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ABSTRACT

INTRINSICALLY MOTIVATED EXPLORATION IN
HIERARCHICAL REINFORCEMENT LEARNING

FEBRUARY 2016

CHRISTOPHER M. VIGORITO

B.Sc., AMHERST COLLEGE

M.Sc., UNIVERSITY OF MASSACHUSETTS AMHERST

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Andrew G. Barto

The acquisition of hierarchies of reusable skills is one of the distinguishing char-

acteristics of human intelligence, and the learning of such hierarchies is an important

open problem in computational reinforcement learning (RL). In humans, these skills

are learned during a substantial developmental period in which individuals are in-

trinsically motivated to explore their environment and learn about the effects of their

actions. The skills learned during this period of exploration are then reused to great

effect later in life to solve many unfamiliar problems very quickly. This thesis presents

novel methods for achieving such developmental acquisition of skill hierarchies in ar-

tificial agents by rewarding them for using their current skill set to better understand

the effects of their actions on unfamiliar parts of their environment, which in turn

leads to the formation of new skills and further exploration, in a life-long process of

hierarchical exploration and skill learning.
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In particular, we present algorithms for intrinsically motivated hierarchical explo-

ration of Markov Decision Processes (MDPs) and finite factored MDPs (FMDPs).

These methods integrate existing research on temporal abstraction in MDPs, intrin-

sically motivated RL, hierarchical decomposition of finite FMDPs, Bayesian network

structure learning, and information theory to achieve long-term, incremental acqui-

sition of skill hierarchies in these environments. Moreover, we show that the skill

hierarchies learned in this fashion afford an agent the ability to solve novel tasks in

its environment much more quickly than solving them from scratch.

To apply these techniques to environments with representational properties that

differ from traditional MDPs and finite FMDPs requires methods for incrementally

learning transition models of environments with such representations. Taking a step

in this direction, we also present novel methods for incremental model learning in

two other types of environments. The first is an algorithm for online, incremental

structure learning of transition functions for FMDPs with continuous-valued state

and action variables. The second is an algorithm for learning the parameters of a

predictive state representation, which serves as a model of partially observable dy-

namical systems with continuous-valued observations and actions. These techniques

serve as a prerequisite to future work applying intrinsically motivated skill learning

to these types of environments.
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CHAPTER 1

INTRODUCTION

1.1 Motivation

A critical source of the versatility and robustness of human behavior is a substan-

tial period of childhood development characterized by extensive exploration. Dur-

ing this period, useful abstractions are extracted from the statistical properties of

one’s environment and specialized skills are learned that reliably manipulate spe-

cific features present in those abstractions. Furthermore, the vast majority of the

exploration conducted during this period is not motivated by immediate biological

necessity. Rather, humans and other mammals seem intrinsically motivated to ex-

plore and manipulate their environment—that is, they engage in this behavior for its

own sake, even though it does not confer any immediate survival advantages (Harlow

et al., 1950). One explanation for the evolution of such behavior is the acquisition

of skills it engenders, abstract behaviors that become useful later in an one’s life

when faced with challenging problems that are directly connected to survival and

that would otherwise be too difficult to solve without such an existing skill set. The

research presented in this dissertation takes inspiration from these biological phe-

nomena and presents methods for the design of artificial reinforcement learning (RL)

agents whose environmental structure affords developmental skill-learning curricula

similar to those of biological agents.

Although much of the computational reinforcement learning literature is devoted

to methods that efficiently search for solutions to distinct sequential decision prob-

lems (Sutton & Barto, 1998), in this work we focus rather on the scenario in which an

1



agent may face many distinct tasks over the course of its lifetime, all of which share

some common structure, and some of which must be solved before learning solutions

to others can be attempted successfully. It has been argued that in such a scenario an

agent that is intrinsically motivated to learn a hierarchical set of abstract skills will

possess superior problem-solving abilities in complex tasks presented to it at a later

period, as compared with an agent who tries to solve each of those later problems in

isolation (Barto et al., 2004). In both the psychology and machine learning communi-

ties, this savings based on prior experience is known as transfer (Brown & Kane, 1988;

Pan & Yang, 2010). We present here a framework in which such a hierarchy may be

incrementally and autonomously learned via intrinsic motivation, and which allows

for successful transfer of learned skills to the efficient solution of novel tasks. During

the period in which these skills are acquired, there may be no explicit task the agent

is required to perform, and the agent is thus free (and intrinsically motivated) to

explore its environment much like an infant, extracting useful statistical relationships

from its surroundings that enable abstract skill learning. The skills learned during

this exploratory period are then put to use later in life, when the agent is faced with

more complex extrinsic objectives.

In order to mimic natural, self-motivated learning and the environments in which

it is generally observed, the skills acquired along this developmental pathway should

be learned in an incremental, bootstrapped manner, increasing in complexity over

time. An agent’s current skill set and knowledge of its environment’s dynamics at

any given time provide a substrate for learning skills of a certain level of complexity.

As skills of that level are mastered and added to the agent’s behavioral repertoire,

along with related knowledge about their effects on the environment, the augmented

substrate provides the opportunity for learning skills and knowledge of still greater

complexity. This process continues throughout the agent’s life, always bootstrapped

2



by its current expertise in manipulating its surroundings and its ability to reason

about such manipulations.

In the remainder of this thesis, we describe a framework in which artificial rein-

forcement learning agents are intrinsically motivated to improve the accuracy of their

environmental models, and to use those models in service of learning skills that reli-

ably manipulate their environment. We present methods for achieving this behavior in

environments represented formally as traditional Markov Decision Processes (MDPs)

and finite factored MDPs (FMDPs). The results of employing these methods show

that the hierarchical set of abstract skills such agents are motivated to learn provide

them with the expertise necessary to efficiently solve novel problems with which they

have never before been confronted. These agents make use of their acquired skills

to transfer procedural knowledge gained while experimenting with their surroundings

early in life to the solution of complex tasks later in life that would be too difficult

to solve feasibly without such a skill set.

The extension of these model-based methods to environments with representa-

tional properties that differ from traditional MDPs and finite FMDPs requires meth-

ods for learning from experience formal transition models of environments with such

representations. We thus also present in this work novel methods for model learning in

two kinds of environments. The first is an algorithm for online, incremental structure

learning of transition functions for FMDPs with continuous-valued state and action

variables. The second is an algorithm for learning the parameters of a predictive state

representation that serves as a model of a partially observable dynamical system with

continuous-valued observations and actions. We show how these techniques serve as

a prerequisite to future work pertaining to the application of intrinsically motivated

skill learning in these kinds of environments.

3



1.2 Contributions

The work presented in this thesis contains four novel contributions to the machine

learning community. These are summarized in the following sections, each expounded

in greater detail in subsequent chapters.

1.2.1 Intrinsically Motivated Skill Learning in Markov Decision Processes

We present a framework for long-term, incremental learning of abstract skill hier-

archies useful over ensembles of related tasks in environments formalized as Markov

Decision Processes (MDPs). An agent in this framework learns skills incrementally

as enough structural knowledge about its environment becomes available, and uses

these skills in an active learning setting to speed the discovery of unknown structure,

in turn allowing for the construction of new skills, and so on. This active learning

is realized through the use of an intrinsic reward function that guides the agent to

areas of the state space for which its current knowledge about the dynamics of its

environment is lacking, but that it can reliably reach. The bootstrapped nature of

this approach to learning leads to acquisition of complex behaviors not achievable by

simpler methods.

1.2.2 Intrinsically Motivated Skill Learning in Factored MDPs

We extend existing work on hierarchical decomposition of finite factored MDPs

(FMDPs) and active learning of their dynamical structure to apply the framework

described in the previous contribution to FMDPs, which brings to bear the benefits of

leveraging environmental structure on skill learning in more complex environments.

These methods and their advantages in learning solutions to ensembles of related

tasks are demonstrated in a large, factored domain called the “light box”.
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1.2.3 Incremental Structure Learning in Continuous Factored MDPs

While the previous contribution makes use of existing work on structure learning

in finite FMDPs, these techniques do not readily apply to continuous FMDPs. We

present a novel algorithm for online, incremental learning of transition models for

factored MDPs that have continuous, multi-dimensional state and action spaces. We

use incremental density estimation techniques and information-theoretic principles to

learn a factored model of the transition dynamics of a continuous FMDP online from

a single, continuing trajectory of experience.

1.2.4 Temporal Difference Networks for Continuous Dynamical Systems

Temporal-difference (TD) networks are a class of predictive state representations

that use well-established TD methods to learn models of partially observable dynam-

ical systems. Previous research with TD networks has dealt only with dynamical

systems with finite sets of observations and actions. We present an algorithm for

learning TD network representations of dynamical systems with continuous observa-

tions and actions. We show that the algorithm is capable of learning accurate and

robust models of several noisy continuous dynamical systems.

1.3 Organization of Thesis

In the following chapter, we outline the relevant background material and previ-

ous work in machine learning related to learning hierarchical solutions to sequential

decision problems in MDPs and structured environments like FMDPs. In Chapter 3,

we present a framework for long-term, incremental, intrinsically motivated learning

of skill hierarchies in MDPs and show its benefits to learning solutions to ensembles

of tasks in complex environments. Chapter 4 contains an extension of this framework

to structured environments and presents a novel solution to intrinsically motivated

skill learning in FMDPs. Chapters 5 and 6 address methods for model learning in
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environments that don’t satisfy the same properties as MDPs and finite FMDPs. In

particular, Chapter 5 describes an algorithm for incremental structure learning of

transition models in continuous FMDPs, while Chapter 6 describes an algorithm for

online learning of TD networks as models of continuous dynamical systems. Finally,

in Chapter 7, we summarize the contributions of this work, outline their limitations,

and discuss potential future work.
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CHAPTER 2

BACKGROUND AND RELATED WORK

This chapter contains a detailed outline of the relevant background material and

related work in machine learning pursuant to the contributions we present in later

chapters. We begin by giving a brief overview of Markov Decision Processes (MDPs)

and the computational reinforcement learning framework. We then discuss the op-

tions framework, a formalism for hierarchical skill learning in reinforcement learning

agents, and the advantages options provide when learning and planning in MDPs. We

also outline recents developments in the options framework, referred to as universal

option models, which allow for models of skills to be factored into two components:

one that predicts a skill’s dynamical effects on its environment, and another that

predicts the rewards expected during execution of the skill. As we show in Chapter 3,

this factorization allows for more efficient planning by an agent maximizing intrinsic

rewards in the framework presented therein.

Subsequent sections deal with a variation of MDPs called factored MDPs (FMDPs),

which allow for exploitation of environmental structure not possible with traditional

MDP representations. We review recent work in information-theoretic structure learn-

ing of FMDP models, a technique used in the framework presented in Chapter 4. We

continue with a discussion of applications of hierarchical reinforcement learning to

solving FMDPs more efficiently. Finally, we conclude this chapter with an overview

of the intrinsically motivated reinforcement learning literature and some open ques-

tions which we address in later chapters.
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2.1 Reinforcement Learning and Markov Decision Processes

Reinforcement learning (RL) methods are a class of optimization techniques that

search for optimal solutions to sequential decision problems (Sutton & Barto, 1998).

An RL problem is defined with respect to an agent which interacts with an environ-

ment by taking actions and receiving observations reflecting the effects of its actions

on the environment. The agent also receives a scalar-valued reward signal, some func-

tion of which it attempts to maximize over time by selecting appropriate actions. An

RL agent’s environment is often formalized as a Markov Decision Process (MDP).

An MDP is a tuple 〈S,A, p, r, γ〉, where S is a set of states, A is a set of actions,

P : S × A× S → [0, 1] is a one-step transition function which specifies a probability

distribution over successor states given a current state and action, R : S×A×S → <

is an immediate reward function which determines the real-valued reward an agent

receives for taking a given action in a given state and transitioning to a given successor

state, and γ is a discount factor explained below. An MDP is assumed to satisfy the

Markov property, which guarantees that the one-step models R and P are sufficient

for predicting the distribution of rewards and successor states any number of time

steps in the future given a current state and sequence of actions.

When the task of an RL agent is formulated as an MDP, the objective of the agent

is usually defined to be the maximization of its expected discounted sum of future

rewards, or expected discounted return . The discounted return at time t is defined as

Rt = rt+1 + γrt+2 + γ2rt+3 + . . . =
∞∑
k=0

γkrt+k+1, (2.1)

where γ ∈ [0, 1] is a discount factor that determines the degree to which more imme-

diate rewards are preferred over more distant ones. If γ = 0, only immediate rewards

are taken into account when making decisions. As γ approaches 1, the agent considers

rewards arbitrarily far into the future when choosing actions.
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A solution to an MDP is a function π : S × A → [0, 1], called the agent’s policy,

where π(s, a) gives the probability of selecting action a ∈ A in state s ∈ S. The goal of

an agent is to maximize (2.1) by finding an optimal policy π∗, which (probabilistically)

takes actions that maximize (2.1) in every state. Many RL algorithms maintain an

estimate of (2.1) in the form of a value function and use this estimate to guide the

search for an optimal policy.

A state-value function V π : S → < maps states to real numbers representing

the expected discounted return for starting in a given state and following policy π.

An action-value function Qπ : S × A → < maps state-action pairs to real numbers

representing the expected discounted return for starting in a given state, taking a

given action, and from then on following policy π. Thus, for a given s ∈ S and

a ∈ A, V π(s) = Eπ[Rt|st = s] and Qπ(s, a) = Eπ[Rt|st = s, at = a]. These functions

represent how good being in a given state or taking a given action in a given state is

under policy π, where good is defined in terms of expected return.

Value functions can be expressed recursively in the form of Bellman equations,

which relate the value of a state to the values of its successor states. The value

function under a given policy π can be written as the Bellman equation

V π(s) =
∑
a

π(s, a)
∑
s′

P (s, a, s′)
[
R(s, a, s′) + γV π(s′)

]
. (2.2)

Optimal value functions, those defined with respect to an optimal policy π∗, can

also be expressed recursively using the Bellman optimality equation

V ∗(s) = max
a

∑
s′

P (s, a, s′)
[
R(s, a, s′) + γV ∗(s′)

]
. (2.3)

Simliar Bellman equations exist for action value functions Qπ and Q∗.

Value functions can aid in the learning of optimal policies through policy iteration,

an iterative technique that alternates between evaluating the agent’s current policy

(estimating its value function) and improving the policy based on the evaluation.
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The evaluation of π is performed by estimating V π from experience executing π. The

policy is then improved in some way according to the most recent evaluation. Often

the improvement is done by altering the policy so as to greedily select actions that

maximize V π in each state. Improvement produces a new policy π′ and corresponding

V π′ , and the process repeats until π = π′.

When the transition function P is known or estimated from experience, model-

based RL can be employed to expedite value function learning in the sense of requiring

less experience for V π to converge to the optimal value function V ∗ (Sutton, 1991).

If the reward function is also known or estimated, value iteration can be used to

compute an optimal value function and corresponding policy directly by turning the

Bellman optimality equation into an update rule for a sequence {Vk} of successive

approximations:

Vk+1(s) = max
a

∑
s′

p(s, a, s′)
[
r(s, a, s′) + γVk(s

′)
]
, (2.4)

which can be shown to converge to V ∗ under certain conditions.

Even when model-based methods are used in this way to improve data efficiency,

tabular representations of value functions and policies (i.e., those with one entry per

state or state-action pair) become infeasible to learn or compute efficiently for large

MDPs. For this reason, much work has focused on approximation techniques that

allow for both generalization of value between similar states, and compact represen-

tations of value functions.

One class of these approximation methods is appropriate when the transition

and reward functions of the MDP can be represented in factored form, affording the

potential for certain dimensions of the MDP to be irrelevant when predicting the

effects of actions on other dimensions. In these cases, this structure can be exploited

to learn or compute compact representations of value functions and policies more
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efficiently (Boutilier et al., 2000). This leads to the factored MDP formalism, which

we discuss in detail in Section 2.4.

Another class of approximation techniques, known as linear function approxima-

tion, defines an estimate V̂ π of value function V π as a weighted sum of basis functions

(sometimes called features) φi : S → < :

V̂ π(s) = ~θ T ~φ(s) =
∑
i

θiφi(s), (2.5)

where ~θ is a weight vector with size equal to the number of basis functions |~φ(s)|.

Learning an approximation thus entails finding a ~θ that minimizes the error between

V̂ π and V π.

When value functions are represented in this way, they are said to be linear in the

parameters ~θ, which allows for some mathematical conveniences. In particular, stan-

dard gradient-descent methods can be used straightforwardly to learn value functions

of this sort, since the gradient of the approximate value function with respect to ~θ is

simply

∇~θV̂
π(s) = ~φ(s). (2.6)

Additionally, any gradient descent method guaranteed to converge to or near a local

optimum in this linear case is automatically guaranteed to converge to or near a global

optimum.

It is worth noting that this representation for linear function approximation can

be defined so as to include tabular representations as well. In this case, φ(s) is simply

a vector of size |S| that contains a 1 for the element corresponding to s and zeroes

for all other entries. When φ is represented this way, the update rules for learning

value functions become equivalent to the corresponding tabular update rules, since

the gradient of the value function in this case become a selector for the current state.
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When φ is not defined to provide a one-to-one mapping from states to features in

this way, however, linear function approximation affords the application of reinforce-

ment learning techniques to larger MDPs than would be feasible with tabular repre-

sentations partly because it allows for generalization of value between similar states,

eliminating the need to visit a certain state to improve an estimate of its value. Al-

though this is an important part of applying RL to large problems, it doesn’t address

the difficulty of learning policies when long, specific sequences of actions are needed

to reach certain areas of the state space. Additionally, when planning in MDPs using

methods like value iteration, obtaining the value of long sequences of actions becomes

computationally prohibitive quickly. One way to mitigate this is to reason about the

effects of action sequences at different time scales using temporally extended actions.

The field of hierarchical reinforcement learning addresses formalisms for this type of

temporal abstraction.

2.2 Hierarchical Reinforcement Learning

The options framework is a formalism for temporal abstraction in RL that details

how to learn and use temporally extended actions in MDPs (Sutton et al., 1999).

An option is a closed-loop controller defined as a tuple 〈I, π, β〉, where I ⊆ S is a

set of states over which the option is defined (the initiation set), π is the policy of

the option, defined over I, and β : S → [0, 1] is a termination condition function

that gives the probability of the option terminating in a given state. Options can

also be understood as sub-MDPs embedded within another (possibly larger) MDP.

As such, all of the machinery associated with learning solutions to MDPs also applies

to learning options, with some subtle differences.

To be useful in planning, models of the long-term effects of options must be learned

as well. An option model 〈Ro, P o〉 is comprised of two parts: a reward model and a

transition model, which are analogues of the reward and transition functions of an
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MDP. The reward model of an option o gives the expected discounted reward received

after executing o in state s at time t and following o’s policy until termination:

Ro(s) = Es,o[rt + γrt+1 + · · ·+ γT−1rT ], (2.7)

where T is the random termination time of o. The transition model of an option o

gives the discounted probability of terminating at a state s′ given that o is executed

from state s and its policy followed until termination:

P o(s, s′) =
∞∑
k=1

γkp(s′, k), (2.8)

where p(s′, k) is the probability that o terminates at s′ after k steps. Algorithms for

learning the policy, reward model, and transition model of an option from experience

with an MDP are given in Sutton, Precup, and Singh (1999).

The advantage of estimating the transition and reward models of an option is that

the option can be treated as a primitive action in model-based RL methods. This

means that algorithms like value iteration can propagate the value of executing long

sequences of primitive actions in just one iteration, which allows an agent to plan

far into the future with limited computational resources. Additionally, since options

can call other options in their policies, agents can construct deeply-nested policies

with multiple levels of behavioral abstraction, leading to increased efficiency in both

learning and planning as the hierarchy deepens. We make use of these key properties

of options in the frameworks presented in Chapters 3 and 4.

