292 research outputs found

    Solving Factored MDPs with Hybrid State and Action Variables

    Full text link
    Efficient representations and solutions for large decision problems with continuous and discrete variables are among the most important challenges faced by the designers of automated decision support systems. In this paper, we describe a novel hybrid factored Markov decision process (MDP) model that allows for a compact representation of these problems, and a new hybrid approximate linear programming (HALP) framework that permits their efficient solutions. The central idea of HALP is to approximate the optimal value function by a linear combination of basis functions and optimize its weights by linear programming. We analyze both theoretical and computational aspects of this approach, and demonstrate its scale-up potential on several hybrid optimization problems

    Temporal coordination under uncertainty: initial results for the two agents case

    Get PDF
    We focus on the problem of decentralized planning and coordination for two heterogeneous autonomous agents, having a common mission in an uncertain environment. For example, we consider a helicopter UAV and a ground rover cooperating in the exploration of a dangerous zone where communication is limited, which forces decentralization of planning. After proposing a framework for decentralized planning, we underline the need for a planner under uncertainty taking continuous time into account in time-dependent problems and present initial results on temporal planning under uncertainty

    Planning in Hybrid Structured Stochastic Domains

    Get PDF
    Efficient representations and solutions for large structured decision problems with continuous and discrete variables are among the important challenges faced by the designers of automated decision support systems. In this work, we describe a novel hybrid factored Markov decision process (MDP) model that allows for a compact representation of these problems, and a hybrid approximate linear programming (HALP) framework that permits their efficient solutions. The central idea of HALP is to approximate the optimal value function of an MDP by a linear combination of basis functions and optimize its weights by linear programming. We study both theoretical and practical aspects of this approach, and demonstrate its scale-up potential on several hybrid optimization problems

    Finding Approximate POMDP solutions Through Belief Compression

    Full text link
    Standard value function approaches to finding policies for Partially Observable Markov Decision Processes (POMDPs) are generally considered to be intractable for large models. The intractability of these algorithms is to a large extent a consequence of computing an exact, optimal policy over the entire belief space. However, in real-world POMDP problems, computing the optimal policy for the full belief space is often unnecessary for good control even for problems with complicated policy classes. The beliefs experienced by the controller often lie near a structured, low-dimensional subspace embedded in the high-dimensional belief space. Finding a good approximation to the optimal value function for only this subspace can be much easier than computing the full value function. We introduce a new method for solving large-scale POMDPs by reducing the dimensionality of the belief space. We use Exponential family Principal Components Analysis (Collins, Dasgupta and Schapire, 2002) to represent sparse, high-dimensional belief spaces using small sets of learned features of the belief state. We then plan only in terms of the low-dimensional belief features. By planning in this low-dimensional space, we can find policies for POMDP models that are orders of magnitude larger than models that can be handled by conventional techniques. We demonstrate the use of this algorithm on a synthetic problem and on mobile robot navigation tasks

    Optimal and Approximate Q-value Functions for Decentralized POMDPs

    Get PDF
    Decision-theoretic planning is a popular approach to sequential decision making problems, because it treats uncertainty in sensing and acting in a principled way. In single-agent frameworks like MDPs and POMDPs, planning can be carried out by resorting to Q-value functions: an optimal Q-value function Q* is computed in a recursive manner by dynamic programming, and then an optimal policy is extracted from Q*. In this paper we study whether similar Q-value functions can be defined for decentralized POMDP models (Dec-POMDPs), and how policies can be extracted from such value functions. We define two forms of the optimal Q-value function for Dec-POMDPs: one that gives a normative description as the Q-value function of an optimal pure joint policy and another one that is sequentially rational and thus gives a recipe for computation. This computation, however, is infeasible for all but the smallest problems. Therefore, we analyze various approximate Q-value functions that allow for efficient computation. We describe how they relate, and we prove that they all provide an upper bound to the optimal Q-value function Q*. Finally, unifying some previous approaches for solving Dec-POMDPs, we describe a family of algorithms for extracting policies from such Q-value functions, and perform an experimental evaluation on existing test problems, including a new firefighting benchmark problem

    Techniques for the allocation of resources under uncertainty

    Get PDF
    L’allocation de ressources est un problème omniprésent qui survient dès que des ressources limitées doivent être distribuées parmi de multiples agents autonomes (e.g., personnes, compagnies, robots, etc). Les approches standard pour déterminer l’allocation optimale souffrent généralement d’une très grande complexité de calcul. Le but de cette thèse est de proposer des algorithmes rapides et efficaces pour allouer des ressources consommables et non consommables à des agents autonomes dont les préférences sur ces ressources sont induites par un processus stochastique. Afin d’y parvenir, nous avons développé de nouveaux modèles pour des problèmes de planifications, basés sur le cadre des Processus Décisionnels de Markov (MDPs), où l’espace d’actions possibles est explicitement paramétrisés par les ressources disponibles. Muni de ce cadre, nous avons développé des algorithmes basés sur la programmation dynamique et la recherche heuristique en temps-réel afin de générer des allocations de ressources pour des agents qui agissent dans un environnement stochastique. En particulier, nous avons utilisé la propriété acyclique des créations de tâches pour décomposer le problème d’allocation de ressources. Nous avons aussi proposé une stratégie de décomposition approximative, où les agents considèrent des interactions positives et négatives ainsi que les actions simultanées entre les agents gérants les ressources. Cependant, la majeure contribution de cette thèse est l’adoption de la recherche heuristique en temps-réel pour l’allocation de ressources. À cet effet, nous avons développé une approche basée sur la Q-décomposition munie de bornes strictes afin de diminuer drastiquement le temps de planification pour formuler une politique optimale. Ces bornes strictes nous ont permis d’élaguer l’espace d’actions pour les agents. Nous montrons analytiquement et empiriquement que les approches proposées mènent à des diminutions de la complexité de calcul par rapport à des approches de planification standard. Finalement, nous avons testé la recherche heuristique en temps-réel dans le simulateur SADM, un simulateur d’allocation de ressource pour une frégate.Resource allocation is an ubiquitous problem that arises whenever limited resources have to be distributed among multiple autonomous entities (e.g., people, companies, robots, etc). The standard approaches to determine the optimal resource allocation are computationally prohibitive. The goal of this thesis is to propose computationally efficient algorithms for allocating consumable and non-consumable resources among autonomous agents whose preferences for these resources are induced by a stochastic process. Towards this end, we have developed new models of planning problems, based on the framework of Markov Decision Processes (MDPs), where the action sets are explicitly parameterized by the available resources. Given these models, we have designed algorithms based on dynamic programming and real-time heuristic search to formulating thus allocations of resources for agents evolving in stochastic environments. In particular, we have used the acyclic property of task creation to decompose the problem of resource allocation. We have also proposed an approximative decomposition strategy, where the agents consider positive and negative interactions as well as simultaneous actions among the agents managing the resources. However, the main contribution of this thesis is the adoption of stochastic real-time heuristic search for a resource allocation. To this end, we have developed an approach based on distributed Q-values with tight bounds to diminish drastically the planning time to formulate the optimal policy. These tight bounds enable to prune the action space for the agents. We show analytically and empirically that our proposed approaches lead to drastic (in many cases, exponential) improvements in computational efficiency over standard planning methods. Finally, we have tested real-time heuristic search in the SADM simulator, a simulator for the resource allocation of a platform
    • …
    corecore