de explorar el espacio solución de un problema dado merced a la aplicación iterativa de mecanismos inteligentes de búsqueda explorativa y explotativa, produciendo soluciones que sacrifican calidad por una complejidad computacional menor en comparación con la resultante de procesos determinísticos de búsqueda exhaustiva. En particular la Tesis plantea la búsqueda por harmonía (del inglés Harmony Search) como la técnica meta-heurística de optimización común a las herramientas diseñadas para la gestión de recursos en dos escenarios diferentes: ? El primer escenario analizado contempla el despliegue óptimo de redes de comunicación inalámbrica para la coordinación de equipos de extinción en incendios forestales de gran escala. Desde el punto de vista formal, el problema del despliegue dinámico de retransmisores que caracteriza matemáticamente este escenario consiste en estimar el número y localización de los retransmisores radio que deben ser desplegados en el área afectada por el incendio, de tal modo que el número de nodos móviles (i.e. recursos) con cobertura radio es maximizado a un coste del despliegue mínimo. A fin de reflejar la diversidad de equipamiento de retransmisión radio existente en la realidad, este problema es reformulado para considerar modelos de retransmisor con diferentes características de cobertura y coste. El problema resultante es resuelto de manera eficiente mediante sendos algoritmos mono- y bi-objetivo que conjugan 1) la Búsqueda por Harmonía como método de búsqueda global; y 2) una versión modificada del algoritmo de agrupación K-means como técnica de búsqueda local. El desempeño de los métodos propuestos es evaluado mediante experimentos numéricos basados en datos estadísticos reales de la Comunidad de Castilla la Mancha (España), merced a cuyos resultados queda certificada su practicidad a la hora de desplegar infraestructura de comunicación en este tipo de desastres. ? El segundo escenario bajo estudio se concentra en el despliegue y planificación óptima de vehículos aéreos de extinción de incendios basados en estimaciones predictivas del riesgo de incendio de una cierta área geográfica. De manera enunciativa, el problema subyacente busca la asignación de recursos a aeródromos y aeropuertos con restricciones de capacidad que maximice la utilidad de dichos recursos en relación al riesgo de incendio y minimice, a su vez, el coste de ejecutar dicha asignación. La formulación de este problema también considera, dentro de la definición de dicha función de utilidad, la distancia relativa entre aeropuerto, punto de potencial riesgo de incendio y el recurso acuífero (lago, río o mar) más cercano. Para su resolución eficiente se propone el uso de algoritmos de optimización basados, de nuevo, en la Búsqueda por Harmonía, incorporando además métodos voraces de reparación capacitiva. La aplicabilidad práctica de estos métodos es validada mediante experimentos numéricos en escenarios sintéticos y un caso práctico que incluye valores reales del riesgo de incendio, posiciones de recursos acuíferos e instalaciones aeroportuarias. En resumen, esta Tesis evidencia, desde un punto de vista práctico, que la meta-heurística moderna supone una solución algorítmica computacionalmente eficiente para tratar problemas de gestión de recursos contra incendios sujetos a restricciones de coste