Although much attention has been devoted to learning options in MDPs, most

of these approaches use the same state representation for every option, leading to

temporal abstraction but not state abstraction. Less research has focused on learning

options in FMDPs, where it is possible for different options to have different repre-

sentations. Section 2.6 discusses the relevant work involved in constructing options

in finite FMDPs, each with its own state abstraction, a technique we make use of

13



in Chapter 4. The following section, however, discusses a recent advancement in the

options framework that allows for factorization of option models into independent

transition and reward components. This result has great utility in the framework

presented in Chapter 3.

2.3 Universal Options

Learning the reward model of an option from experience results in a model that is

specific to the particular extrinsic reward function of the MDP in which the option is

embedded. While this may be useful for single tasks, it is less useful in the scenario

of interest in this thesis, wherein we would like an agent to reuse an option as part

of solutions to many tasks, each of which may have its own distinct reward function.

The limited utility of a traditional option model stems from the fact that it can

only be used to reason about the effects of executing that option in the context

of the reward function under which it was learned. Far better is an option model

that can be used to reason about the option’s effects independent of a specific reward

function. Representations of such reward-independent options models, and techniques

for learning them, were proposed recently by Yao, et al. (2014).

Universal option models (UOMs) represent the reward model of an option as the

composition of a reward-independent function and a reward function. The reward-

independent function need only be learned once, and can subsequently be composed

with any valid reward function to produce a reward model that can be used in planning

techniques such as value iteration. Yao, et al. (2014) show that the resultant reward

model behaves exactly like a traditional option reward model as if it had been learned

under the composed reward function.

Formally, the reward model, Ro, of a UOM for option o = 〈I, π, β〉 is defined as

the composition of a discounted state occupancy function, uo, and a reward vector,

rπ, under the option’s policy:
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Ro(s) =
∑
s′∈S

rπ(s′)uo(s, s′). (2.9)

The discounted state occupancy function is defined as

uo(s, s′) = Es,o

[ T−1∑
k=0

γkI{sk=s′}

]
, (2.10)

where I{·} is the indicator function, which equals 1 when its condition is satisfied and

0 otherwise. The transition model, P o, of a UOM is identical to the transition model

of a traditional option, and thus still defined as (2.8).

Yao, et al. (2014) also develop a formalism for linear UOMs, which represent

UOMs using linear function approximation, and thus allow their application to con-

tinuous domains. Given a feature representation like that described in Section 2.1,

which maps a state s ∈ S to an n-dimensional feature vector φ(s), a linear UOM for

an option o is defined as a pair of n× n matrices (U o,M o) which generalize, and are

backwards compatible with, the UOM functions (uo, P o) in the tabular representation

discussed above.

Given a reward function R, one can learn a least-squares approximation f (LS,R) of

the reward function in terms of the feature representation. With this approximation,

one can show that f (LS,R)>(U oφ) is a valid approximation of the expected return

Ro of option o. Similarly, given a feature vector φ, M oφ predicts the discounted

expected feature vector in which the option terminates. Thus, in the linear function

approximation case, the U o matrix provides the reward-independent component of

the option’s reward model and the M o matrix the transition model. Incremental

methods for learning these matrices from experience executing an option are given in

Yao, et al. (2014).

The UOM mechanism for reasoning about the effects of options without needing

to learn a separate option model for each unique reward function provides a critical

advantage to an agent in our framework, whose intrinsic reward function will change
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frequently. We discuss the details of our framework and where this advantage comes

from in Chapter 3. In the following sections, however, we shift gears to discuss

the necessary background material for the approach presented in Chapter 4, which

presents an extension of our framework to environments where statistical structure

can be leveraged to learn and plan with more compact representations of options.

2.4 Factored MDPs

A factored MDP (FMDP) is an MDP in which the state space S is defined as the

Cartesian product of the domains of a finite set of random variables {S1, . . . , Sn} = S.

States in FMDPs are thus represented as vectors—assignments of specific values to

the variables in S. For ease of exposition, also assume for now that each variable

Si ∈ S is a binary random variable so that the domain Dom(Si) of Si is {0, 1},

though all of the methods discussed here hold for the multinomial case as well. The

FMDP formalism can also be used to represent environments with continuous state

and action variables, though the work outlined in this chapter and the framework

presented in Chapter 4 only cover the case in which the action set is finite and the

state variables take on discrete values. Chapter 5 presents the details of the formalism

in the continuous case.

The transition function P of a finite FMDP is often represented as a set of dynamic

Bayesian networks (DBN), one for each action (Dean & Kanazawa, 1989). In this

case, a DBN is a two-layer directed acyclic graph with nodes in layers one and two

representing the variables of the FMDP at times t and t+1 (see Figure 2.1). Edges in

a DBN represent dependencies between variables. We make the common assumption

that there are no synchronic arcs in each DBN, meaning that variables within the

same layer do not influence each other.

To simplify notation, let Si and S ′i represent the random variable Si ∈ S at times t

and t+ 1 respectively, and let si, s
′
i ∈ Dom(Si) denote specific instantiations of those
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Figure 2.1. An example DBN for a given action a. Each decision tree represents a
conditional probability distribution for its associated random variable (indicated by
dashed arrows). Leaves show the probability that the tree’s associated variable is 1
at time t+ 1 given the values of its parents at time t (shown as labels along the leaf’s
branch).

random variables. Furthermore, let fX(s) denote the projection of a state vector s ∈ S

onto the set of variables X ⊆ S; that is, the values of the variables in s corresponding

to the variables in X. Finally, let Par(S ′i, a) denote the set of parents of the random

variable S ′i given by the sources of the incoming links to variable S ′i in the DBN for

action a. When an FMDP is represented as a DBN in this manner, the transition

function P can be expressed in factored form as:

P (s′|s, a) =
n∏
i

P (S ′i|fPar(S′i,a)(s)). (2.11)

Intuitively, this says that the probability of transitioning to state s′ from state s

when taking action a at time t can be represented as the product of the conditional

probabilities of each state variable at time t + 1 given the projection of state s onto

that variable’s parents. The individual conditional probability distributions in the

product of (5.1) can be compactly stored as conditional probability trees (CPT), each
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of which contains internal nodes corresponding to the parents of S ′i (under action a)

and leaves containing a probability distribution over Dom(Si), as shown in Figure

2.1. The labels along the branch of each leaf provide the appropriate conditioning

values. The expected reward can be modeled in a similar way, and is represented by

the diamond-shaped node in Figure 2.1. The conditional expectation of immediate

reward can also be represented by a tree with leaves containing expected reward given

the conditioning values along the leaf’s branch.

When the transition dynamics of an FMDP contains relatively sparse inter-variable

dependencies, this factorization can have a dramatic effect on the computation of

value functions and optimal policies by reducing the effect of the curse of dimension-

ality (Bellman, 1957), although this is not guaranteed. There has been a considerable

amount of work on reinforcement learning and planning algorithms that exploit this

structure when the transition and reward models are given (Boutilier et al., 2000).

One of these methods, structured value iteration (SVI), is a version of value iteration

that exploits this structure to reduce the computation involved in calculating an opti-

mal value function (and corresponding policy). We make use of SVI in the framework

presented in Chapter 4. Other work has focused on efficient online learning of the

transition model so as to make these algorithms appropriate when the model is not

known in advance. We describe these approaches in the following section.

2.5 Incremental, Active DBN Structure Learning

When the transition model of an FMDP is represented as a set of DBNs, learning

the model from experience amounts to learning the structure and parameters of a

Bayesian network. The problem of Bayesian network structure learning is to find the

network B = 〈G, θ〉 that best fits a data set D, where G in our case represents the

graphical structure of a DBN, θ represents the corresponding CPTs, and data points

are in the form of state-successor pairs 〈s, s′〉. Although the literature on Bayesian
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network structure learning is substantial, many of these methods are not incremental

and generally require that the data are drawn in an i.i.d. fashion (Abbeel et al., 2006).

When attempting to learn the structure of a DBN online from experience with an

FMDP, the scenario of interest in this thesis, these methods are thus not applicable.

There are, however, a few incremental methods developed recently which search for

DBN structures that fit an agent’s experience with an FMDP well, where the data

are not drawn i.i.d. because of the temporal dependencies involved. We make use of

an approach given in Jonsson and Barto (2007) in our framework, which we outline

below. Alternative approaches, along with their advantages and disadvantages, are

discussed in Section 4.6.

Jonsson and Barto (2007) present a greedy, incremental structure-learning method

that uses the Bayesian Information Criterion (BIC) to evaluate potential splits at the

leaves of the CPTs which are learned. Their focus is primarily on structure learning,

and so they do not embed their approach in a reinforcement learning scheme as in

Degris et al. (2006), though such an embedding is a component of the contributions

presented in Chapter 4. Rather, their contribution is an active learning mechanism by

which structure can be learned more quickly than if random policies or exploitation-

biased policies are used to collect data. This concept of active structure learning is a

key component of the contributions of this thesis.

When a learning agent has some degree of control over the data samples it receives

during training, the agent may engage in what is called active learning, in which it

requests training examples from a teacher or its environment that result in faster

learning when compared with training data selected at random or by the teacher

(Cohn et al., 1994). Although an arbitrary policy (e.g., random) could be used

to collect the data necessary to learn DBN structure in FMDPs, it is interesting to

consider exploration policies that attempt to maximize the rate at which this structure

is learned, thus allowing an agent to engage in active learning of that structure.
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Recall that the goal of structure learning in this context is to find a best-fit

Bayesian network B = 〈G, θ〉 given a data set D. One way to find such a network is

to compute the posterior probability distribution P (G|D) over a set of networks and

choose the one that maximizes this distribution. While is not feasible to compute

this distribution directly, there are approximation techniques that have been shown

to perform well. It follows from Bayes theorem that P (G|D) ∝ P (D|G)P (G). One

approximation technique, known as the Bayesian Information Criterion (BIC), makes

the approximation

log[P (D|G)P (G)] ≈ L(D|G)− |θ|
2

log |D|, (2.12)

where L(D|G) is the log-likelihood of the data given the network (Schwarz, 1978).

When all data values are observable, this likelihood can be decomposed as

L(D|G) =
∑
i

∑
j

∑
k

Nijk log θijk, (2.13)

where Nijk is the number of data points x ∈ D such that fPa(St+1
i )(s

t) = j and

f{St+1
i }(s

t+1) = k, and θijk = P (St+1
i = k|Pa(St+1

i ) = j). This quantity is maximized

for θijk = Nijk/
∑

kNijk. Although finding the network with the best BIC score is

known to be NP-complete (Chickering et al., 1995), the score decomposes into a sum

of terms for each variable Si and each value of j and k that only changes locally when

edges between variables are added or deleted. One can thus incrementally add or

delete edges greedily to find high-scoring (though possibly sub-optimal) networks.

Before explaining the intuition behind the approach taken by Jonsson and Barto

(2007), who use the BIC metric as a means for evaluating network structure, we

elaborate on their method for learning the CPTs that define an FMDP’s transition

function. For each variable-action pair in an FMDP, a CPT is maintained (initially

consisting of a single leaf) which stores data points of the form 〈s, s′〉, each assigned

to the appropriate leaf based on the variable assignments given by s. Each time a
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new data point is added to a leaf, the BIC score of the data at the leaf and the scores

associated with each possible refinement of that leaf are computed. A refinement

of a leaf l is a split of l on some variable Sj, resulting in a new child leaf for each

value in Dom(Sj), to which the data instances of l are distributed accordingly. If

the sum of the BIC scores associated with any refinement of a leaf is greater than

the current BIC score of that leaf, then the refinement is kept. Refinements of a leaf

l on a variable Sj are not considered if Sj is already on the path from the root of

the tree to l. Only refinements at non-empty leaves that have collected at least k

samples for each possible split variable are considered, where k ∈ Z+ is a parameter

that informally determines the level of confidence in the accuracy of the network’s

refinements.

With this framework for structure learning established, Jonsson and Barto (2007)

incorporate active learning by having an agent choose a primitive action at every

step in order to maximize the sum of the entropies of the distribution vectors that

are analyzed when considering refinements at leaves of the CPTs. By doing this, each

leaf of each CPT collects samples in a more uniform fashion over its potential split

variables than happens via random action selection, resulting in quicker refinement

evaluations and consequently faster structure learning. The algorithm looks at the

current state of the environment and, for each action, determines to which leaf the

resulting transition sample would map for each CPT associated with that action.

The associated change in entropy of each distribution vector at each of those leaves

is calculated for each action and the action with the largest total change in entropy is

selected with probability 1− ε, where 0 < ε < 1 is a random exploration parameter.

Otherwise, a random action is selected.

Although this approach does produce faster learning in some domains, in more

complex domains the approach still fails to discover a significant portion of the en-

vironmental structure (Jonsson & Barto, 2007). This is because the algorithm is
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myopic, only considering the effects of primitive actions at each step, and thus easily

becomes stuck in areas of the state space that are difficult to get out of without ex-

plicit planning. This limitation can be remedied by introducing temporally abstract

actions into an agent’s action set, which allow for longer-term planning to reach con-

figurations of domain variables that will yield more relevant information about the

environment. Chapter 4 presents a novel approach to this extension, but we first

outline the relevant work in temporal abstraction and hierarchy in RL, and their

application to planning and learning in FMDPs.

2.6 Hierarchical Decomposition of FMDPs

Jonsson and Barto (2006) present a framework for option discovery and learning in

finite FMDPs. The variable influence structure analysis (VISA) algorithm discovers

options by analyzing the causal graph of a domain, which is constructed from the

dependencies exhibited in the DBNs that define the FMDP. There is an edge from Si

to Sj in the causal graph if there exists an edge from Sti to St+1
j in the DBN model

for any action. The algorithm identifies in the causal graph context-action pairs,

called exits, that cause one or more variables to change value when the given action

is executed in the corresponding context (a set of variable-value pairs). By searching

through the conditional probability distributions that define the DBNs, exit options

are then constructed to reliably reach this context from any state and execute the

appropriate action. The agent’s overall task is then decomposed into sub-tasks solved

by these options. VISA takes advantage of environmental structure to learn compact

policies for options by ignoring irrelevant variables. Each option’s value function and

policy are defined only over variables relevant to achieving the goal of the option,

resulting in (often significant) option-specific state abstraction.

Another feature of the framework is a method for computing compact option

models from a given DBN model. The models are compact in that they take the
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same form as the models of primitive actions (DBNs) and represent with decision

trees the probability distributions over the variables of the FMDP expected once the

option finishes executing from a given state. Having option models in this form allows

for their use in planning as atomic actions. This also means that one can use SVI

to compute new option policies in terms of existing options very efficiently. This will

form the basis of the hierarchical active learning scheme we present in Chapter 4.

2.7 Intrinsically Motivated Reinforcement Learning

Intrinsically motivated behavior has been described as behavior that is rewarding

for its own sake, rather than because it fosters progress in solving a specific problem

(Barto et al., 2004). The psychology literature has shown that humans and other

mammals, especially young ones, often engage in intrinsically motivated behavior

when they are not preoccupied with survival or reproductive goals (Harlow et al.,

1950). Although intrinsically motivated behavior may not be immediately motivated

by survival, engaging in it seems to confer significant survival advantages over organ-

isms that do not. This may be because such behavior promotes the acquisition of

increasingly complex abstract skills, which can be readily applied to novel problems

later in life. An organism without such a set of skills will be ill-equipped to handle

these challenges as compared to an organism with a rich library of reusable behaviors.

The incentive for modeling intrinsic motivation in artificial RL agents is to pro-

duce agents that are motivated to learn complex hierarchies of skills applicable to the

solution of a broad range of problems in a given environment. Such agents would be

equipped to solve many instances of related problems, not just one. This direction of

research is considerably different from traditional RL approaches, which are generally

concerned with efficient learning of solutions to individual sequential decision prob-

lems. One consequence of this focus is the need for an extensive period of exploration

in which an agent can acquire and perfect a rich set of skills. During this period the
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agent may be solely motivated by acquisition of these skills, potentially unaware of

the types of problems it may be called upon to solve at a later time.

Early work on intrinsic motivation focused exclusively on efficient learning of world

models in sequential decision problems, and were not specifically concerned with skill

learning. These approaches provided intrinsic reward to agents proportional to errors

in the predictions of their world model, leading the agent to areas of the environment

which are unpredictable, thereby focusing learning on those areas so as to reduce

that unpredictability (Schmidhuber, 1991). In stochastic environments, however, this

causes the agent to become “obsessed” with inherently unpredictable regions, since

they provide high reward indefinitely. Thus, methods that reward agents for progress

in improving model quality were proposed, causing agents to become “bored” with

such inherently unpredictable areas (as well as predictable ones), since they afford no

learning progress (Kaplan & Oudeyer, 2004; Schmidhuber, 2005). These methods,

however, we also largely focused on model learning, and not skill acquisition.

Barto et al. (2004) were the first to suggest intrinsic motivation as a method for

driving the accumulation of hierarchical skill sets, and proposed an intrinsic reward

mechanism that encouraged agents to build skills which reliably cause certain (pre-

specified) salient events to occur. Simsek and Barto (2006) generalized this somewhat

and presented an algorithm that rewards the agent for improvements in the value

function of a given task or option, which they show can speed up learning of that

value function by focusing exploration on areas where learning will have the most

influence. None of these approaches to intrinsically motivated skill learning, however,

employ model-based RL or use the agent’s existing skill set to bootstrap learning of

new skills, which we argue is an essential aspect of developmental learning.

The framework presented in Chapter 3 combines the techniques discussed above

and employs them in a truly developmental curriculum to achieve this type of lifelong

learning in agents whose environments can be represented as MDPs. In Chapter 4,
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we present a second framework that extends this approach to the case of structured

environments using the techniques for structure learning and skill learning in FMDPs

mentioned above. This framework takes advantage of the state abstractions afforded

by factored representations to achieve increased efficiency of skill learning in such

environments.
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CHAPTER 3

INTRINSICALLY MOTIVATED SKILL LEARNING

In this chapter, we present a novel algorithm for intrinsically motivated, devel-

opmental learning of skill hierarchies in RL agents whose environments can be rep-

resented formally as MDPs. The approach draws on several of the formalisms and

techniques discussed in the previous chapter and integrates them into a cohesive al-

gorithm for motivating agents to incrementally improve both their understanding of

how their actions affect their environment, and their ability to manipulate that en-

vironment. Recall that the primary objective of this approach is to produce agents

that are motivated to learn a hierarchical collection of abstract skills that may be

used independently and in combination with each other as solutions to common sub-

problems encountered in novel tasks later in life. This process of skill learning must

be incremental and bootstrap the agent’s skill acquisition with its current skill set

and models of environmental dynamics, but not require an explicit curriculum from

an external teacher.

In the following sections, we discuss some prerequisites before describing the full

algorithm. These include how skills are represented and created, how internal knowl-

edge state is leveraged to generate intrinsic rewards, and the types of domains in

which the framework will confer significant advantages over non-developmental ap-

proaches to autonomous skill learning. We then present the details of the algorithm

for both finite and continuous-state MDPs, and show its performance on environ-

ments that illustrate its strengths. Finally, we discuss related work, the limitations

of this approach, and directions for future work.
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3.1 Skill Representation

Agents employing our algorithm must have a way to learn, and plan with, tempo-

rally abstract actions, or skills. We adopt the options formalism, described in Section

2.2, as our representation of skills. Recall than an option, 〈I, π, β〉, consists of an

initiation set I ⊆ S in which the option can be initiated, a policy π defined over the

initiation set, and a termination function β : S → [0, 1] that determines the proba-

bility of an option terminating in a given state. Also recall that models of options,

〈Ro, P o〉, consist of a reward model, Ro(s), which gives the expected discounted re-

turn of executing an option in a given state, and an option transition model, P o(s, s′),

which gives the expected discounted probability distribution over successor states af-

ter executing an option in a given state. These models can be learned from experience

and used in algorithms like value iteration to perform planning in MDPs.

Of course the use of options requires that their data structures be in place in

order to learn about their effects. This means that an agent must have some policy

for creating new options. The problem of appropriate and efficient option discovery

is an open problem in hierarchical RL. There have been several approaches proposed

(Simsek, 2008; Hart et al., 2008; Konidaris, 2011), each based on different performance

metrics or analyses of environmental structure. Although this is an interesting and

critical problem, we do not focus on its solution in this work. Rather, we employ

a heuristic solution to option creation for each domain in which we evaluate our

algorithm, leaving the option discovery problem to future work. We note, however,

that any method for option discovery can be used in conjunction with our algorithm

as long as it can identify subgoals incrementally; i.e., without knowledge of domain

dynamics prior to the agent experiencing them. Additionally, although options are

expressive enough to represent continuing skills which do not necessarily have goal

states (e.g., walking or balancing), we restrict our focus in this work to subgoal
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options—options whose optimal policy is to reach a given state or set of states and

then terminate.

We use the formalism discussed in Section 2.3 on UOMs to represent option models

in our framework. Specifically, we use linear UOMs for both finite and continuous

MDPs, since the formalism for linear UOMs supports both equivalently. Recall that

a linear UOM consists of two n× n matrices, U o and M0, where n is the number of

states of the MDP in the tabular (finite) case, and the dimensionality of the feature

representation, φ, in the continuous case. The U o matrix is a reward-independent

operator that can be composed with an immediate reward vector r of dimension n

to produce an expected return model for the option; i.e., Ro(s) = (r>)U oφ(s). The

M o matrix is a transition operator that gives the expected discounted successor state

(feature vector) when executing the option from a given state, given by M oφ(s).

Incremental methods for learning the matrices U o and M o from experience are given

in Yao, et al. (2014).

With this formalism as our choice of skill representation, we now have a mecha-

nism by which, given immediate rewards Ra and their corresponding feature vector

representation Ra
φ, we can compute value functions, and consequently policies, using

standard dynamic programming techniques like value iteration that incorporate the

long-term effects of options. Moreover, we can change the reward function as often

as needed without the need for new learning, since the option models are reward

independent. As we discuss in the following section, we will use this fact to generate

intrinsic reward functions on-the-fly as the agent explores and updates the accuracy

of its environmental model.

3.2 Intrinsic Reward Functions

There are many possibilities for intrinsic reward functions that encourage the

acquisition of skill hierarchies in RL agents. In general, since these functions are
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intrinsic reward functions, it makes sense that they should incorporate some aspect

of an agent’s internal state, which could incorporate factors such as innate prefer-

ences, novelty, habituation, predictive confidence, and so on. The intrinsic rewards

we employ in this work are a function of an agent’s confidence in its model of the

effects of its actions on the environment. This choice is motivated in part by previous

work by other researchers investigating computational models of intrinsic motivation,

as discussed in Section 2.7, and in part by the techniques and formalisms we have

outlined thus far, which provide mechanisms for turning models of abstract skills into

plans and policies for tasks that make use of those skills.

In order to generate intrinsic rewards as a function of an agent’s confidence about

the accuracy of its model of the environment, there must be some formal represen-

tation of this confidence. Since the models of skills our algorithm uses are learned

directly from experience, and the goal of an agent in our approach is to learn skills to

manipulate its environment as efficiently as possible using these learned models, we

choose a formalism that defines confidence as a function of the number of samples an

agent has observed for taking an action a in a given state s. Intrinsic reward is then

defined as the inverse of this confidence, making state-action pairs that have been

visited infrequently more rewarding than those that have been visited often.

More formally, an agent’s immediate intrinsic reward function under action a,

raI : S → <, is defined as a linear function of the agent’s feature set φ:

raI (s) = ~φ(s)T ~ρa,=
∑
i

φi(s)ρ
a
i . (3.1)

where ρa represents a vector of weights on the features of φ, so that |~ρ| = |φ|. These

weights are adjusted accordingly to reflect model confidence as an agent performs

their corresponding actions in various states. Specifically, when an agent executes

action at in state st at time step t, the weights ρat are updated according to the

update equation
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ρat
t+1 ← ρat

t − ζφi(st)Tρat
t , (3.2)

where ζ < 1 is a step-size parameter.

The weights are initialized to ~1 (a vector of all ones) for each action, making all

state-action pairs initially maximally rewarding. This update rule thus has the effect

of decreasing raI (s) exponentially towards zero as the agent continues to execute a in s.

In continuous environments, when φ is chosen in a way that allows for generalization

(e.g., a set of radial basis functions), this change in intrinsic reward will generalize to

similar states as well.

The goal of this choice of intrinsic reward function is to motivate an agent to

spend its time collecting data in areas of the state space about which it currently

has low confidence in the accuracy of its environmental model. As more data is

collected, and its model confidence increases, the intrinsic rewards for those state-

actions pairs will decay exponentially, becoming less interesting to the agent, and

encourage it to explore areas of the state space where its model confidence is lower.

While this initialization scheme may seem to encourage the agent to focus exploration

on states that it does not know how to reach, we will see in the following section,

which provides the full specification of our algorithm, that our method for computing

the agent’s exploration policy will reduce this effect and keep the agent exploring

areas right at the fringe of its expertise.

3.3 Algorithm

Algorithm 1 gives pseudocode for the main loop of our algorithm for intrinsically

motivated learning of skill hierarchies in MDPs. We outline the steps of the algorithm

here to provide intuition for its expected behavior. We present the algorithm for the

case of linear function approximation, since this representation can be used with-
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out modification for the tabular case as well, given an appropriate choice of feature

function φ, as discussed in Section 2.1.

Algorithm 1 Intrinsically motivated skill learning in MDPs.
1: t← 0
2: θI ← ~0
3: π ← arbitrary initial policy
4: O ← 〈Ua,Ma〉,∀a ∈ A . Primitive action models
5: ~ρa ← ~1,∀a ∈ A . Initial reward models
6: st ← s ∼ d(s) . Initial state
7: B ← empty stack . Option execution stack
8: D ← ∅ . State sample set
9: repeat

10: if t mod T == 0 then . Planning interval
11: π ← plan({rI},O,D) . Approximate value iteration - Algorithm 4
12: end if
13: at ← selectAction(st, B, π) . Next primitive action - Algorithm 2
14: st+1 ← execute(st, at) . Observe next state
15: update(st, at, st+1) . Update models, policies, and rewards - Algorithm 3
16: st ← st+1

17: t← t+ 1;
18: until forever

An agent starts with a set of arbitrarily initialized primitive action models 〈Ua,Ma〉.

These are represented and learned in the same way as universal option models, but

model dynamics over only a single time step—their termination functions return 1

in all states. There are initially no temporarily abstract options in O. Rather, the

agent will create new options and augment this set over time as it reaches states that

it deems important subgoals. Recall that we defer the option discovery problem—

deciding which states should be considered important subgoals—to future work.

For now, we assume that the agent has a priori a set G ⊂ S of states that are

considered to be important subgoals. This set is partitioned into subsets Gi ⊂ G, each

of which represents the set of states that are valid goal states for a corresponding

option oi. When an agent encounters a state g ∈ Gi for the first time, it creates an

option oi with a pseudo-reward function r̃oi that is 1 for transitioning into any state

g ∈ Gi and 0 otherwise. It also initializes the associated data structures needed to
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represent the option’s policy πoi and universal models U oi and M oi . The termination

function βi(s) for oi is defined to be 1 if s ∈ Gi and 0 otherwise.

As described in Section 3.2, the weight vectors ρa, which define the intrinsic reward

model for each action, are initialized to all ones. An initial state s0 is drawn from a

distribution d(s) for the domain. The behavior stack B, discussed below, is initialized

to an empty stack, and the state sample set D, also discussed below, to the empty

set.

Beginning with an arbitrarily initialized base policy π, every T steps, where T

is a fixed interval based on computational budget, the agent computes a new base

policy via truncated value iteration, as detailed in Algorithm 4, to execute for the

next T steps. This planning step makes use of both primitive actions and the agent’s

current set of options in its backups. Once the new base policy is computed, the agent

executes it for the next T steps, executing all options that are called by the policy to

completion as it does so. We describe the details of the value iteration algorithm we

use below, but first discuss how actions are selected from the policy it returns and

what learning updates occur at each time step during the policy’s execution.

Algorithm 2 Action selection.

1: function selectAction(st, B, π)
2: if B is empty then . Choose option from base policy
3: o← π(st)
4: B.push(〈o, φ(st), t〉)
5: else
6: 〈o, φ̃, τ〉 ← B.top()
7: end if
8: while o /∈ A do . Follow option policies until o is primitive
9: o← πo(st)

10: B.push(〈o, φ(st), t〉)
11: end while
12: return o
13: end function

Since options may call other options as part of their policies, the agent must

maintain a behavior stack B to keep track of the currently executing options. At

32



each time step, the agent selects a primitive action based on its current base policy π

according to Algorithm 2. On a given time step, if the stack is empty then the base

policy is queried with the current state. The policy may return a primitive action

or an option, and this is pushed onto the stack. As long as the option at the top of

the stack is not a primitive action, the policy for the option at the top of the stack

is queried with the current state, and the option or action it returns is pushed onto

the stack. This continues until an option policy returns a primitive action, which is

then returned as the next action to execute. Note that when an option is pushed

onto the stack, it is pushed as a tuple along with the feature vector for the current

state φ(s) and the current time step t. These quantities are needed to compute the

appropriate UOM learning updates when the option is terminated some number of

time steps later, as described in Algorithm 3.

Algorithm 3 Update.

1: function update(st, at, st+1, B)
2: 〈o, φ̃, τ〉 ← B.top()
3: while βo(st+1) == 1 do . Update M and U for terminating options
4: 〈o, φ̃, τ〉 ← B.pop()

5: M o ←M o + η
[
γτφ(st+1)−M oφ̃

]
φ̃T

6: U o ← U o + η [φ(st)− U oφ(st)]φ(st)
T

7: 〈o, φ̃, τ〉 ← B.top()
8: end while
9: for 〈o, φ̃, τ〉 ∈ B do . Update U for continuing options

10: U o ← U o + η [φ(st) + γU oφ(st+1)− U oφ(st)]φ(st)
T

11: end for
12: ρat ← ρat + ζ − φi(st)Tρat . Update intrinsic reward function
13: if st+1 ∈ Gi,∀Gi ∈ G and oi /∈ O then
14: O ← O ∪ oi = 〈U oi ,M oi , ρoi , r̃oi , θoi〉 . Create new options
15: end if
16: if ||st − s|| > ε,∀s ∈ D then
17: D ← D ∪ st . Augment state samples
18: end if
19: end function

The update steps of Algorithm 3 include updating the U matrices for all executing

options and the M matrices for all options that terminate on the current time step
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using the update equations defined in Yao, et al. (2014). The weights for the intrinsic

reward function are also updated at this step, based on the most recently executed

primitive action. If the successor state st+1 is found to be a subgoal state whose

associated option has not yet been created, a new option for reaching that subgoal

is created at this time as well, with psuedo-reward function r̃oi as defined above, U

and M matrices initialized arbitrarily, intrinsic reward model weights ρoi initialized

to ~0, and parameter vector θoi = ~0. The latter is the zero-initialized weight vector

that will be used to approximate the option’s value function and implicit policy, as

discussed below.

The last step of Algorithm 3 is necessary for running Algorithm 4, a sample-

based version of value iteration. Since our approach must be applicable to continuous

domains, we cannot perform a full sweep of the state space required for exact value

iteration. Instead, we maintain a set of state samples D from which we draw when

performing backups. This set is initially empty, and is potentially augmented at

each step based on a similarity criterion. On a given step, if the current state st is

sufficiently far from all other states s ∈ D, st is added to D. In our experiments we

perform this distance calculation using Euclidean distance, and define the threshold

for augmenting D in terms of a fixed parameter ε so that st is added to D if and

only if ||st − s|| > ε, ∀s ∈ D. In the case of a tabular state representation, this rule

amounts to adding each new state encountered to D.

Algorithm 4 details the planning algorithm the agent executes every T steps.

There are three parts to this algorithm, the first of which involves computing or up-

dating policies for options in the agent’s skill set O. For each non-primitive option,

value iteration is run for some number of iterations using the state samples in D that

are also in the option’s initiation set Ioi to perform backups of the value function ac-

cording to the option’s pseudo-reward function r̃oi . These backups update an option’s

value function estimate θoi , and define an implicit policy πoi for each option.
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Algorithm 4 Planning.

1: function plan({rI},O,D)
2: for oi ∈ O −A do . Update option policies.
3: for N iterations do
4: for s ∈ D ∪ Ioi do
5: θoi ← θoi + αmaxo

[
(r̃oi)TU oφ(s) + γ(M oφ(s))T θoi − φ(s)T θoi

]
φ(s)

6: end for
7: πoi ← π such that π(s) = arg maxo

[
(r̃oi)TU oφ(s) + γ(M oφ(s))T θoi

]
8: end for
9: end for

10: for oi ∈ O −A do . Update option models.
11: for L samples s ∼ Ioi do
12: t← 0
13: S ← 〈φ(s), t〉
14: while βoi(φ(s)) 6= 1 and t < tmax do
15: õ← πoi(φ(s))
16: φ(s′)←M õφ(s)
17: U oi ← U oi + η [φ(s) + γU oiφ(s′)− U oiφ(s)]φ(s)T

18: ρoi ← ρoi +
[
φ(s)Tρõ − φ(s)Tρoi

]
φ(sT )

19: φ(s)← φ(s′)
20: t← t+ 1
21: S ← S ∪ 〈φ(s), t〉
22: end while
23: U oi ← U oi + η [φ(s)− U oiφ(s)]φ(s)T

24: for 〈s̃, t̃〉 ∈ S do

25: M oi ←M oi + η
[
γt−t̃−1φ(s)−M oiφ(s̃)

]
φ(s̃)T

26: end for
27: end for
28: end for
29: for N iterations do . Update exploration policy.
30: for s ∈ D do
31: θI ← θI + αmaxo

[
(roI)

TU oφ(s) + γ(M oφ(s))T θI − φ(s)T θI
]
φ(s)

32: end for
33: end for
34: return π such that π(s) = arg maxo

[
(roI)

TU oφ(s) + γ(M oφ(s))T θI
]

35: end function
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The second step of the planning phase involves updating the U and M matrices

to reflect the long-term effects of each option with respect to transition dynamics

and expected return given a reward function. Traditionally these models would be

learned from experience by executing the option’s policy in the environment. This

is prohibitive for two reasons. First, it requires executing options whose policies are

likely to be malformed early in their learning, which may have unintended effects.

Second, only a single option can be executed at a given time in this manner, and it is

potentially expensive to do so depending on the domain. Rather than estimate these

models from experience, therefore, we run the option policies in “simulation” using

the models of existing, mature options (including primitive actions) to predict the

effects of the actions selected by the policies, and use the outcome of this simulated

experience to update the models.

More formally, during this phase of the planning step, for each option o ∈ O−A,

we draw L samples of initial states from the initiation set of the option and execute

the policy for the option in simulation by using the M matrices of the options it

calls in its policy to determine subsequent feature vectors. This is done until the

option terminates, or for some predetermined minimum number of steps tmax, since

immature option policies may not correctly terminate. At each step of this loop, the

option’s U matrix is updated accordingly, and the trajectory of state visitations is

recorded, along with associated time steps. Also during this loop the intrinsic reward

model ρoi for each option is updated by adjusting its weights for the corresponding

visited states to be the values of the intrinsic reward model for the corresponding

primitive actions in those states, as selected by πoi . When the trajectory ends, the M

matrix is updated with each sample from the trajectory serving as a separate starting

point, which gives us many more samples than a single update using only the start

state.
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The final step of Algorithm 4 computes a new exploration policy using the current

intrinsic reward functions and all of the updated options. This policy is computed via

N sweeps of value iteration over the agent’s current state samples, and is followed for

the following T steps before a new policy if computed. The choice of N in Algorithm

4 is based on computational budget, but note that the use of options will generally

result in convergence of the value function much faster than using only primitive

actions, and thus smaller values of N will still yield accurate approximations. This is

a primary benefit of learning options and a key feature of our approach.

To recap, an agent running our algorithm begins with initially incorrect models

of the effects of its actions on the environment, and begins behaving arbitrarily to

gather data to improve these models. As it discovers states that are interesting in

some way (e.g., because of stability of dynamics, salience, etc.), it constructs options

to learn how to reliably reach these states and learns models of the long term effects

of these options. The options provide a behavioral substrate on which to perform

further exploration of the regions of the state space that were previously inaccessible

via arbitrary exploration. Bootstrapping exploration in this way leads to construction

of new options in the newly discovered regions of the state space, which allows for

further exploration in areas reachable only with those new options, and so on. The

following section discusses the types of domain in which we expect our algorithm to

most distinguish itself as compared to more traditional exploration mechanisms.

3.4 Domains of Interest

Having adopted the MDP as the formalism for an agent’s environment, it is worth

taking some time to discuss the classes of MDPs for which this approach is most

appropriate. Because of their generality with respect to state representation, the

characteristic that best distinguishes different classes of MDPs in the absence of an

extrinsic reward function (aside from simply the size of the state and action spaces) is
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their transition dynamics. Many simple MDPs lend themselves to efficient discovery of

transition structure via random walks through the state space (i.e., an agent selecting

random actions can achieve good sample coverage of the transition function). These

kinds of MDPs are often not representative of real world environments, however.

It is rare for random primitive action selection to yield any appreciable progress in

reaching previously unreachable areas of a given state space in complex domains.

One might argue that random exploration may do better than expected in complex

domains if a simulator exists whereby the agent can be started in an arbitrary state

and explore from there. While this may be true, in some domains like many in

robotics, the availability of such a simulator, especially one that is accurate enough

to mimic real world dynamics, is often either non-existent or costly. Even if such a

simulator exists, random exploration around start states that are difficult to reach

through normal behavior will often lead the agent back to “easier” to reach states;

i.e., failure states. Without the reliance on a simulator and the ability to sample

policies using uniform initial state distributions, we would argue that most real world

problems require incremental, bootstrapped learning of progressively more complex

behaviors to reach new and previously unexplored areas of the state space. These

kinds of domains are the motivation for the work in this thesis, and the kinds of

domains on which we focus in our experiments below.

To simulate the properties of such problems in simple illustrative domains, we

employ the use of reset mechanics in our test domains. By reset mechanics we mean

that the majority of primitive actions in the majority of states reset the agent back

to the environment’s initial configuration. As such, random agents, or agents that

use simple random action selection as an exploration mechanism, have a very low

probability of reaching the majority of the states in the state space. Instead, in order

to increase their ability to manipulate their environment, agents need to bootstrap

their skill acquisition with their existing models and skills to purposefully navigate
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Figure 3.1. A graphical representation of the Combination Lock MDP.

through the areas of the state space with which they are already familiar. Any random

action selection that may occur should occur at the fringe of the agent’s expertise,

and an agent’s existing skill set and intrinsic reward function is precisely what keeps it

at that fringe and motivated to explore there. The following section presents results

validating these hypotheses in two MDPs exhibiting the characteristics discussed

above.

3.5 Experiments

In this section, we present the results of experiments testing the ability of our al-

gorithm to efficiently learn hierarchies of skills to manipulate two domains exhibiting

the characteristics described in the previous section. The first is a simple but illus-

trative discrete MDP, and highlights the key features and behavior of the algorithm.

The second is a more complex continuous MDP which affords more sophistication

in the behavioral hierarchy agents can learn and also shows the applicability of our

approach to continuous domains using function approximation.

3.5.1 Combination Lock

Our first experimental domain is a simple finite MDP which we call the Combina-

tion Lock. The domain is meant to be an illustrative example of how our algorithm

incrementally learns an environmental model and skills of increasing complexity. As

such, its simplicity is intentional and for pedagogical purposes.
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The Combination Lock consists of a set of tumblers which must be turned in

correct sequence in order to open the lock. An instance of the domain is parameterized

by a number of tumblers, N , a tumbler sequence length, L, and a number of symbols

on the lock’s dial, M , the latter of which is also the number of actions (M = |A|).

These parameters determine the difficulty of reaching an arbitrary state in the domain,

whose state set size is |S| = LN .

The dynamics of the Combination Lock are as follows. At each time step, the

agent turns the dial on the front of the lock to one of the M symbols on the dial.