    Exact algorithms for network design problems using graph orientations

    Get PDF
    Gegenstand dieser Dissertation sind exakte Lösungsverfahren für topologische Netzwerkdesignprobleme. Diese kombinatorischen Optimierungsprobleme tauchen in unterschiedlichen realen Anwendungen auf, wie z.B. in der Telekommunikation und der Energiewirtschaft. Die grundlegende Problemstellung dabei ist die Planung bzw. der Ausbau von Netzwerken, die Kunden durch physikalische Leitungen miteinander verbinden. Im Allgemeinen lassen sich solche Probleme graphentheoretisch wie folgt beschreiben: Gegeben eine Menge von Knoten (Kunden, Straßenkreuzungen, Router u.s.w.), eine Menge von Kanten (potenzielle Verbindungsmöglichkeiten) und eine Kostenfunktion auf den Kanten und/oder Knoten. Zu bestimmen ist eine Teilmenge von Knoten und Kanten, so dass die Kostensumme der gewählten Elemente minimiert wird und dabei Nebenbedingungen wie Zusammenhang, Ausfallsicherheit, Kardinalität o.ä. erfüllt werden. In dieser Dissertation behandeln wir zwei spezielle Klassen von topologischen Netzwerkdesignproblemen, nämlich das k-Cardinality Tree Problem (KCT) und das {0,1,2}-Survivable Netzwerkdesignproblem ({0,1,2}- SND) mit Knotenzusammenhang. Diese Probleme sind im Allgemeinen NP-schwer, d.h. nach derzeitigem Stand der Forschung kann es für solche Probleme keine Algorithmen geben die eine optimale Lösung berechnen und dabei für jede mögliche Instanz eine effiziente (d.h. polynomielle) Laufzeit garantieren. Die oben genannten Probleme lassen sich als ganzzahlige lineare Programme (ILPs) formulieren, d.h. als Systeme aus linearen Ungleichungen, ganzzahligen Variablen und einer linearen Zielfunktion. Solche Modelle lassen sich mit Methoden der sogenannten mathematischen Programmierung lösen. Dass die entsprechenden Lösungsverfahren im Allgemeinen sehr zeitaufwendig sein können, war ein oft genutztes Argument für die Entwicklung von (Meta-)Heuristiken um schnell eine Lösung zu erhalten, wenn auch auf Kosten der Optimalität. In dieser Dissertation zeigen wir, dass es, unter Ausnutzung gewisser graphentheoretischer Eigenschaften der zulässigen Lösungen, durchaus möglich ist große anwendungsnahe Probleminstanzen der von uns betrachteten Probleme beweisbar optimal und praktisch-effizient zu lösen. Basierend auf Orientierungseigenschaften der optimalen Lösungen, formulieren wir neue, beweisbar stärkere ILPs und lösen diese anschließend mit Hilfe maßgeschneiderter Branch-and-Cut Algorithmen. Durch umfangreiche polyedrische Analysen können wir beweisen, dass diese Modelle einerseits formal stärkere Beschreibungen der Lösungsräume liefern als bisher bekannte Modelle und andererseits für Branch-and-Cut Verfahren viele praktische Vorteile besitzen. Im Kontext des {0,1,2}-SND geben wir zum ersten Mal eine Orientierungseigenschaft zweiknotenzusammenhängender Graphen an, die zu einer beweisbar stärkeren ILP-Formulierung führt und lösen damit ein in der Literatur seit langem offenes Problem. Unsere experimentellen Ergebnisse für beide Problemklassen zeigen, dass während noch vor kurzem nur Instanzen mit weniger als 200 Knoten in annehmbarer Zeit berechnet werden konnten unsere Algorithmen das optimale Lösen von Instanzen mit mehreren tausend Knoten erlauben. Insbesondere für das KCT Problem ist unser exaktes Verfahren oft sogar schneller als moderne Metaheuristiken, die i.d.R. keine optimale Lösungen finden.The subject of this thesis are exact solution strategies for topological network design problems. These combinatorial optimization problems arise in various real-world scenarios, as, e.g., in the telecommunication and energy industries. The prime task thereby is to plan or extend networks, physically connecting customers. In general we can describe such problems graph-theoretically as follows: Given a set of nodes (customers, street crossings, routers, etc.), a set of edges (potential connections, e.g., cables), and a cost function on the edges and/or nodes. We ask for a subset of nodes and edges, such that the sum of the costs of the selected elements is minimized while satisfying side-conditions as, e.g., connectivity, reliability, or cardinality. In this thesis we concentrate on two special classes of topological network design problems: the k-cardinality tree problem (KCT) and the f0,1,2g-survivable network design problem (f0,1,2g-SND) with node-connectivity constraints. These problems are in general NP-hard, i.e., according to the current knowledge, it is very unlikely that optimal solutions can be found efficiently (i.e., in polynomial time) for all possible problem instances. The above problems can be formulated as integer linear programs (ILPs), i.e., as systems of linear inequalities, integral variables, and a linear objective function. Such models can be solved using methods of mathematical programming. Generally, the corresponding solutions methods can be very time-consuming. This was often used as an argument for developing (meta-)heuristics to obtain solutions fast, although at the cost of their optimality. However, in this thesis we show that, exploiting certain graph-theoretic properties of the feasible solutions, we are able to solve large real-world problem instances to provable optimality efficiently in practice. Based on orientation properties of optimal solutions we formulate new, provably stronger ILPs and solve them via specially tailored branch-and-cut algorithms. Our extensive polyhedral analyses show that these models give tighter descriptions of the solution spaces and also offer certain algorithmic advantages in practice. In the context of f0,1,2g-SND we are able to present the first orientation property of 2-node-connected graphs which leads to a provably stronger ILP formulation, thereby answering a long standing open research question. Until recently, both our problem classes allowed optimal solutions only for instances with roughly up to 200 nodes. Our experimental results show that our new approaches allow instances with thousands of nodes. Especially for the KCT problem, our exact method is often even faster than state-of-the-art metaheuristics, which usually do not find optimal solutions

    Deep Learning Based Malware Classification Using Deep Residual Network

    Get PDF
    The traditional malware detection approaches rely heavily on feature extraction procedure, in this paper we proposed a deep learning-based malware classification model by using a 18-layers deep residual network. Our model uses the raw bytecodes data of malware samples, converting the bytecodes to 3-channel RGB images and then applying the deep learning techniques to classify the malwares. Our experiment results show that the deep residual network model achieved an average accuracy of 86.54% by 5-fold cross validation. Comparing to the traditional methods for malware classification, our deep residual network model greatly simplify the malware detection and classification procedures, it achieved a very good classification accuracy as well. The dataset we used in this paper for training and testing is Malimg dataset, one of the biggest malware datasets released by vision research lab of UCSB
    corecore