The dial turns the lowest numbered tumbler that has not yet fallen into place. Each

tumbler must be turned in a unique sequence of symbols of length L before it falls

into place and the next tumbler can be turned. All tumblers must fall into place in

order to open the lock. As such, only a single correct primitive action sequence of

length NL− 1 permits the opening of the lock, out of all possible MNL−1 sequences.

Importantly, if an incorrect symbol is entered at any point in the full sequence, all

tumblers are reset to their default initial position, returning the agent to the start

state. All actions fail with probability p, leaving the state of the domain unchanged.

Figure 3.1 shows a graphical representation of the Combination Lock as an MDP.

States are labeled from 1 to NL (left to right), with shaded states representing the

successful setting of a tumbler, and unshaded states representing intermediate states.

Each arrow labeled ac indicates the action associated with the correct symbol for its

corresponding state (randomly chosen for a given instance of the domain). The set

of incorrect actions for each state are depicted as a single transition arc labeled as ax

to reduce clutter.

Note that the probability of an agent that executes a uniformly random policy

reaching a given state s from the start state decreases exponentially in s—more

precisely, when p = 0, this probability is 1
Ms . For an instance of the Combination

Lock in which N = 20, L = 5, and M = 2, the probability of a random agent
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successfully opening the lock from its initial configuration without being returned to

the start state would thus be 1
299 , an extremely rare event.

It should be evident that any agent hoping to explore the majority of this state

space when the state and action spaces are large will require deliberate exploration

strategies that allow it to reliably reach high-numbered states, and to plan to do

so. Our algorithm accomplishes this through the use of options and a fixed planning

horizon, both of which we specify based on the value of L. In particular, for a given

instance of the Combination Lock, each time an agent first visits a state whose label

is divisible by L, it creates an option whose subgoal is that state, and begins learning

a UOM for that option.

The expected behavior of the algorithm is initially to explore the first few states,

trying different sequences of actions and building an accurate model of the dynamics

around those states. This is achieved through the short planning horizon, which gives

the agent a better-than-random chance of getting the first tumbler into place, at which

point it will create and start learning a policy for an option to set that tumbler. As

that option’s model becomes more accurate, it can be used in the planning step to

allow the agent to plan trajectories to states beyond that option’s subgoal. This will

allow the agent to explore the states leading up to the setting of the second tumbler,

at which point a second option will be created. The policy for this latter option

can then make use of the first option in its policy, thus decreasing the difficulty of

learning the second option’s policy through the use of a bootstrapped skill hierarchy.

The process then continues in a similar way, with the agent learning new options with

an ever-deepening hierarchy in their policies until an option is learned to open the

lock from the start state.
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3.5.1.1 Evaluation - Skill Learning

We tested the behavior of our algorithm on multiple instances of the Combination

Lock and looked at the rate at which it discovered new areas of the state space and

created options to set each tumbler. Our experiments compared the rate of discovery

of new states for an agent running our algorithm with those of an agent executing a

random exploration policy using only primitive actions and one executing a random

policy that makes use of options learned during the planning and update steps of

our algorithm. Also in this experiment we varied the number of tumblers N for

the intrinsically motivated agent, keeping the sequence length L and the number of

actions M constant at 5 and 4, respectively. This shows the effect of increasing the

depth of the option hierarchy and the size of the state space without increasing the

complexity (execution duration) of the resulting option policies.

For this experiment, we set the number of iterations of value iteration to perform

at each planning step to 5, the number of state samples with which to perform option

model updates to 25, the max number of simulation steps tmax to 25, and the planning

horizon T to 20 steps. Additionally, the step size parameters in our algorithm (α, η, ζ)

were all set to 0.05, and ε to 0.1. The failure rate p of primitive actions in the domain

was set to 0.1 for all instances of the domain. Results for an average of 30 runs of

this experiment are shown in Figure 3.2.

As is evident from the figure, for N = 5 the agent that only explores with primitive

actions is incapable of reaching any but the first few states of the domain. As such,

increasing the number of tumblers has no effect on its performance since it never learns

to set more than the first or second tumbler, and so the runs with N > 5 are omitted

for clarity. The agent exploring randomly with learned options does slightly better,

but its discovery of new states still plateaus since its exploration is undirected. The

intrinsically motivated agent, however, behaves as expected and remains at the fringe

of the known areas of the state space throughout its learning, continually executing
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Figure 3.2. State discovery in the Combination Lock domain as a function of the
number of tumblers N . Comparison with random agents for N = 5.
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experiments to understand the dynamics of the environment at that fringe. As such,

it is efficient at spending its time taking the most meaningful actions in the most

meaningful areas of the state space it can currently reach.

These results held true for all values of N that we tested. As evidenced in the plot,

increasing the depth of the hierarchy results in longer time to achieve full discovery of

the state space, but this is only a result of the domain dynamics requiring the agent to

execute more actions to reach higher numbered states. The increase in depth does not

affect the agent’s ability to continue to learn and discover new options. Additionally,

the policies of the options learned to set each tumbler were computed correctly during

the simulation steps of our algorithm for all values of N that we tested, and the agent

was thus able to open the lock once it had computed the option to reach the final

state.

3.5.2 Chemistry Lab

Our second domain, which we call the Chemistry Lab, affords learning a more

complex behavioral hierarchy than the Combination Lock, and illustrates the ap-

plicability of our framework to domains with continuous state spaces. The domain

consists of an artificial chemistry lab in which an agent can combine base elements in

different ways to produce more complex compounds with varying physical properties.

The lab contains a single beaker into which the agent can incrementally add small,

continuously-valued amounts of base elements from a set E via primitive actions ae∈E .

The agent also has primitive actions ah+ and ah− to raise or lower the temperature

of the beaker by a small amount via a heating element.

The state space of the domain can be modeled as an |E|+1 dimensional space, with

|E| dimensions corresponding to the amount of each element present in the beaker,

and one dimension corresponding to the temperature of the beaker. The proportions

of the elements determine the physical properties of the contents of the beaker, in
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particular its color. Combining different relative amounts of each element in specific

orders and applying heat at the appropriate times will produce stable compounds of

varying colors. The vast majority of proportions and sequences of combining them,

however, produce instabilities that cause combustion events and return the agent to

the lab’s initial configuration (an empty beaker).

The colors of compounds in the beaker do not vary continuously, but rather un-

dergo discrete phase shifts, immediately changing from red to blue, for example.

These shifts in color occur in small regions of the state space and are used to define

subgoals in the domain. For example, a red compound might retain its properties in

response to applying heat for some time, but change to green after hitting a certain

threshold temperature. An agent running our algorithm in this domain will learn op-

tions to create these stable compounds of varying colors as it discovers them through

exploration.

In our experiments, we used an element set E of size 2. Each element can be

present in the beaker in an amount that varies continuously from 0 to 1, and has

an associated action that adds a small amount of that element to the beaker. The

amount of an element added by its associated action is determined by drawing from a

Gaussian distribution with mean 0.05 and standard deviation of 0.01. This provides

some stochasticity to the agent’s actions. Units of elements can only be added to

the mixture, not removed. If the amount of an element present in the beaker ever

becomes higher than 1, this creates an instability, resulting in a combustion event

and the beaker returning to the empty state.

The heating element can be controlled via two actions, one to raise the temperature

and one to lower it. The resulting change in temperature when executing these actions

is also drawn from Gaussian distributions of mean 0.05 and -0.05, respectively, and

0.01 standard deviation. The temperature of the beaker varies from 0 to 1 as well, and

45



is set to 0.5 in the domain’s initial configuration. Attempting to lower the temperature

below 0 or raise it above 1 has no effect.

The amount of each element present in the beaker determines the color of the

compound in the beaker, with each element and the termperature corresponding to

one of the red, blue, or green components of the mixture’s color. As mentioned

above, however, the color does not change continuously as more of an element is

added. Rather, there are regions of the state space (hyperspheres of radius 0.02)

which, when entered, result in the beaker’s contents changing to the color associated

with the center point of the hypersphere. These hyperspheres define the goal regions

Gi ⊂ S of the agent’s options.

The dynamics of the domain are such that creating certain compounds is a nec-

essary step to creating others, because the regions of stability of the former lie on

the path through the state space required to create the latter. Furthermore, some

of these intermediate compounds are precursors to several different successor com-

pounds. This property distinguishes the Chemistry Lab from the Combination Lock

in that the graph of option dependencies is more tree-like, rather than a simple chain.

There are 27 different stable compounds of distinct color in the instance of the domain

we used in our experiments, and thus 27 options for an agent to learn.

3.5.2.1 Evaluation - Skill Learning

We tested an agent’s ability to learn a complete set of options in the instance

of the Chemistry Lab—one for each of the 27 subgoals G ⊂ S as described above.

We used a set of 1,000 Gaussian radial basis functions (RBFs) evenly spaced over

the 3-dimensional state space as our function approximator. The activations of these

basis functions are given by

φi(st) = e−β||st−µi||, (3.3)
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Figure 3.3. Subgoal discovery in the Chemistry Lab domain.

where st is the state vector at time t, µi is the vector of equal cardinality corresponding

to the center of the ith basis function, and β is a parameter determining the width of

each kernel, which was set to 80 in our experiments.

For this experiment, we set the number of iterations of value iteration to perform

at each planning step to 5, the number of state samples with which to perform option

model updates to 50, the max number of simulation steps tmax to 50, and the planning

horizon T to 30 steps. Additionally, the step size parameters in our algorithm (α, η, ζ)

were all set to 0.02, and ε to 0.05. Results for an average of 30 runs of this experiment

are shown in Figure 3.3.

As in the Combination Lock domain, the agent running our algorithm learns to

stay at the forefront of its capabilities in terms of predicting the effects of its actions
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and its ability to manipulate its environment, maximizing the speed at which is

discovers new subgoals and learns options to reach them. As these new options are

learned, they are themselves used as part of the exploration policy to venture further

into the state space and discover new subgoals, and the process repeats.

We again compared our agents with random agents choosing either from primitive-

only actions sets or actions sets with primitives and learned options, the latter of which

were computed with the same machinery as the intrinsically motivated agents once

their corresponding subgoals were discovered. Again, random exploration is only able

to achieve a certain base level of expertise, after which the inability of those agents

to focus their efforts on the highest information areas of the state space results in

plateaus in their learning process.

3.5.2.2 Evaluation - Task Performance

Learning skills during a developmental period is of little use if the skills are not

applicable to the solution of novel problems later in life. To evaluate the utility of the

agent’s learned skills, we tested the agent at regular intervals during its developmental

phase by generating reward functions that define tasks to create compounds with

randomly selected colors. These reward functions are each passed to the agent, which

then runs value iteration to compute a policy to make the corresponding compounds.

The policies are executed by the agent and its total reward over the testing interval

is recorded. Rewards for these tasks are 1 for transitioning into states in which the

beaker contains a compound with the target color, and 0 otherwise.

As the agent continues to refine its models and learn new skills, its ability to create

a wider array of compounds should increase, and its total reward during the testing

phases should increase with each evaluation as well. In our experiments we ran this

testing phase every 1,000 steps, testing for 500 steps each time. For each testing

phase we randomly chose compounds from the set of stable compounds that exhibit
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Figure 3.4. Extrinsically rewarded task performance in the Chemistry Lab domain.

distinct properties—the same set from which the agent’s subgoals were determined.

The number of primitive actions required to solve each task optimally varied from

approximately 10 steps to approximately 90 steps, depending on the location of the

goal.

Figure 3.4 shows the performance of our agents on these randomly selected tasks as

a function of testing epoch. The plot is an average of 30 runs and error bars represent

standard error. As is evident, the performance of the agent increases with each

testing epoch as the agent discovers new subgoals and learns options to reach them

in the exploration phases between each test epoch. This continues until the agent has

learned options to reach all subgoals, after which it behaves optimally for extrinsically

rewarding tasks drawn from this set of subgoals. This illustrates the accuracy of the
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learned option policies and their utility in solving extrinsically rewarding tasks which

had never been extrinsically rewarding previously in the agent’s lifetime.

3.6 Summary and Future Work

We have presented an algorithm for intrinsically motivated skill learning in MDPs

and shown that it can be used to discover complex behavioral hierarchies in both

discrete and continuous domains. The algorithm learns a skill hierarchy based on pre-

selected subgoals pertinent to the domain, which it can then use to efficiently compute

policies to solve novel tasks in the domain that it never explicitly encountered during

its developmental period. The learning of this hierarchy is bootstrapped, always

using the agent’s current skill set and models to explore fringe areas of the state

space where its model is inaccurate, and learning skills to navigate those areas of

the space as the model becomes more accurate. We showed in our results for the

Chemistry Lab experiments that this hierarchy can be used to efficiently compute

policies for unfamiliar tasks after some developmental period, and that the time and

computation expended to learn the hierarchy is less than that of learning those tasks

individually.

As mentioned above, one of the limitations of our algorithm is the lack of automatic

selection of subgoals, which is an important open problem in hierarchical RL. While

there have been several approaches to solve this problem in a domain-independent

way (Simsek, 2008; Hart et al., 2008; Konidaris, 2011), it is likely that there is not

a single universal method for selecting subgoals. Rather multiple different selection

criteria, some domain-dependent, should be used to construct efficient and useful skill

hierarchies in a given domain. Experimenting with these different selection criteria is

an interesting avenue for future research.

Another interesting line of experimentation involves the form of intrinsic reward

function we chose to guide exploration behavior. There are many possible alternatives
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to using model confidence as the basis for intrinsic reward, and it is interesting to

think about what other functions may improve the speed of model learning and

skill acquisition. Certain forms of intrinsic rewards could also potentially be used to

address the issue of subgoal selection mentioned above. It is also possible to search

directly in reward function space for functions that maximize agent performance

averaged over lifetime, as Lewis, et al. (2010) show. Certainly multiple intrinsic

reward functions may be combined in various ways and determining appropriate ways

to combine them is also of interest.

Finally, the state representation we used in this chapter was in terms of feature

vectors over a monolithic state space as defined by the MDP formalism. This poses

some issues relating to the curse of dimensionality, namely that adding any infor-

mation to the state representation (e.g., a single bit in the case of a finite MDP,

or another dimension in the case of a continuous MDP) results in an exponential

increase in the number of features needed to approximate functions over the state

space with the same accuracy. Choosing features for a function approximator that

generalize well can help to alleviate this problem and greatly reduce both the size

of the representation and the sample complexity for approximating functions over it.

One technique for achieving these improvements can be used when the state can be

represented as a vector of values of distinct variables, each of which only depend on a

small subset of the others when determining state transitions and rewards. We discuss

this technique and an algorithm for applying it to intrinsically motivated exploration

in the following chapter.
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CHAPTER 4

INTRINSICALLY MOTIVATED SKILL LEARNING IN
STRUCTURED ENVIRONMENTS

In the previous chapter, we presented an algorithm for intrinsically motivated

learning of skill hierarchies in MDPs. A limitation of this approach is its susceptibility

to the curse of dimensionality, since every variable that defines the domain adds

another dimension to the state space. One way to alleviate this is to exploit the

structure of environments in which the values of certain variables are irrelevant to

predicting the values of others. Exploiting this structure can allow functions over the

state space to be approximated in many fewer dimensions than the dimensionality

of the full state space. In this chapter, we present an extension of the principles we

developed in the previous chapter to environments in which this structure can be

exploited via state abstraction. The formalism we use for such environments is the

factored MDP (FMDP), described in Chapter 2.

Recall from Chapter 2 the work of Jonsson and Barto (2006), who propose to

learn the full structure of an FMDP with a fixed reward function and then use the

VISA algorithm to decompose the task into sub-problems solved by exit options. By

contrast, the approach we develop here concerns the scenario in which there is (at least

initially) no single problem the agent must solve, and consequently no extrinsic reward

function. An agent in this scenario accumulates structural knowledge as it explores

its environment, and creates skills (options) for reaching different abstract subgoals

as enough structure becomes available to do so. For many subgoals, the feasibility

of learning an option to reach them will occur long before the full structure of the

environment is discovered. Indeed, the point of this approach is that incrementally
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constructing options before the full structure is discovered will increase the probability

of an agent being able to reach areas of the state space that would otherwise be quite

difficult to reach, thereby enabling the agent to learn about the structural properties

of those areas. The following sections detail the components of an algorithm for

achieving this behavior and present the results of its behavior in a non-trivial FMDP.

4.1 Incremental Structure Learning

An agent employing the algorithm we define in this chapter must have some

mechanism by which it can iteratively and incrementally refine the representation of

the conditional probability distributions that define an FMDP’s transition function.

For this purpose, we use a modified version of the approach given in Jonsson and

Barto (2007), described in some detail in Section 2.5. The specific method of structure

learning is not a critical aspect of this framework, however. Other methods may be

used to learn the conditional probability trees (CPTs) of the DBN model as long as

they are incremental in nature and not computationally prohibitive.

The modification to the approach of Jonsson and Barto (2007) we make is to add

a mechanism for deleting refinements when necessary. Recall from Section 2.5 that

their method greedily adds edges to the DBN models of the environment according

to the BIC metric in an incremental fashion. We found that occasionally an incorrect

refinement is made. To remedy this, at each time step a χ2 test of significance is

performed on the distributions over the domain values of the variable at each non-

leaf node of each CPT, with and without the current refinement, to see that their

difference is significant. If this significance drops below a certain value (0.995 in all

of our experiments) the refinement is removed by pruning the tree at that node and

placing all of the data from that subtree into the newly formed leaf node. In our

experiments, this remedied the few occasions in which an incorrect refinement was
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made and allowed the agent to recover from a mistake that would otherwise have

precluded further correct structure learning.

4.2 Caching Options

The framework outlined in Jonsson and Barto (2006) proposes to learn the full

structure of an FMDP given a specified reward function and only then to use the VISA

algorithm to decompose the task into sub-problems solved by exit options. To apply

these techniques to an intrinsically motivated exploration scheme, where there is no

specified extrinsic task, an agent should be able to accumulate structural knowledge as

it explores its environment and create options for reaching various subgoals as enough

structure becomes available to do so. For many options, this will occur long before

the full structure of the environment is discovered. Indeed the point of this approach

is that incrementally constructing options before the full structure is discovered will

increase the probability of an agent being able to reach areas of the state space that

would otherwise be quite difficult to reach, thereby enabling the agent to learn about

the structural properties of those areas.

In order to cache options in this way, an agent must monitor changes in the struc-

ture of its model, and each time the structure is changed evaluate the resulting model

to decide whether a new option may be constructed. To do this, the agent maintains a

set C (initially empty) of what we term controllable variables. A controllable variable

is one for which the agent possesses a set of options capable of setting the variable

to any of its possible values. Every time a new refinement of a leaf in the CPT for

variable Si in the DBN for action a is made, if Si /∈ C the causal graph of the domain

is checked to see if each of its ancestors is controllable. This is to make sure that

the agent can reliably reach the context given by the branch along which the new

refinement has been made. If this is true, and the value of Si is possibly changed

by executing a in the branch’s context, an exit option (and its associated transition
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and reward models) is created to reach that context and execute action a. If the new

option, coupled with all existing options, results in the agent’s ability to set Si to

each of its possible values, Si is added to C.

As in Jonsson and Barto (2006), the reward function that specifies the subtask an

option is created to solve (known as a pseudo-reward function) is −1 for every state in

which the option’s exit context is not satisfied, and 0 for states in which the context

is satisfied. Since the pseudo-reward functions for the options created in this way

are known, the SVI algorithm can be used to compute their policies, as distinguished

from Jonsson and Barto (2006), in which unstructured RL algorithms were used

to learn the option policies from experience. Additionally, the SVI algorithm has

at its disposal the agent’s current set of options (and their corresponding models)

for setting each variable in C to each of its values, which will in general lead to

faster computation of new option policies for the reasons described in Chapter 4.

This computation requires that the transition and reward models for each option be

computed as they are constructed as well, which is done using the algorithm given

in Jonsson and Barto (2006). In contrast to Jonsson and Barto (2006), however, in

which only primitive actions were used in option policies, the options constructed by

an agent in this framework may contain recursive calls to other options in the agent’s

skill set.

There is one other issue which must be considered when deciding whether to

construct an option in this framework—an issue that is a direct consequence of boot-

strapping the learning of new skills based on recently learned skill and models. It may

be the case that a refinement is made in the CPT for Si, and all ancestors of Si are

controllable, but the CPT is either incomplete or incorrect in some way. If the agent

were to create an option at this point, it would likely be incorrect (both its policy and

its model). Thus we need a way to decide whether the correct CPT has been learned

for Si under action a. If the environment is deterministic, then once the entropy of
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the distribution at every leaf of the CPT has reached zero, no more refinements can

be made and we know the correct structure has been discovered. This is a strong

assumption, however, and applies only to less interesting domains.

When the environment is stochastic, our choice of structure-learning algorithm

prevents us from being able to distinguish incomplete structural knowledge from

inherent stochasticity, since greedy methods like it are not always guaranteed to find

the correct structure. We discuss this disadvantage in Section 4.6. Rather than

attempting to make this distinction, however, agents in our framework construct

options in the absence of knowledge about structural correctness, and instead monitor

the utility of their current set of options, abandoning those whose empirical success

rates do not match their expected success rates.

More formally, each time the structure of a DBN is modified by the structure-

learning algorithm, if the latest refinement results in a context-action pair that alters

the value of some variable, an option to set that variable to the new value is created

and added to the agent’s set of options, O. Each option inO is assigned a success rate,

σ, initially equal to the expected success rate, σ∗, of the option. The expected success

rate is obtained from the leaf of the CPT corresponding to the option’s exit context

in the DBN corresponding to the option’s exit action, and is equal to the probability

that the variable the option is intended to change will take on its intended value when

the exit action is executed in the exit context. Every time an option is executed, it is

allowed to run to completion for a maximum of M time steps. If within that number

of steps the option’s context is reached, its exit action is executed, and its objective

is achieved (i.e., its associated variable is set to its desired value), then the execution

is considered successful. Otherwise, the execution is considered unsuccessful.

After the kth execution of option o, o’s success rate, σo, is updated according to

σo ← σo +
1

k
(δ − σo), (4.1)
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where δ is 1 if the option was successful, and 0 otherwise, so that σo always reflects

the average empirical success rate of o. If at any time after at least N executions of

o, σo drops below o’s expected success rate, σ∗o , by more than a factor η, the option is

removed from O, along with any options that reference o in their policies. The agent

then continues to explore with its remaining skill set, the process of discovering new

structure, constructing options, and testing their utility continuing until all variables

are controllable. Should the agent reach that point, it then has a set of options

it can use to efficiently compute a recursively optimal solution to a wide array of

potential tasks in its domain via the SVI algorithm. With this machinery in place

for incrementally adding options as enough structure becomes available to do so, we

next describe our method for employing intrinsic motivation to maximize the rate at

which DBN structure is learned.

4.3 Intrinsically Motivated Structure Learning

The discovery and construction of options in our framework is obviously depen-

dent upon the efficient discovery of dynamical structure in an agent’s environment—

structure that informs the agent how certain features of its world are influenced by

its actions. It is therefore essential to our approach that an agent be able to discover

this structure in a timely manner through its own experience. Random action selec-

tion in complex environments is very unlikely to produce efficient structure learning,

since often complex sequences of actions must be performed just to allow the agent

to reach certain areas of the state space, let alone collect sufficient statistics about

them from repeated trajectories. In fact, as we will show, even the active structure

learning technique presented in Jonsson and Barto (2007) will often fail to discover

much of the structure of such environments.

For this reason we propose the use of intrinsic reward to guide an agent to areas of

the state space for which its dynamical model is lacking in accuracy, thus allowing it to
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collect relevant information about those areas and improve its model. The improved

model may then afford the construction of new options to manipulate features of

the environment in those areas, which may in turn provide access to new areas that

require further exploration. This use of intrinsic motivation to improve model quality

has been proposed in various forms before (Schmidhuber, 1991; Kaplan & Oudeyer,

2004). These approaches, however, are seemingly concerned with model improvement

for the sake of model improvement. It is our contention that, while models are an

important component of intelligent systems, their construction should not be the

primary objective. Indeed the true goal for an intelligent system should be improved

control of its environment; that is, the improvement of a world model should be

in service of learning skills that allow an agent to control its environment, though

the learning of those skills may be informed by a world model, as in the approach

presented here.

We build upon the approach to active structure learning in FMDPs proposed by

Jonsson and Barto (2007) and introduce a novel extension that allows for discovery of

structure in more complex environments. In our scheme, an agent uses its current skill

set to perform “experiments” in its environment so as to expedite structure learning.

An experiment, like an exit, is composed of a context and an associated primitive

action. Similar to Jonsson and Barto (2007), we seek to find the best experiments

to perform by calculating potential changes in distribution vector entropies at CPT

leaves and picking the experiment that results in the largest change. Rather than

simply looking at leaves whose contexts are satisfied by the current state, however,

we can also consider leaves whose contexts consist exclusively of controllable variables,

since the agent possesses options to reliably set those variables to any of their values.

Additionally, we can check to see which settings of the controllable variables that are

not part of the leaf’s context will yield the highest gain at that leaf.
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We thus consider the context of the best experiment to be a setting of all control-

lable variables that maximizes this gain. When the experiment with the largest gain

is found, we create an intrinsic reward function that is 1 if the experiment’s context

is satisfied, and −1 otherwise. With this reward function, we compute a policy using

SVI to reach that context and execute the action associated with the leaf’s CPT.

This search and policy computation is carried out with probability 1 − ε each time

a desired context is reached and the appropriate primitive action is executed, where

ε ∈ [0, 1). Otherwise a random action from the agent’s action set (including options)

is selected and executed to completion.

We can always do this because we only consider leaves whose contexts are control-

lable. Since the agent starts out with no controllable variables, initial exploration is

carried out according to the local active learning scheme in Jonsson and Barto (2007)

in which only leaves whose contexts are satisfied by the current state are considered

when choosing actions. As enough structure is discovered and certain variables be-

come controllable via construction of low-level options as outlined in the previous

section, however, the agent can use those new skills to reliably set contexts for which

it has limited or uneven samples at the leaves of its CPTs. In this way, structure

learning is bootstrapped, using existing structural and procedural knowledge. For

domains with hierarchical structure in which it is not necessary to know the full

structure of the domain to compute lower level skills this approach should offer a

distinct advantage over active exploration schemes that use only local information to

choose actions. We show this to be the case in Section 4.5, after giving the full details

of our algorithm in the following section.

4.4 Algorithm

Algorithms 5, 6, and 7 give the full details of our algorithm for intrinsically mo-

tivated skill learning in FMDPs. Algorithm 5 shows the main loop of the algorithm,
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which performs initialization of the CPTs and makes calls to the selectAction (Al-

gorithm 6) and update (Algorithm 7) functions at each time step.

Algorithm 5 Intrinsically motivated skill learning in FMDPs.

1: Initialize CPTs to single-leaf trees (no refinements)
2: O ← ∅
3: t← 1
4: st ← initial state
5: repeat
6: at ← selectAction(st) . Algorithm 6.
7: Execute primitive action at and observe st+1

8: update(st, at, st+1) . Algorithm 7.
9: st ← st+1

10: t← t+ 1
11: until forever

The selectAction function performs the task of selecting a primitive action at

each time step based on the currently executing options, if any. Since options may

call other options, this function may need to recursively query option policies to find

a primitive action to return. The function also handles monitoring for immature

options, terminating any option that has been running for more than M steps and

updating the option’s σ value accordingly. If an option is deemed too immature

(σo < σ∗o−η), then it is removed from the option set along with any of its descendants,

and their associated variables removed from the set C if necessary.

If there are no currently executing options, then a policy to perform the currently

most informative experiment is computed with the SVI algorithm using a reward

function calculated based on the context-action pair that would yield the highest

information gain, as described above. The first primitive action of this policy (which

may involve nested options) is then returned.

The update function handles updating the agent’s data structures at each time

step based on the transitions it observes when taking actions. It first checks to see

whether any of the currently running options has terminated in the newly observed
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Algorithm 6 Select next primitive action.

1: function selectAction(st)
2: if any option o is currently executing then
3: if o has been running for less than M steps then
4: return next primitive action of o’s policy (may involve nested options)
5: else
6: Terminate o
7: Update σo using Equation 4.1 (with δ = 0)
8: if σo < σ∗o − η and o has been executed at least N times then
9: O− ← o ∪ descendants of o

10: O ← O \ O−
11: for each option n ∈ O− do
12: if n’s exit variable Si ∈ C then
13: C ← C \ Si
14: end if
15: end for
16: end if
17: return selectAction(st)
18: end if
19: else if O = ∅ then
20: return best primitive action given by method in Jonsson and Barto (2007)
21: else
22: Compute policy π to reach best context given O using SVI algorithm
23: return first primitive action of π(st) (may involve nested options)
24: end if
25: end function
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Algorithm 7 Update data structures.

1: function update(st, at, st+1)
2: if any currently executing options o are terminal in st+1 then
3: Update σo using Equation 4.1 (with δ based on success or failure)
4: end if
5: for each Si ∈ S do
6: Add sample 〈st, fSi

(st+1)〉 to appropriate leaf of tree for Si in DBN for at
7: Compute BIC scores for each potential refinement at leaf (Equation 2.13)
8: if refinement is made at leaf then
9: Distribute samples to appropriate children

10: if new context causes change in value of Si then
11: Create exit option(s) Onew to set Si to new values
12: O ← O ∪Onew
13: if O contains options to set Si to all possible values then
14: C ← C ∪ Si
15: end if
16: end if
17: end if
18: for each internal node in context given by st do
19: if refinement is no longer significant then
20: Prune tree at node and collect all samples into new leaf
21: Delete options and any descendants associated with former context
22: if new context causes change in value of Si then
23: Create option(s) to set Si to appropriate value(s)
24: end if
25: Update O and C accordingly
26: end if
27: end for
28: end for
29: end function

62



state and updates those options’ σ values accordingly based on whether they resulted

in the expected outcome or not.

Next it processes the sample consisting of the previous state and the newly ob-

served state, adding the sample to the appropriate leaf of the CPT associated with

the action taken. The BIC scores for the potential refinements at that leaf are then

computed to determine whether a refinement should be made. If the scores suggest

that a refinement should be made, then leaf is split on the values of the refining vari-

able and the samples at the leaf are distributed to the new child leaves appropriately.

If the refinement causes a change in the value of a variable, then one or more options

are created to set the value of that variable to each of its possible values, and those

options added to the agent’s option set.

The update function also handles checking for incorrect refinements, performing a

χ2 test of significance at each internal node of the context for st and pruning the tree

at that node if the test fails. If the tree is pruned, the samples from the entire subtree

are pooled into the newly formed leaf and any options associated with contexts in

the former subtree are removed from the agent’s option set. If the context created by

the pruning yields a change in the value of a variable then new options are created if

necessary to set that variable to each of its values.

This algorithm is run indefinitely until the agent possesses options to set the values

of each of the state variables to any of their possible values, at which point the agent

can use its option set to compute a policy to reach any state in the environment. The

following section discusses some experiments we performed testing the validity of our

algorithm on a large structured domain, and shows the utility of the algorithm in

solving multiple tasks in the environment after it has learned a useful set of options.
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Figure 4.1. A visual rendering of the Light Box domain.

4.5 The Light Box Domain

4.5.1 Dynamics

We conducted experiments in a simple but large artificial domain called the Light

Box (Figure 4.1). The domain consists of a set of twenty “lights”, each of which is

a binary variable with a corresponding action that toggles the light on or off. Thus,

there are twenty actions, 220 ≈ 1 million states, and approximately 20 million state-

action pairs. The nine circular lights are simple toggle lights that can be turned

on or off by executing their corresponding action. The triangular lights are toggled

similarly, but only if certain configurations of circular lights are active, with each

triangular light having a different set of dependencies. Similarly, the rectangular

lights depend on certain configurations of triangular lights being active, and the

diamond-shaped light depends on configurations of the rectangular lights.

In this sense, there is a strict hierarchy of dependencies in the structure of this

domain. Figure 4.2 shows the causal graph of the instance of the Light Box domain we

used in our experiments, illustrating the dependencies between each of the variables.
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Figure 4.2. The causal graph of the Light Box domain.
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To remove clutter, the reflexive dependencies are not drawn, but each light obviously

depends on its own value at the previous time step. With the exception of reflexive

dependencies, each link in the causal graph indicates that the parent light must

be “on” in order to satisfy the dependency. Each action has a 0.9 probability of

toggling its associated light as long as the light’s dependencies are satisfied, and a

0.1 probability of leaving the light unchanged. If an action is taken to toggle a light

whose dependencies are not currently satisfied, however, the entire domain is reset to

all lights being off.

The domain was designed to emulate scenarios in which accurate lower-level pro-

cedural knowledge is essential for successful learning of more complex behaviors and

their environmental effects. Because of the “reset” dynamics, random action selec-

tion is extremely unlikely to successfully turn on any of the lights at the top of the

hierarchy. Additionally, structure-learning is quite difficult using only local active

learning schemes. An agent must learn and make use of low-level skills in order to

be able to remain in the more difficult-to-reach areas of the state space in which it

can learn higher-level skills. We also emphasize that the agent does not perceive any

structure directly as may be evident in the visual rendering of the domain. Rather

the agent perceives only a string of twenty bits as its state. The structure must be

discovered from the state transitions the agent experiences while interacting with its

environment, and thus the discovery of hierarchy is non-trivial.

The options that are discovered in the Light Box domain may have nested poli-

cies, the relationship between two of which is shown in Figure 4.3. The policies are

represented as trees, with internal nodes representing state variables and leaves rep-

resenting action choices, which may be either primitive actions or options. Branches

are labeled with the possible values of their parent variables. In the example shown,

the policy for the option to turn on light number 16 (O16) contains at one of its leaves

another option (O10) to turn on light number 10, which is one of the dependencies for
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Figure 4.3. Examples of compact option policies in the Light Box domain. Internal
nodes represent state variables, leaves represent action (option) choices. Branches are
labeled with state variable values. Notice the nested policies.

light number 16. This nesting of policies is a direct result of the hierarchical nature

of the domain.

4.5.2 Structure-Learning

To evaluate our proposed scheme for active structure learning we compared the

performance of agents using three different types of exploration policies to guide be-

havior while learning the structure of the Light Box domain. All agents executed the

same structure-learning algorithm discussed above and incrementally created options

according to the scheme described in the previous section, also deleting options based

on their empirical success rate when appropriate. The number of samples, k, required

to make a refinement at a leaf of a CPT was 20. The maximum number of steps, M ,

that options were allowed to execute was 50. The minimum number of executions, N ,

needed to evaluate the utility of an option was 20. And the maximum discrepancy,
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η, allowed between the empirical success rate, σ, and the expected success rate of an

option, σ∗, was 0.1.

The Random agent selected a random action from the agent’s set of actions (in-

cluding options) and executed each one to completion before choosing another. The

Local agent employed the active learning scheme presented in Jonsson and Barto

(2007), except that when a random action was taken, the action was chosen randomly

from the agent’s entire set of available actions (including options) and executed to

completion. The exploration parameter ε for the Local agent was set to 0.1. The

Global agent employed our intrinsically motivated active learning scheme, which uses

more global information when selecting actions and computes plans to reach more

informative areas of the state space. The choices for parameter values in each agent

were made via a rough search of parameter space and based on reported values in

previous work when applicable. We did not notice much sensitivity in performance

as a result of changing these values slightly, though of course the parameter M will in

general be largely dependent on the domain, which is a limitation of this technique.

Since we had access to the true transition structure of the instance of the Light

Box, we could compare the refinements made by each agent at a given time step

to the set of refinements that define the correct model and plot the accuracy of the

model for each agent over time. Figure 4.4 shows the number of correct refinements

discovered by each agent as a function of the number of time steps. The learning

curves presented are averages of 30 runs for each agent. Error bars show standard

deviation. Clearly the hierarchical nature of the domain makes structure learning

very difficult for agents that cannot plan ahead in order to reach more informative

areas of the state space. Both the Random and Local agents are able to learn what

is essentially the bottom layer of the hierarchy, but once this structure is discovered

they continually sample the same areas of the state space and further learning is

stalled.
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Figure 4.4. Structure-learning performance for three different exploration policies.

The Global agent on the other hand uses the options constructed from this initial

structure to perform useful experiments in its environment, allowing it to reach areas

of the state space that the other agents cannot reach reliably, and thus uncover

more of the domain structure. This structure is then used to generate new skills

that enable further exploration not possible with only the previous set of skills. This

bootstrapping process continues until all of the domain structure has been discovered,

at which point the agent possesses options to set each light to either on or off. There

are 423 refinements in the true DBN model of this instance of the Light Box, all

of which the Global agent was able to find in each run. Note also that exploiting

the structured representation of the environment allows the agent to uncover the

transition dynamics without even visiting a vast majority of the states in the domain,

with the Global agent finding the correct structure in under 40,000 time steps reliably.
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4.5.3 An Ensemble of Tasks

We also conducted experiments to illustrate the utility of computing hierarchies

of skills for ensembles of tasks in large factored domains such as the Light Box. We

compared the time it took to compute policies using the SVI algorithm for various

tasks (i.e., different reward functions) for an agent with only primitive actions to the

time taken by one with a full hierarchy of options (including primitives). For each

of the twenty lights we computed a policy for a task whose reward function was 1

when that light was on and −1 otherwise. We averaged together the computation

times of the tasks at each level of the Light Box hierarchy (i.e., all times for circular

lights were averaged together, and similarly for triangular and rectangular lights, with

only one task for the diamond light). Experiments were run using unoptimized Java

code on an Intel 2.4GHz quad core processor with 4GB of RAM. The time spent

computing option policies and corresponding models for the agent with options was

21.76 seconds.

Results are shown in Figure 4.5. For the lowest level of the hierarchy, where

the tasks can be solved by one primitive action, the two agents take very little time

to compute policies, with the options agent being slightly slower due to having a

larger action set through which to search. Once the tasks require longer sequences of

actions to solve, however, we see a significant increase in the computation time for the

primitives-only agent, and little or no increase for the options agent. The overhead

of computing the options in the first place is thus compensated for once the agent

has been confronted with just a few different higher-level tasks. The savings become

very substantial above level 2 (note the log scale). Of course the complexity of this

domain can be increased by increasing the number of dependencies in its structure,

but our results show that for even as few as two or three dependencies per variable

the benefits of computing options are drastic.
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Figure 4.5. Policy computation times for tasks at varying levels of the Light Box hi-
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Note the log scale.
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4.6 Related Work

We outline here the related work on structure learning in FMDPs and intrinsically

motivated RL that has the most in common with our approach. Although the liter-

ature on Bayesian network structure learning is substantial, many of these methods

are not incremental and generally require that the data are drawn in an independent

and identically distributed (i.i.d.) fashion (Abbeel et al., 2006). For the case in which

we are interested, namely learning the structure of a DBN online from experience

with an FMDP, these methods are thus not applicable. There are, however, a few

incremental methods developed recently which search for DBN structures that best

fit an agent’s experience with an FMDP, where the data are not drawn i.i.d. because

of the temporal dependencies involved. We review these approaches here and explain

their advantages and disadvantages, justifying our choice to use the approach given

in Jonsson and Barto (2007).

Strehl et al. (2007) present a unique incremental structure-learning algorithm that

is actually composed of multiple instances of a “knows what it knows” (KWIK) algo-

rithm (Li et al., 2008). The KWIK framework for self-aware learning is a formalism

similar to the PAC formalism (Valiant, 1984) for analyzing the class of hypotheses

learnable by a given supervised learning algorithm. A KIWK algorithm attempts to

choose a hypothesis h∗ ∈ H that best fits a set of training examples provided to it by

an environment, where H ⊆ (X → Y ) is a set of probabilistic concepts, or hypothesis

class, each element of which is a mapping from an input space X to an output space

Y . The algorithm takes an input x ∈ X and makes a prediction ŷ ∈ Y ∪ {⊥}, where

⊥ denotes an “I don’t know” response, indicating that the algorithm is unable to

make a good prediction of the true output y.

A hypothesis class H is KWIK-learnable by algorithm A if during a run of A’s

execution for any ε > 0 and δ < 1, with probability 1− δ, A predicts for each input

x either an output ŷ ∈ Y that is within ε of the true output y, or predicts ⊥ a total
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number of times that is bounded by a function polynomial in 1/ε and 1/δ. The main

point of these requirements is that if a hypothesis is KIWK-learnable by an algorithm

A, then A is likely to find a hypothesis that makes near-optimal predictions given

a polynomial number of data samples. The structure-learning algorithm in (Strehl

et al., 2007) makes use of a set of KWIK algorithms to predict the value of each

variable in the DBN representation of an FMDP’s transition model given the previous

state and action as input.

Although Strehl et al. prove that their algorithm has polynomial sample and com-

putational complexity, their approach requires that the maximum number of parents

D that a variable in the DBN may have be given a priori. In fact, the sample and

computational complexity is exponential in D. This is because the algorithms keep

statistics about each possible combination of values for each possible set of parents

of size D or less. The structure-learning algorithm in this work was embedded in

the Factored Rmax framework (Guestrin et al., 2002), a factored version of the Rmax

algorithm (Brafman & Tennenholtz, 2003), which is a PAC-MDP approach for effi-

cient exploration in MDPs. The authors’ focus was therefore on efficiently achieving

near-optimal behavior on a single task by balancing exploration with exploitation,

not on learning modular solutions to ensembles of related tasks, as ours is.

Diuk et al. (Diuk et al., 2009) describe a novel KWIK structure-learning algo-

rithm, called the adaptive k-meteorologists algorithm, that is more efficient than the

algorithm presented in (Strehl et al., 2007), but whose computational and sample

complexity is still exponential in D, the maximum in-degree of the DBN. This ex-

ponential dependence on D is unavoidable in provably optimal (or PAC) Bayesian

network structure-learning (Abbeel et al., 2006). When D is large or no a priori

information about the domain is known that allows one to specify a small D, these

methods are therefore not feasible.
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In contrast to these provably optimal approaches, there are greedy methods with

only polynomial computational complexity that attempt to add dependencies to a

DBN in an incremental fashion, and that have been shown to perform well empiri-

cally. They are, however, not guaranteed to find the best network. One such method

is that of Jonsson and Barto (2007), which we use as a component of our frame-

work and described earlier. Another is given by Degris et al. (2006), who present a

structured form of the Dyna architecture for planning in MDPs (Sutton, 1991) which

makes use of an incremental version of the SVI algorithm to handle planning and

employs Utgoff et al.’s (1997) incremental tree induction (ITI) algorithm to learn the

CPTs of an FMDP’s transition and reward models online. A χ2 test of significance

between candidate conditional distributions is applied at the leaves of each of the

trees to determine whether to split that leaf on a given variable at each time step.

The approach is used to speed up learning on a single task by making use of of-

fline computation to simulate actual experience. They, however, do not address skill

learning or performance on ensembles of tasks.

Hart et al. (Hart et al., 2008) present an intrinsic reward mechanism that drives

a bimanual robot to learn closed-loop, hierarchical control policies for various ab-

stract behaviors (e.g., tracking, reaching, grasping). Their framework does not make

use of the options formalism, but rather a similar scheme for closed-loop control in

continuous dynamical systems, called the control basis. The control basis uses the

convergence states of hand-engineered continuous controllers to produce a small, dis-

crete state space in which standard RL algorithms may be applied. Intrinsic reward

is given to the robot if the state of convergence of some controller that references an

external set of stimuli switches from un-converged to converged, with the magnitude

of the reward proportional to the number of externally referenced stimuli. This en-

courages the robot to learn behaviors that allow it to exercise specific types of stable

control over its environment in various contexts. Although the learning of new skills
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is bootstrapped on existing skills, the addition of new skills in this work is controlled

by the experimenter and not fully autonomous.

Mugan and Kuipers (2009) present a framework for autonomous learning of ab-

stract skill hierarchies in continuous domains. The mechanisms for skill learning and

abstraction they employ, however, apply only to discrete environments. They first

discretize a continuous domain by extracting “landmarks,” and then learn options to

set the continuous variables that define the environment to values corresponding to

these landmarks. The action (motor) variables are similarly discretized. They employ

a modified version of DBNs as their representation of dynamics in terms of what they

call “qualitative” variables and actions (the latter being options), but they do not

utilize any of the structure-learning methods mentioned previously or any of the RL

algorithms that exploit structural independence. The latter means that the option

policies and value functions they learn using RL must be represented using a full

lookup table, which in some cases can be much larger than the structured represen-

tations we employ. Additionally, while their focus is on learning skills applicable over

ensembles of related tasks (and indeed there is no extrinsic reward in their frame-

work), there is also no intrinsic reward. Rather, the agent simply chooses random

actions (options) from its current skill set, which increases in complexity each time a

new option is learned. Although they show that this can lead to increasingly complex

behavior, there is no sense of the agent optimizing the rate at which this complexity

increases.

Menashe and Stone (2015) propose a modification of our algorithm, replacing the

options framework with what they call transitions (analogous to exits), and learning

a transition graph which they use to do rough path planning through the state space.

This graph takes the place of the models of temporally extended behaviors which the

options framework provides. They then simulate multiple potential paths through

the state space, sorted by their expected entropy gain (analogous to our intrinsic
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reward functions), and use the UCT algorithm (Kocsis & Szepesvári, 2006) to perform

Monte-Carlo simulations of those paths using the agent’s current transition model.

This approach thus replaces the explicit planning we employ using the SVI algorithm

with multiple sample trajectories generated from the agent’s current model. The

author’s focus, however, is not on learning a hierarchical set of reusable skills for use

on later exposure to novel tasks.

4.7 Summary and Future Work

We have presented an algorithm for autonomous, incremental learning of skill hi-

erarchies in ensembles of finite FMDPs and active learning of domain structure using

intrinsic rewards. Our results show that the construction of policies and models of ab-

stract skills in this approach can provide drastic reductions in the computational costs

of computing policies for novel but related tasks in a given domain when compared

with costs using flat policy representations. The addition of options and associated

planning methods into our scheme for active learning of environmental dynamics was

shown to outperform previous methods of active structure learning that use only lo-

cal information when guiding the agent to informative areas of its state space. This

method of incremental option construction also makes our approach developmental

in nature, allowing for steadily increasing behavioral complexity via bootstrapping of

existing structural knowledge and behavioral expertise.

In both the approach presented in Jonsson and Barto (2006), and in our work, an

agent constructs options to set every environmental variable to each of its possible

values. For environments with large numbers of variables and/or values this may

not be feasible or desirable. Rather one would like to consider ways of selectively

constructing options based on some metric evaluating the utility of being able to set

a variable to a certain value. In the case where the agent has a specific task this

metric would likely take the task’s reward function into account. In the initially task-
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less scenario we outline here, however, it is less clear what this metric should depend

on. One possibility is to incorporate a designer-specified salience function that makes

certain variable settings inherently more interesting to the agent than others (Barto

et al., 2004).

Our choice of intrinsic reward was based largely on a previous method for active

structure learning in FMDPs. This is clearly not the only possible intrinsic reward

one could employ. Experimenting further with other ways to increase the rate at

which new structure is acquired could yield new insights into more effective intrinsic

rewards. Recent work has addressed searching in the space of reward functions for

intrinsic rewards that result in faster learning (Lewis et al., 2010; Niekum et al.,

2010). Perhaps methods such as these could be used to search for good intrinsic

reward functions in our algorithm as well. Whatever form those rewards may take,

however, they can be readily substituted into our developmental approach and make

use of the incrementally increasing set of abstract skills generated by agents running

our algorithm.

We took the approach of constructing potentially “premature” options because

of the inability for our structure learning algorithm to distinguish between inherent

domain stochasticity and incomplete structural knowledge. As a result we had to

add parameters to our framework that will in general be domain-dependent. In the

absence of domain knowledge this is undesirable, and so it would be fruitful to consider

other methods for structure learning that could make this distinction reliably or to

within some confidence factor without having to wait until the full structure of the

domain is known. Although the alternative structure learning methods presented

in Section 4.6 have this property, in the absence of prior domain knowledge their

complexity is prohibitively high.

Finally, the mechanics of our current approach limits its applicability to finite

FMDPs. Because certain components in our algorithm (e.g., the VISA algorithm) are
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not immediately extensible to the case of continuous states and/or actions, different

techniques are required to produce autonomous, self-guided, developmental learning

in structured environments with continuous state or action spaces. The following

chapter takes a first step towards extending the principles of our developmental ap-

proach to such environments by presenting a novel algorithm for online, incremental

structure learning of continuous FMDP models.
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CHAPTER 5

INCREMENTAL STRUCTURE LEARNING IN
CONTINUOUS FACTORED MDPS

In the previous chapter we introduced an algoirhtm for intrinsically motivated

skill learning in FMDPs. The mechanism for structure learning we employed in our

approach limited its applicability to finite FMDPs; i.e., FMDPs whose state variables

have finite sets of values and which have a finite number of actions. Many inter-

esting real-world problems, however, cannot readily be formulated as finite FMDPs

because their state or action spaces are inherently continuous and not amenable to

discretization. While it is beyond the scope of this thesis to present a full extension

of our algoirithm for intrinsically motivated skill learning to continuous FMDPs, we

present here preliminary work on an essential component of such a system; namely,

a method for incrementally learning the structure and parameters of a continuous

FMDP’s transition model online from a single trajectory of experience.

5.1 Continuous Factored MDPs

Recall from Section 2.4 the details of the FMDP formalism when the action set is

finite and the state variables have finite domains. We use the same notation as in the

finite case, except where otherwise noted. Thus, each dimension of the state space is

still represented as a random variable Si ∈ S. In contrast to a finite FMDP, however,

the states and actions of a continuous FMDP with an n-dimensional state space and

m-dimensional action space are vectors in <n and <m, respectively. Although we

previously represented the transition and reward models of finite MDPs with one
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Figure 5.1. An example DBN for an FMDP with a 3-dimensional observation space
and 3-dimensional action space. Example conditional probability distributions are
shown for two variables.

DBN per action, this is not possible in continuous FMDPs. Rather, we represent

these models using a single DBN with a set of action variables A that influence the

state variables at the next time step, as shown in Figure 5.1.

As in the finite case, if we let fX(s, a) denote the projection of state-action pair

(s ∈ S, a ∈ A) onto a set of variables X (i.e., the values the variables in X take on in

s and a), fX(s) similarly denote the projection of state s ∈ S onto X, and Par(Y )

denote the set of parents of variable Y in the DBN, then the transition function P

can be expressed in factored form as

P (s′|s, a) =
n∏
i

P (S ′i = fS′i(s
′)|Par(S ′i) = fPar(S′i)(s, a)). (5.1)

This form represents the transition function as the product of several conditional

distributions, each of which may have much lower dimension than the full joint dis-

tribution being modeled. It is this fact that leads to the computational savings

associated with these models. Note that the reward model R can be represented in
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a similar fashion (the diamond-shaped node in Figure 5.1). It remains to be shown

how to represent the component conditional distributions that comprise the full model

(right-hand side of Figure 5.1). In the finite case, we represented them as conditional

probability trees, one for each variable, with internal nodes corresponding to the

parents of the given variable and leaves containing probability mass functions corre-

sponding to the conditional distributions. Since this is not possible in the continuous

case, a variation of the formalism in terms of conditional density functions must be

used. The following section describes the representation we adopt for the conditional

density functions, and an incremental method for estimating these densities online.

We then present a method for computing mutual information between sets of ran-

dom variables modeled by these estimators, an essential component for our structure

learning algorithm.

5.2 Online Incremental Density and Information Estimation

5.2.1 Density Estimation

There are many choices for the form of density function we may adopt to represent

the factors of an FMDP’s transition model. We choose the mixture of Gaussians

(MOG) model for several reasons, the first being that there are existing methods for

both online, incremental estimation of these models and for efficient computation of

their entropies, which we make use of in the following section. Secondly, these models

provide a natural, efficient way of obtaining conditional probabilities from the joint

distributions they represent, which is useful when employing them in reinforcement

learning algorithms. Additionally, it has been shown that given a sufficient number

of components, the MOG model can represent arbitrary densities (Titterington et al.,

1985).

A MOG model with k components gives the probability of a vector x ∈ <n as
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p(x|Θ) =
k∑
i=1

πipi(x|θi), (5.2)

where Θ = {θ1, . . . , θk} is a set of parameter vectors, one for each component, πi is the

mixing coefficient (or prior) of component i, and pi(x|θi) is the component-conditional

density of component i, which is given as

pi(x|θi) =
1

(2π)n/2|Σi|1/2
exp

[
−1

2
(x− µi)TΣ−1

i (x− µi)
]
, (5.3)

where θi = {µi,Σi} represents the mean vector and covariance matrix of component

i.

Learning the parameters of MOG models is a difficult problem with much work de-

voted to it. While many approaches use some form of the Expectation-Maximization

(EM) algorithm for this task (Dempster et al., 1977), this solution does not lend itself

to an efficient online setting, and has often been found to be oversensitive to parame-

ter initialization. One alternative approach uses a modification to the Self-Organizing

Map (SOM) neural network architecture, called the Self-Organizing Mixture Network

(SOMN) (Yin & Allinson, 2001), to incrementally update the parameters of the model

via a stochastic gradient-descent method. Although the SOMN is more general than

a MOG model in that it can make use of non-Gaussian mixture components, we

present here only the details of its operation for the case of Gaussian components.

After each new training example is observed, the parameters of a SOMN are

updated so as to minimize the Kullback-Leibler divergence between the true (p) and

estimated (p̂) densities via stochastic approximation methods. Let p̂ and p̂i be the

SOMN’s estimates of (5.2) and (5.3), π̂ti , µ̂
t
i, and Σ̂t

i be the estimates of the prior,

mean vector, and covariance matrix of component i, respectively, after t training

examples have been observed, and P̂ (i|x) = πip̂i(x|θi)
p̂(x|Θ)

be the posterior probability of
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component i given training example x. When a new training example x is observed,

the parameters of each component are updated according to

π̂t+1
i = π̂ti + α[P̂ (i|x)− π̂ti ] (5.4)

µ̂t+1
i = µ̂ti + β[x− µ̂ti]P̂ (i|x) (5.5)

Σ̂t+1
i = Σ̂t

i + γ[(x− µ̂ti)(x− µ̂ti)T − Σ̂i]P̂ (i|x) (5.6)

where 0 < α, β, γ < 1 are step size parameters. Alternatively, for computational effi-

ciency a winning component may be selected based on the posterior probabilities, and

only those components within a local neighborhood of the winner need be updated.

Experiments with the SOMN have shown that it is very robust to parameter

initialization, and so it is common to initialize the priors evenly (i.e., πi = 1/k, ∀i),

the mean vectors randomly, and the covariance matrices to σI, where I is the identity

matrix and σ is a scalar. The SOMN does require the number of mixture components

k to be pre-specified, however, which is a significant limitation. We discuss possible

remedies to this problem in our discussion section.

5.2.2 Mutual Information Estimation

Given the form of density function described above, we now present a method for

incrementally estimating the mutual information between sets of random variables

whose joint distribution is modeled by a SOMN. One way to express the mutual

information I(X, Y ) between two (sets of) random variables X and Y is as a sum of

entropies:

I(X, Y ) = H(X) +H(Y )−H(X, Y ), (5.7)

where for a real-valued random variable X, H(X) = −
∫
p(X) log p(X)dX is the

Shannon differential entropy of X. The joint differential entropy of random variables

X and Y is given similarly as H(X, Y ) = −
∫
p(X, Y ) log p(X, Y )dX dY .
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Unfortunately, for our choice of density function, computing mutual information

based on Shannon entropies is infeasible. However, for the case of a MOG density

model as we have assumed, there is an approximation to Shannon entropy that has a

particularly nice closed form. This is the quadratic Renyi entropy, a specific instance

of a class of generalized entropies described by Renyi (1961), and for random variable

X is given as HR2(X) = −
∫
P (X)2dX.

If we let G(x− µi,Σi) represent the value of Gaussian mixture component i eval-

uated at x, then note that
∫
X
G(X − µi,Σi)G(X − µj,Σj)dX = G(µi − µj,Σi + Σj).

Thus, for a mixture of k Gaussian densities, the quadratic Renyi entropy of the mix-

ture density can be computed as

HR2(X) = − log

∫
P (X)2dX

= − log

∫ ( k∑
i

πiG(X − µi,Σi)

)2

dX

= − log
k∑
i=1

πi

k∑
j=1

πjG(µi − µj,Σi + Σj), (5.8)

so that the computation reduces to pairwise interactions between mixture compo-

nents. Additionally, only half of these need to be computed in practice because of

symmetry.

Although there is a similar closed form for the joint quadratic Renyi entropy of

two random variables we could use to compute mutual information, we will take a

slightly different tactic to obtain the joint entropy. Suppose we have a vector-valued

random variable X ∈ <r+s so that X = [X1 X2]T , X1 ∈ <r, and X2 ∈ <s. If

X ∼ N (µ,Σ) is multivariate Gaussian with µ = [µ1 µ2]T and Σ =

 Σ11 Σ12

Σ21 Σ22

 so

that µ1 ∈ <r, µ2 ∈ <s, Σ11 ∈ <r×r, Σ12 ∈ <r×s, Σ21 ∈ <s×r, and Σ22 ∈ <s×s, then the

marginal distribution of X1 is itself a multivariate Gaussian distribution with mean
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µ1 and covariance Σ11. The marginal of X2 is similarly modeled with mean µ2 and

covariance Σ22.

This means that we may obtain the joint entropy between two (sets of) variables

X and Y by modeling their joint distribution explicitly, and their marginal entropies

by applying (5.8) to the appropriate marginal distributions obtained from the joint,

as just described. We will use this fact when evaluating potential dependencies in a

DBN, as described in the following section.

5.3 Online Incremental Structure Learning

We now turn to our application of the techniques outlined so far to the prob-

lem of incremental structure learning in FMDPs with continuous states and actions.

Previous work on learning factored transition models of finite FMDPs has taken the

approach of adding dependencies to a DBN model of an FMDP one at a time when

the mutual information between two variables is significantly high (Jonsson & Barto,

2007; Wolfe & Barto, 2006). We take a similar approach, although our techniques

will be different because we are dealing with continuous states and actions.

Recall that mutual information can be expressed as a difference between the sum

of two marginal entropies and their joint entropy, as in (5.7). Let S ′+i = S ′i ∪Par(S ′i)

be the union of a state variable S ′i ∈ S′ in the DBN at time t+1 and its set of parents

(in S∪A) at time t. Our strategy will be to maintain, for each S ′i, an estimate of the

information between S ′+i and each other state and action variable in S∪A not already

in Par(S ′i). We term each of these extra variables a candidate variable, and whenever

the information between a candidate variable and S ′+i exceeds a pre-specified value,

we add that variable to Par(S ′i) and remove it from the list of candidate variables for

S ′i.

In order to do this we will maintain an estimate of the joint distribution of each

possible combination of S ′+i and candidate variable X ∈ (S ∪ A) − Par(S ′i). This
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initially requires the instantiation of n2m SOMN models (nm models per state vari-

able), where n and m are the dimensionalities of the state and action spaces of the

FMDP, respectively. At time step t, each SOMN modeling a distribution containing

S ′i is given a training example that is the concatenation of the values in the previous

state and action vector corresponding to the current parents of S ′i and that distribu-

tion’s associated candidate variable, and the value of S ′i in the current state vector.

Initially this will result in the estimation of the joint distributions corresponding to

each element of S′ × (S ∪A). The techniques described in Section 3 now provide us

with the means to compute the mutual information between each S ′+i and each of its

candidate variables from these joint distributions.

At every time step, after updating the density models, we evaluate each can-

didate variable X for each S ′i by computing the three entropies H(S ′+i ), H(X), and

H(S ′+i , X) using (5.8) and the appropriate marginals obtained from the SOMN model

for each X /∈ S ′+i , and then calculating the resulting information. For each S ′i, the

candidate variable Y with the highest information gain above a pre-specified thresh-

old η (if there is one) is added to the parents of S ′i (and thus to S ′+i ), and the SOMN

modeling the joint distribution of S ′+i and Y is removed from the set of SOMN mod-

els. Then, each of the other candidate distributions for S ′i is extended to incorporate

Y by extending the mean vectors and covariance matrices of each component in each

model by one dimension. The values of the parameters for the new dimension can be

initialized in various ways. We describe the method we used in our experiments in

Section 5. Algorithm 8 provides the details of our approach.

The reader may wonder why one would not just maintain n SOMN models, each

modeling the joint distribution between a given S ′i and all of its possible parent

variables, and then simply evaluate the information between its current set of parents

and each other variable by using the appropriate marginal distributions. The reason

we do not do this is that as the dimensionality of the SOMN models increases, the
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Algorithm 8 LearnStructure

Initialization:
M← {}
for each S ′i ∈ S′ do

for each X ∈ S ∪A do
initialize a 2-dimensional SOMN mS′i,X

to model p(S ′+i , X)
M←M∪mS′i,X

end for
end for
s← initial state
Maintenance:
for t=1 to ∞ do

a← choose action
s′ ← next state
for each mS′i,X

∈M do
concatenate fS′i(s

′), fX(s, a), and fPar(S′i)(s, a) into training example x
update mS′i,X

with x using (5.4), (5.5), and (5.6)
compute I(S ′+i , X) using (5.7) and (5.8) (see text)
if I(S ′+i , X) > η then
M←M−mS′i,X

S ′+i ← S ′+i ∪X (add X as parent of S ′i)
for each Y /∈ S ′+i do

extend mS′i,Y
to model new dimension X (see text)

end for
end if

end for
s← s′

end for
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accuracy of the density estimate becomes more difficult to maintain with relatively

few mixture components. This is a consequence of the curse of dimensionality. The

idea behind maintaining a larger number of low-dimensional models is to keep the

number of mixture components necessary for an accurate estimate at a reasonable

number. This is justified to some degree by the assumption that the environment

we are trying to model does in fact contain structure in its dynamics, and that the

number of parents of any given S ′i will in general be much smaller than the total

number of state and action variables.

We would like to note, as we mentioned above, that our choice of the MOG model

to represent the factors of the transition function P results in a very simple method

for obtaining the conditional probability of a state s′ given the previous state s and

action a. Note that for a multivariate Gaussian random variable X = [X1 X2]T as

defined in the example in Section 3, the conditional probability of X1 given X2 is

also a multivariate Gaussian with mean µ1|2 = µ1 + Σ12Σ−1
22 (X2 − µ2) and covariance

Σ1|2 = Σ11 − Σ12Σ−1
22 Σ21, where µ and Σ and their components are also defined as

they were in the example in Section 3. Thus, since each S ′i is modeled jointly with

its parents in the DBN by a MOG, one can obtain each component of s′ given s and

a by conditioning on its parents in this manner.

5.4 Experiments

We evaluated our approach on a structured environment which was actually mul-

tiple, independent instantiations of a single MDP whose state and action spaces were

conglomerated into a single FMDP. The replicated MDP was a continuous “grid-

world” with two state dimensions (horizontal and vertical position) and two action

dimensions (horizontal and vertical movement). The state dimensions ranged from 0

to 1 and the action dimensions from −0.1 to 0.1, Each action dimension changed the

position of the agent in the appropriate dimension by its amount plus some mean-zero
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Gaussian noise with 0.01 standard deviation. All action dimensions were executed

concurrently and so each action was vector-valued.

The state (action) vector for the full FMDP was constructed by concatenating the

state (action) vectors of each MDP into a single vector. We then also added three

dimensions to the resulting state vector that were independent of the dynamics of

any of the component MDPs, and three action dimensions that had no effect on any

of the state dimensions of the full FMDP. The three added state dimensions output

at each time step, respectively, a random value in [0, 1], a constant value (0.5), and a

value (initialized to 0) that added Gaussian noise to it’s previous value (with a mean

of 0.05 and a variance of 0.001) and that wrapped around to 0 when the value reached

1. These extra state dimensions were just a few arbitrary ways of adding independent

dimensions to the FMDP, though the final extra dimensions clearly depends on itself.

The values of all state and action dimensions for each of the MDPs were normalized

to be in [0, 1] when provided as training samples to the individual SOMN models.

We initialized the SOMN models with 9 mixture components arranged in a regular

grid over [0, 1]2 and set the initial covariance matrices to 0.3I. When distributions

were extended by a dimension, we set the values of the mean-vectors for the new

dimension to be evenly spaced over [0, 1] and set the last row and column of the

covariance matrix to be all zeros, but with 0.3 in the last position. We set the

threshold η to 3.0 in both experiments.

Figure 5.2 shows the number of correct dependencies as a function of time step

for the first environment, averaged over 30 runs. Error bars show standard deviation.

There are 13 dependencies in the correct model for this environment. Each of the

6 observation dimensions depends on itself at the previous time step and one action

dimension, and the last extra dimension depends on itself. The curve shows that our

algorithm was able to discover the correct structure in a reasonably short period of

time. No incorrect dependencies were added by our algorithm at any point.
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Figure 5.2. Results for the 3-MDP domain.

5.5 Summary and Future Work

We have presented a method for online, incremental learning of transition models

of FMDPs with continuous state and action spaces. We use incremental density esti-

mation techniques to model the factored transition function and information theoretic

principles to add dependencies to a DBN model of the FMDP. Our experimental re-

sults show that our approach is able to discover the correct structure of a non-trivial,

continuous, structured environment efficiently.

One limitation of our method is the use of the SOMN model, which requires a pre-

specified number of mixture components to model a given density. A possible remedy

for this is the incorporation of methods used in other SOM approaches which allow

the number of units in the map to vary as new data are received (Xiong et al., 2004).

If successful, each mixture model need only use as many components as necessary to

obtain an accurate density estimate, potentially reducing computation time.
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The complexity of our approach is quadratic in the number of state and action

dimensions, which poses a problem in very high-dimensional environments. It is

possible, however, to incorporate prior knowledge about an environment either in

the form of pre-specified dependencies or, less restrictively, constraints on the set of

candidate variables considered. This could potentially reduce the computational load

significantly. Additionally, the calculation of mutual information need not be done at

every time step—only when one desires to evaluate candidate variables.

Our approach may be used in a feature selection setting for value function ap-

proximation in reinforcement learning, particularly in the case of learning abstract,

temporally extended actions, or options (Sutton et al., 1999). Although traditionally

much of the work on options has assumed the same state representation for each

option in a given MDP, recent work has focused on the scenario in which each option

has its own state abstraction (Jonsson & Barto, 2006; Konidaris & Barto, 2009).

The possibility of state abstraction not only reduces the difficulty of learning a given

option by reducing the number of variables over which the value function must be

supported, but also increases the efficiency with which an agent learns to use an

option by generalizing its value across states that differ along irrelevant dimensions.

The structural dependencies learned by our algorithm provide the subset of obser-

vation and action dimensions relevant to manipulating a particular set of dimensions

in the environment. If the objective of an option is to set such a set of dimensions

to a value in a specific range, then our approach provides an appropriate (reduced)

subspace of the state-action space over which a value function may be approximated.

That subspace will likely be significantly smaller than the full state-action space,

greatly reducing the difficulty of learning that option.

91



CHAPTER 6

INCREMENTAL MODEL LEARNING IN CONTINUOUS
DYNAMICAL SYSTEMS

All of the work presented thus far has dealt with model learning and intrinsi-

cally motivated skill acquisition in MDPs. There are, of course, many interesting

problems that cannot be formulated as MDPs because they don’t satisfy the Markov

property—the observations the agent receives at a given time step are insufficient to

perfectly disambiguate the state of the environment. As a first step toward extending

our developmental framework to more general environments, this chapter presents

an incremental algorithm for learning the parameters of a continuous TD network,

which is a formalism for representing the state of a discrete-time, dynamical system

with continuous actions and observations. The algorithm presented here is the first

incremental algorithm for learning the parameters of a predictive state representation

of a continuous dynamical system (Vigorito, 2009). We discuss the relevant details

of dynamical systems and predictive state representations, specifically TD networks,

in the following sections.

6.1 Dynamical Systems

We detail here two formalizations of controlled, discrete-event dynamical systems

(DEDS), one with discrete observations and actions, and one with continuous obser-

vations and actions. We do not consider continuous-time systems in this work. A

DEDS with discrete observations and actions consists of two finite sets of symbols,

O and A, the observations and actions, respectively, and a dynamics function P ,
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described below. At each discrete time step t the system outputs an observation

ot ∈ O and accepts an action at ∈ A. The alternating sequence of observations and

actions that begins with the observation output at time 0 and ends with the action

accepted at time t is the history ht ∈ H of the system at time t, where H is an infinite

set of all possible histories. Each observation is chosen probabilistically according to

P : O × H → [0, 1], where P (o, h) gives the probability that ot+1 = o for some

o ∈ O, h ∈ H. Thus, P induces a probability mass function over O, from which an

observation is sampled at each time step.

A DEDS with continuous observations and actions is composed of two infinite

sets, O ⊆ <o and A ⊆ <a, again representing the observations and actions, where o

and a are the dimensionalities of the observation and action spaces, respectively. As

above, histories are alternating sequences of observations and actions, though in the

continuous case each observation and action is a point in its associated vector space

rather than a discrete symbol. The dynamics function P is defined in the same way,

but now induces a probability density function over O from which each observation

is sampled at every time step.

It should be noted that although the formalization of a discrete DEDS given above

assumes a single observation is output by the system at each time step, it is trivial

to extend this to vector-valued, discrete observations. Additionally, the formalization

of an uncontrolled DEDS with either continuous or discrete osbervations is the same

as above, but excludes the action set A. Histories are then comprised of sequences

of observations, and the definition of the dynamics function P remains the same in

each case. In the following section we outline the background of predictive state

representations and describe previous work with TD networks for modeling a discrete

DEDS, after which we present our method for modeling a continuous DEDS using a

continuous TD network.
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First, it is worth noting that MDPs are a strict subset of DEDSs in which the

most recent observation is sufficient to predict a sequence of future observations given

a sequence of actions; i.e., they are DEDSs that satisfy the Markov property. For the

sake of brevity when we refer to a DEDS in this chapter we specifically refer to those

for which this is not the case, i.e., those which are partially observable, as these are

the systems the work in this chapter is designed to address. Additionally, although

the partially observable MDP (POMDP) is a formalism for MDPs that addresses the

potential for partial observability in dynamical systems, it assumes that there is an

underlying MDP generating the observations of the system, which we do not assume

in our formalism.

6.2 Predictive State Representations

Predictive representations of state are a class of generative models that represent

a dynamical system in terms of a set of predictions about sequences of observations

generated by that system (Littman et al., 2002). Recent work has shown that certain

formalizations of predictive representations are strictly more expressive than other

models of discrete dynamical systems that use historical information or probabilistic

distributions over unobservable variables as a representation (e.g., k-Markov models,

POMDPs) (Singh & James, 2004). Empirically it has also been shown that in cer-

tain domains predictive representations can lead to better generalization than other

representations (Rafols et al., 2005). In addition to this theoretical and practical

appeal, predictive representations have the desirable property of being grounded in

the sense that the representation is defined exclusively in terms of observable quanti-

ties. Though they share this property with other representations, such as k-Markov

models, they are more expressive than such models.

One formalism for predictive representations is the Temporal-difference (TD) net-

work (Sutton & Tanner, 2005). TD networks use well-established TD learning meth-
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ods to incrementally update the predictions that define their state based on a stream

of successive observations. All previous research with TD networks has focused on

modeling dynamical systems with discrete observations and actions. Although there

has been some work on other formalisms of predictive representations in continuous

systems (Wingate, 2008), these approaches have not yet been extended to a fully

online, incremental setting.

Since the developmental scenarios of interest in this thesis require fully incremen-

tal algorithms, the work presented here is intended to fill this gap, providing a method

which can potentially be used to apply these principles to environments that can be

represented as continuous, partially observable dynamical systems. We present an

adaptation of the TD network formalization for making predictions in discrete dy-

namical systems that instead makes predictions about the values of feature functions

defined over the observation space of a continuous dynamical system, as well as a

method for conditioning those predictions on actions that also take on continuous

values. In the following section, we outline the TD network formalism and describe

previous work with TD networks in discrete dynamical systems. Section 6.4 presents

our modification to the TD network architecture that supports continuous variables.

We present results in noisy, continuous dynamical systems in Section 6.5 and discuss

our findings and future work in Section 6.6.

6.3 TD Networks

Being a predictive representation, a TD network maintains state by updating

at each time step the probabilities of a set of predictions, or questions about the

system the network models. The semantics of these predictions are realized by a

question network, which defines the TD relationships between different predictions.

The question network is a set of nodes, each representing a specific scalar prediction

about some observation of the system some number of time steps in the future.
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Figure 6.1. An example TD question network for an uncontrolled (left) and con-
trolled (right) DEDS.

Example question networks for an uncontrolled and controlled dynamical system are

shown in Figure 1.

The links between nodes in the question network provide the target for each

prediction—the quantity it attempts to predict. This quantity may be defined in

terms of another prediction (circles in Figure 6.3), observation data (squares), or

both. For example, node y1 in the left network of Figure 6.3 might make a prediction

about the probability that the observation will be some specific value (e.g., 1 if the

observation is binary) at the next time step.

If we let yit denote the prediction of node yi at time t, and zit denote the target of

yit at time t, then in this example z1
t = Pr(ot+1 = 1). In contrast, node y2 makes a

prediction about the expected value of node y1 at the next time step, and its target

at time t is thus z2
t = E(y1

t+1). Note that this has the same meaning as predicting

the probability that the observation will be 1 at time t+ 2.

For controlled systems, predictions can be conditioned on actions, as seen in the

right-hand network in Figure 6.3. The system modeled by this network has two

actions, a and b, and action conditional predictions are indicated via labels on the
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links of the network. For example, node y1 makes a prediction about the value of

the observation at time t+ 1 given that the agent takes action a at time t. Similarly,

node y4 makes a prediction about the value of the observation at time t+2 given that

the agent takes action b and then action a starting at time t. As in previous work,

for ease of exposition we discuss only single-target question networks, i.e., nodes with

only one parent.

The actual values of the predictions semantically defined by the question network

are computed by a separate function approximator called the answer network. The

state of the system, or output of the answer network is the vector of predictions

yt ∈ <n, where n is the number of nodes in the network. At each time step an input

vector xt is computed as some function of the previous predictions yt−1, the previous

action at−1, and the newly received observation ot:

xt = x(yt−1, at−1, ot) ∈ <m. (6.1)

The prediction vector yt is then computed as some function u of xt and a modi-

fiable parameter W:

yt = u(xt,W) ∈ <n. (6.2)

A stochastic gradient descent update rule is used to modify the weights wij of the

network according to

∆wij = α(zit − yit)cit
∂yit
∂wij

, (6.3)

where α is a step size parameter, cit is an action condition defined below, and zit is

the ith element of the target vector zt, which is computed as some function z of the

latest observation and predictions:
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zt = z(ot,yt) ∈ <n. (6.4)

The action conditions ct determine the degree to which each prediction is respon-

sible for matching its target given the agent’s behavior, as defined by the question

network. Formally, ct is defined to be some function c of the previous action and

predictions

ct = c(at−1,yt−1) ∈ [0, 1]n. (6.5)

Tanner and Sutton (2005) introduced TD(λ) networks, which incorporate eligibil-

ity traces to deal with certain shortcomings of conventional TD networks. Eligibility

traces were originally introduced in Sutton (1988) to provide a mechanism for mak-

ing more general n-step backups of predictions in conventional TD learning, rather

than the traditional 1-step backups. The parameter λ ∈ [0, 1] controls the degree to

which longer sequences of predictions act as a target for learning. When λ = 0, the

target is simply the 1-step prediction. When λ = 1, the longest possible sequence of

predictions is used as a target and given the full weight of each update. Intermediate

values of λ result in exponentially weighted averages of sequences of varying lengths

being used as targets.

Notation for node targets in TD(λ) networks makes use of the parent function p(i),

which denotes the parent of node yi as defined by a single link in the question network.

Later parents of a node are denoted as {p(p(i)), p(p(p(i))), . . .}, or {p2(i), p3(i), . . .} in

short form, so that pk(i) identifies the kth parent of node yi. The machinery necessary

for incorporating eligibility traces is slightly more complicated for TD(λ) networks

than for the TD(λ) algorithm used for value-function learning. A trace for each

prediction yit must be maintained, and at each step the algorithm checks to see that

the sequence of recently executed actions matches the conditions for the prediction,

eliminating the trace if this is not the case.
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Given a trace initialized at time step t − k whose action conditions over the last

k time steps have been satisfied, the weights W are updated at time step t using the

temporal difference information yt − yt−1 and the past input vector xt−k to improve

the past prediction yt−k, with the update scaled appropriately by λt−k−1. We have

only presented essential notation and intuition here, and refer the reader to Tanner

and Sutton (2005) for the full details of the algorithm. In the following section we

present our modified TD(λ) algorithm, which allows for continuous observations and

actions.

6.4 Continuous TD Networks

In the case of a dynamical system with continuous observations, one can no longer

construct question networks to specify predictions of all possible values of the system’s

observations, since this would require infinitely many predictions. The solution we

employ is to make predictions about the expected values of a set of feature functions

defined over the observation space. More formally, we maintain a set Φ of feature

functions φi : <o → <, each element of which outputs at time t a scalar value φi(ot),

where ot is the observation at time t and o is the dimensionality of the observation

space. Predictions of the values of these functions, which together define state, can

then be used as features for approximating other functions, e.g, value functions in a

reinforcement learning setting (Sutton & Barto, 1998).

Figure 6.4 shows an illustration of a possible question network for an uncontrolled

DEDS with continuous observations. The feature functions in this case can be thought

of as radial basis functions with spherical covariance matrices evenly tiled over a two-

dimensional observation space. Each feature function acts as a target observation

and each node predicts the expected value of one of the functions some number of

time steps in the future. The semantics of the links are the same as those defined for

discrete TD networks.
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Figure 6.2. A example TD question network for an uncontrolled DEDS with con-
tinuous observations.
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We must also provide a method for dealing with continuous actions in this frame-

work, since it is not possible to have infinitely many action conditions in the question

network. In all previous work with TD networks the action conditions were assumed

to be binary since the action set was finite and small. The definition of the action

conditions given in (6.5), however, is more general and allows for real-valued action

conditions between 0 and 1.

To handle action conditions that allow for generalization over similar actions, we

assume a set Ψ of activation functions ψi : <a → <, each element of which takes an

action in <a and provides a scalar value in [0, 1] according to some similarity metric,

indicating the degree to which that action matches the associated activation function.

Each link of the question network may thus be conditioned on a particular activation

function ψi ∈ Ψ just as links are conditioned on specific actions in a discrete TD

network. The value of the action condition for node yi at time t is computed as

cit = ψi(at−1), where ψi is the activation function on which node yi is conditioned.

We use Euclidean distance as a similarity metric in this work and employ radial

basis functions as our activation functions for their ease of use. The action space is

tiled evenly by these functions, with each ψi having a different center µi ∈ <a and

a× a covariance matrix Σ. The value of each ψi given action at is thus computed as

ψi(at) = e−(at−µi)
T Σ−1

i (at−µi)/2. (6.6)

Although this allows for general covariance matrices, in our experiments we use

spherical covariance matrices so that Σ = σI, where I is the identity matrix and σ is

a parameter that determines the kernel width.

Algorithm 9 shows the TD(λ) network learning algorithm for systems with con-

tinuous observations and actions. The algorithm is modified from Tanner and Sutton

(2005). The first major difference is the construction of the answer network’s input

vector xt. Our approach constructs xt by concatenating yt−1 with a vector contain-
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Algorithm 9 Psuedo-code for the TD(λ) network learning algorithm for continuous
dynamical systems. Modified from Tanner and Sutton (2005).

Φ← set of observation feature functions
Ψ← set of action activation functions
y← initial state vector
W← initial weight matrix
Traces← {}
for t=0 to T do

newTraces← {}
a← chooseAction()
o← getObservation(a)
xt ← x(a,o,yt−1,Φ,Ψ)
yt ←Wxt
for (i, k)∈ Traces do

if pt−k(i) 6= observation then
z ← yt[p

t−k(i)]
else

z ← φpt−k(i)(o)
end if
p← yt−1[pt−k−1(i)]
ck ← traceCondition(i, k) · ψpt−k−1(i)(a)
for wj ∈ W [i] do

wj+ = α(z − p)ckxjkλt−k−1

end for
if pt−k(i) 6= observation then

traceCondition(i, k)← ck
newTraces← newTraces ∪ (i, k)

end if
end for
for i ∈ y do

traceCondition(i, t)← 1
newTraces← newTraces ∪ (i, t)

end for
Traces← newTraces

end for
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ing the values of the observation basis functions φi ∈ Φ and of the action activation

functions ψi ∈ Ψ at time t given ot and at−1. The size of the input vector is thus

|y| + |Φ| + |Ψ|. This is in contrast with previous work in which the input vector

contained binary elements corresponding to each possible action-observation pair.

The answer network in previous work with TD networks was implemented as a

generalized linear model, so that

yt = σ(Wxt) ∈ <n, (6.7)

where the parameter W was a |y| × |x| weight matrix, and σ was the vector-valued

logistic function σ(x) = 1
1+e−x applied element-wise to Wxt. In our work, however,

nodes do not predict probabilities of binary predicates corresponding to discrete ob-

servations, and so the use of the logistic function to filter Wxt is not appropriate. We

thus let σ be the identity function, resulting in a simple linear function approximator.

The final distinction concerns the method of updating eligibility traces. Because

we use non-binary action conditions, traces are not eliminated as they are in the

discrete algorithm when action conditions fail. Rather the action condition values

must appropriately weight the updates associated with each trace based on the agent’s

recent actions. In order to achieve this, each trace must store an accumulated action

condition that is initialized to 1 when the trace is created, and updated at each

time step by multiplying it by the action condition value at the current time step.

The function traceCondition(·) in Algorithm 9 represents the action condition value

currently associated with a given trace.

6.5 Experiments

To evaluate our approach we tested our algorithm on a small set of partially

observable, continuous dynamical systems. The systems are partially observable in
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the sense that the most recent observation does not provide enough information to

maintain state; i.e., it is not a sufficient statistic for history. Multi-step predictions

are thus needed to model the systems accurately.

For all of our experiments we employed radial basis functions (RBFs) for our

observation features Φ as well as for our set of action activation functions Ψ. The

action conditions were thus computed as given in (6.6), and the observation features,

similarly, as

φi(ot) = e−(ot−µi)
T Σ−1

i (ot−µi)/2, (6.8)

where ot is the observation at time t. The feature and activation function centers

were tiled evenly over the observation space and action space, respectively, so that a

system with observation dimension o and action dimension a had no feature functions

and ma activation functions, where n and m are the number of functions used per

dimension for the observation and action spaces, respectively. As mentioned above

we used spherical covariances for each of the functions so that Σ = σI. We report

the value of n, m, and σ for each experiment as it is discussed.

Although one would ideally like to automate the construction of the question net-

work when learning TD networks, to keep clear our focus on learning the parameters

of a TD network for a continuous system we have left the issue of question network

discovery in continuous TD networks to future work. The choice of question network

for each system was thus made according to intuition and some trial and error based

on knowledge of the systems being modeled.

Though we experimented with a few different types of question networks, we

wound up using ones of the form shown in Figure 6.3 for each system. Each feature

function φi ∈ Φ was the parent (target) of |Ψ| nodes, each of which, conditioned

on a distinct ψj ∈ Ψ, predicted the value of φi one time step in the future. We

did not implement a fully conditional network (which would require a number of

nodes exponential in |Ψ|), but rather found that successive, identical action conditions
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Figure 6.3. Form of the question networks used in our experiments. |Φ| = n.
|Ψ| = m.

chained off of each of the children of the observation nodes, as diagrammed in Figure

6.3, performed well. This structure is similar to previous question network structures

used in some discrete TD networks (Tanner & Sutton, 2005). The trailing dots at

the bottom of the figure indicate that the depth of each chain can vary. We used the

same chain depth d for each chain in a given question network, and report that depth

for each experiment below. All experiments used a step size parameter α = 0.01 and

eligibility parameter λ = 1.

6.5.1 Uncontrolled Systems

We first tested the ability of a TD network to learn models of uncontrolled dy-

namical systems. Since there are no actions in these systems the question networks

look as they would in Figure 4 if |Ψ| = 1, so that each basis function φi has just one

chain of d descendants. The first system was a simple square wave, which alternated

between emitting one-dimensional values 0 and 1, each for five times steps at a time.
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Figure 6.4. RMSE of the one-step predictions of all φi ∈ Φ as a function of time for
the noisy, uncontrolled square wave. Each point is an average of the error over the
previous 100 time steps.

Each observation emitted by the system was corrupted by mean-zero Gaussian noise

with standard deviation 0.05. This is essentially a noisy, continuous analog of the

cycle world presented in Tanner and Sutton (2005). We let n = 4, and σ = 0.3 for

this experiment. In order to maintain state the network must have at least five steps

of prediction, and so we used a depth d = 5 for each chain.

Figure 6.4 shows the average root-mean-squared error (RMSE) of the one-step

predictions of the expected values of each feature function at each time step, averaged

over all |Φ| predictions. The errors were computed by taking the difference between

the predicted values of the basis functions at a given time step and the actual observed

values of those functions at the next time step, squaring those errors, averaging them

over all feature functions, and taking the square root of that average. Each point

in the graph is an average of the RMSE for the previous 100 time steps. The curve

represents an average of 30 runs. We see that the network is able to learn a good
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Figure 6.5. RMSE of the one-step predictions of all φi ∈ Φ as a function of time
for the noisy, uncontrolled sine wave. Each point is an average of the error over the
previous 100 time steps.

model even given noisy observations with an amount of experience roughly equivalent

to the amount taken to learn the deterministic, discrete version of this problem, as

presented in Tanner and Sutton (2005).

We next experimented with predicting a sinusoid, where the observation emitted

at time t was given by ot = (sin(0.5t) + 1)/2. Observations were again corrupted by

mean zero Gaussian noise with 0.05 standard deviation. We again let n = 4, and

σ = 0.3, but rather than pick a specific chain depth d of the question network for

which to present results, we plot the learning curves for a few values of d. Each curve

is again an average of 30 runs. Figure 6.5 shows these curves, and it is clear that while

increasing the depth of the question network chains up from 1 through 5 improves

the quality of the model learned, having depth greater than 5 does not produce very

significant performance benefits aside from some slightly faster convergence.
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6.5.2 Controlled Systems

We next evaluated our approach on two controlled versions of the dynamical

systems used above. In each case, we introduced an action dimension that varied the

amplitude of the corresponding wave function. The possible actions for each system

were in [0, 1], and resulted in modulating the amplitude from 0 to 1 continuously.

That is, for a given action a ∈ [0, 1], the square wave alternated between emitting

values a+ 1−a
2

and 1−a
2

, each five steps at a time. Similarly, the sine wave emitted an

observation at time t according to ot = a
2
(sin(0.5t) + 1) + 1−a

2
, given action a ∈ [0, 1].

Observations in both systems were again corrupted by mean-zero Gaussian noise with

standard deviation 0.05.

In both experiments we let n = m = 4, but we found it necessary to use different

values of σ for the feature functions than for the action activation functions. We set

the former, σφ, to 0.3, and the latter, σψ, to 0.1. We again set the depth d of the

question network chains to 5 in the square wave experiment, and varied the depth of

the networks in the sine wave experiment, plotting the results for each depth.

The policies used to collect data were smoothed versions of a random walk over

the action space. Errors were computed as above, where the expected values of a

given feature function φi were calculated by weighting the predictions of each of the

children of φi by the activation of the child’s associated action activation function,

given the last action taken.

Figures 6.6 and 6.7 show the RMSE of one-step predictions for the controlled

square wave and sine wave experiments, respectively. We see in Figure 6.6 that the

system is able to learn almost as good a model of the controlled system as it did of the

uncontrolled system, indicating that our mechanism for handling continuous actions

is viable. Similarly, Figure 6.7 shows that, although still dependent on having enough

steps of prediction, the network is able to learn a good model of the controlled sine

wave system as well.
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Figure 6.6. RMSE of the one-step predictions of all φi ∈ Φ as a function of time
for the noisy, controlled square wave. Each point is an average of the error over the
previous 100 time steps.

Lastly, we tested our algorithm on a partially observable version of a dynamical

system common in the reinforcement learning literature, the mountain car, in which

an underpowered car must be driven up a steep cliff in a valley. Because the car is

underpowered it cannot drive directly up the hill, but must reverse up the rear side

of the valley to gain enough momentum to make it up the far side. We refer the

reader to Sutton and Barto (1998) for the details of the dynamics. When the position

and velocity of the car are given as observations, the system is fully observable.

We thus eliminated the velocity component of the observation, producing a one-

dimensional observation which is not sufficient to maintain state. Additionally, as in

our other experiments, we corrupted each observation with mean-zero Gaussian noise

with standard deviation 0.05.

As in the previous experiments, we let n = m = 4 and set σφ to 0.3 and σψ to 0.1.

The chain depth of the question network was set to 5. Figure 6.8 plots the RMSE
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Figure 6.7. RMSE of the one-step predictions of all φi ∈ Φ as a function of time
for the noisy, controlled sine wave. Each point is an average of the error over the
previous 100 time steps.

of one-step predictions for the mountain car system. We see that the TD network

used was able to learn a good model of the dynamics and thus was able to recover

the velocity dimension by making use of multi-step predictions.

6.6 Summary and Future Work

We have presented an extension to the TD(λ) network learning algorithm that is

capable of modeling partially observable, noisy, continuous dynamical systems. Our

algorithm represents the first instance of a fully incremental algorithm for learning a

predictive representation of a continuous dynamical system (Vigorito, 2009). While

there has been work on other formalisms of predictive representations in continuous

systems (Wingate, 2008), these approaches are not incremental and thus would not

be applicable to the developmental learning scenario that is the focus of this thesis.
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Figure 6.8. RMSE of the one-step predictions of all φi ∈ Φ as a function of time
for the noisy, partially observable mountain car task. Each point is an average of the
error over the previous 100 time steps.

Our results show that our algorithm is capable of learning accurate models of both

controlled and uncontrolled versions of such systems that are robust to noise.

In the work presented here we constructed question networks based on intuition

and trial-and-error. In general it is desirable to automate this process and discover

a (preferably minimal) question network based on a stream of experience. An online

discovery algorithm for discrete TD networks was presented in Makino and Tagaki

(2008). We chose not to employ it in this work so as to better isolate the contributions

of extending TD networks to continuous systems. However, we see no immediate

reason why the approach presented there cannot be combined with our extension.

One interesting direction for future research is the application of state abstraction

to continuous TD networks to facilitate scaling our approach up to higher-dimensional

systems. State abstraction in other predictive representation formalisms has been

considered for both discrete (Wolfe et al., 2008) and continuous dynamical systems
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(Wingate, 2008). However, although temporal abstraction in discrete TD networks

has been explored recently (Sutton et al., 2006), to our knowledge there has been

no work on state abstraction in TD networks. Using features that are defined over

every dimension of the observation space is not always necessary for structured envi-

ronments. Taking advantage of such structure may lead to compact representations

that are easier to learn.

Finally, our approach has been agnostic about the observation features used. The

accuracy of the model learned will obviously be dependent upon the form those fea-

tures take. There is a large body of recent work on basis function selection and con-

struction for value function approximation in Markov decision processes (Mahadevan,

2008; Parr et al., 2008), and it is interesting to consider applying work in those areas

to choosing or constructing appropriate features for observation spaces in partially

observable, continuous domains.
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CHAPTER 7

CONCLUSIONS

The primary objective of this thesis was to present algorithms that achieve long-

term, developmental learning of skill hierarchies in model-based reinforcement learn-

ing agents, and to show how this learning yields versatile, robust agents capable of

solving many different problems in their environment more efficiently than solving

them individually. We did this in part through the use of intrinsic rewards to guide

the agent to the most informative parts of the state space given its current skill

set and knowledge of the environment. A second objective was to present model-

learning methods for applying these algorithms to environments that can be modeled

with more sophisticated representations than traditional MDPs, specifically factored

MDPs and partially observable dynamical systems.

To illustrate the performance of these methods, we described and experimented

with the kinds of environments in which they exhibit the greatest advantages—those

that are hierarchically organized and in which random exploration is unlikely to yield

efficient exploration. Our methods allow agents in these environments to focus their

exploration on the most informative areas of the state space, and as such to maximize

their rate of skill acquisition. In fields like robotics where accurate simulators are not

easily implemented and thus sampling arbitrary portions of the state space is difficult,

these methods are particularly appropriate.

Finally, we demonstrated the utility of an agent running our algorithm for an initial

developmental period when later faced with various extrinsically rewarded tasks by

testing their ability to solve novel problems in their environments after this period.
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The following section summarizes the specific contributions of this thesis, after which

we discuss the limitations of our methods and potential future work.

7.1 Summary of Contributions

7.1.1 Intrinsically Motivated Skill Learning in Markov Decision Processes

We presented an algorithm for long-term, incremental learning of abstract skill hi-

erarchies in environments formally represented as MDPs. We showed how an agent in

this framework can be intrinsically motivated to learn increasingly complex behaviors

by continually improving models of the effects of its actions on its environment and

incrementally creating skills based on those models to increase its breadth of control.

Intrinsic reward functions, which we defined in terms of an agent’s internal state,

focus the agent’s exploration efforts on areas of the environment in which its model

is inaccurate, but which are reachable with its current skill set. This form of active

learning leads to a developmental process that bootstraps skill learning and model

learning using the agent’s current predictive and procedural knowledge. We showed

that, in certain classes of environments, our methods allow for acquisition of com-

plex behaviors not efficiently achievable by random exploration methods. Finally, we

showed that the acquisition of these skill hierarchies renders agents in our framework

able to more efficiently solve novel tasks posed to them than learning from scratch.

7.1.2 Intrinsically Motivated Skill Learning in Factored MDPs

The traditional MDP formalism suffers from the curse of dimensionality, with the

state space increasing exponentially in the number of variables that define it, even

if some of these variables are independent of each other. Taking into account such

independencies, as afforded by the factored MDP framework, can allow for compactly

representing value functions and policies, and decreasing the sample complexity for

learning them. We adapted the framework for intrinsically motivated skill learning in
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MDPs discussed above to FMDPs by extending existing work on hierarchical decom-

position of FMDPs and active learning of their dynamical structure. We showed the

benefits of leveraging environmental structure on such skill learning in more complex

environments, and their computational advantages in learning solutions to ensembles

of related tasks in a given environment after a period of developmental exploration.

7.1.3 Incremental Structure Learning in Continuous Factored MDPs

We developed a novel algorithm for online, incremental learning of transition mod-

els for factored MDPs with continuous, multi-dimensional state and action spaces.

Through the use of incremental density estimation techniques and information-theoretic

principles, our algorithm learns a factored model of the transition dynamics of a

continuous FMDP online from a single, continuing trajectory of experience. This

approach provides a first step towards applying our framework for intrinsically mo-

tivated skill learning to more challenging and interesting problems that cannot be

formalized as finite FMDPs.

7.1.4 Temporal Difference Networks for Continuous Dynamical Systems

We presented a novel algorithm for online, incremental learning of TD network

representations of partially observable dynamical systems with continuous observa-

tions and actions. We showed that our algorithm is capable of learning accurate and

robust models of several noisy, continuous, partially observable dynamical systems.

This approach provides a first step towards applying our framework for intrinsically

motivated skill learning to more challenging and interesting problems whose environ-

mental dynamics cannot be modeled as MDPs.

7.2 Future Work

There are several interesting avenues for future research based on the ideas pre-

sented in this thesis. First and foremost is taking the next steps in applying the prin-
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ciples of Chapters 3 and 4 to the development of algorithms for intrinsically motivated

skill learning in continuous domains with structured representations (e.g., continuous

FMDPs) and partial observability, such as those for which we developed incremental

model-learning techniques in Chapters 5 and 6. The characteristics of these environ-

ments pose challenges to the specific implementation of such algorithms, but there

is nothing fundamental about these characteristics that invalidate the application of

the principles of self-directed active learning we address in this thesis.

Also critical to the broader application of the principles of active learning we

focus on in this work is the problem of automating option discovery. Recall in the

algorithms of Chapters 3 and 4 that we assume an agent has a predefined set of

interesting states or regions of the state space which serve as subgoals for the options

it will learn. These are specified by the system designer based on domain knowledge

or long-term objectives. An interesting line of research is to automatically discover

these subgoals such that they maximize an agent’s ability to control its environment.

This would require some form of domain-independent criterion for selecting subgoals.

There has been some existing work on this problem in MDPs, using metrics such as

graph connectivity in MDPs (Simsek, 2008), change point detection in continuous

MDPS (Konidaris, 2011), and convergence of pre-defined sensorimotor controllers to

stable configurations (Hart et al., 2008). Whether there is a single metric or criterion

that has general purpose applicability to this problem is an important open question.

Another useful research path involves defining an intrinsic reward function that

relaxes the exploration policy from the approach we take in this thesis—exhaustively

trying all actions in all states. Our incorporation of linear function approximation and

factored representations goes some way in generalizing intrinsic value to similar states

or equivalent states, but there is certainly room for improvement. An algorithm that

could identify regions of the state space that are inherently uninteresting or irrelevant

with respect to some long-term objective would increase the efficiency of an agent’s
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exploration behavior. Such an approach would have to employ metrics that could be

used to discount large regions of the state space without visiting them and observing

their dynamics.

Of course another promising direction for exploration is within the space of in-

trinsic reward functions. The reward functions we defined in this work are only one

instance of one class of potential reward functions that motivate agents to learn hi-

erarchies of skills. It is fruitful to consider other instances in this class, and other

classes as well. Indeed, it is even possible to automate the search for such functions

by defining some metric of life-long performance for an agent and optimizing in the

space of such functions. Some preliminary work in this vein has been explored by

others already (Lewis et al., 2010; Niekum et al., 2010), but there are many potential

extensions and alternatives.

We demonstrated the performance of our algorithms in continuous domains using

radial basis functions (RBFs), which are an intuitive but relatively unsophisticated

choice of basis for function approximation. There is an enormous body of work

involving basis selection that considers tradeoffs between complexity, generalization

capabilities, and representational capacity, among other properties. We chose not to

focus on optimizing this selection to avoid distracting the reader from the primary

objectives of the algorithms, which are largely independent of the choice of function

approximator. However, applying some of these alternative choices of basis functions

to our algorithms may result in improved learning speed and ability to generalize

more readily to unfamiliar tasks.

In particular, the recent successes of deep learning methods for representation

learning (Bengio, 2009; LeCun et al., 2015; Mnih et al., 2015) are an excellent candi-

date for applying the model-based active learning principles we address in this work to

the acquisition of skill hierarchies in high-dimensional, partially-observable domains.

As of yet, deep learning techniques have not been applied to hierarchical reinforce-
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ment learning scenarios, but they have been shown to be successful as representations

of value functions for flat RL methods, and their recurrent implementations are cer-

tainly capable of serving as forward models of environmental dynamics. Since the

structure of the representations produced by these methods is inherently hierarchical,

they are a natural fit for representing action hierarchies as well as perceptual hier-

archies. We feel these methods are currently the most promising direction for the

application of the principles of intrinsically motivated learning of skill hierarchies to

challenging adaptive control problems like many in the field of robotics.
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