520 research outputs found

    Self-tuning algorithms for the assignment of packet control units and handover parameters in GERAN

    Get PDF
    Esta tesis aborda el problema de la optimización automática de parámetros en redes de acceso radio basadas en GSM-EDGE Radio Access Network (GERAN). Dada la extensión del conjunto de parámetros que se puede optimizar, este trabajo se centra en dos de los procesos encargados de la gestión de la movilidad: el proceso de (re)selección de celda para servicios por conmutación de paquetes y el proceso de traspaso para servicios de voz por conmutación de circuitos

    Multilevel Hypergraph Partitioning with Vertex Weights Revisited

    Get PDF

    Acyclic partitioning of large directed acyclic graphs

    Get PDF
    We investigate the problem of partitioning the vertices of a directed acyclic graph into a given number of parts. The objective function is to minimize the number or the total weight of the edges having end points in different parts, which is also known as edge cut. The standard load balancing constraint of having an equitable partition of the vertices among the parts should be met. Furthermore, the partition is required to be acyclic, i.e., the inter-part edges between the vertices from different parts should preserve an acyclic dependency structure among the parts. In this work, we adopt the multilevel approach with coarsening, initial partitioning, and refinement phases for acyclic partitioning of directed acyclic graphs. We focus on two-way partitioning (sometimes called bisection), as this scheme can be used in a recursive way for multi-way partitioning. To ensure the acyclicity of the partition at all times, we propose novel and efficient coarsening and refinement heuristics. The quality of the computed acyclic partitions is assessed by computing the edge cut. We also propose effective ways to use the standard undirected graph partitioning methods in our multilevel scheme. We perform a large set of experiments on a dataset consisting of (i) graphs coming from an application and (ii) some others corresponding to matrices from a public collection. We report improvements, on average, around 59% compared to the current state of the art

    Graph partitioning using matrix values for preconditioning symmetric positive definite systems

    Get PDF
    Prior to the parallel solution of a large linear system, it is required to perform a partitioning of its equations/unknowns. Standard partitioning algorithms are designed using the considerations of the efficiency of the parallel matrix-vector multiplication, and typically disregard the information on the coefficients of the matrix. This information, however, may have a significant impact on the quality of the preconditioning procedure used within the chosen iterative scheme. In the present paper, we suggest a spectral partitioning algorithm, which takes into account the information on the matrix coefficients and constructs partitions with respect to the objective of enhancing the quality of the nonoverlapping additive Schwarz (block Jacobi) preconditioning for symmetric positive definite linear systems. For a set of test problems with large variations in magnitudes of matrix coefficients, our numerical experiments demonstrate a noticeable improvement in the convergence of the resulting solution scheme when using the new partitioning approach

    An Efficient Paradigm for Feasibility Guarantees in Legged Locomotion

    Full text link
    Developing feasible body trajectories for legged systems on arbitrary terrains is a challenging task. Given some contact points, the trajectories for the Center of Mass (CoM) and body orientation, designed to move the robot, must satisfy crucial constraints to maintain balance, and to avoid violating physical actuation and kinematic limits. In this paper, we present a paradigm that allows to design feasible trajectories in an efficient manner. In continuation to our previous work, we extend the notion of the 2D feasible region, where static balance and the satisfaction of actuation limits were guaranteed, whenever the projection of the CoM lies inside the proposed admissible region. We here develop a general formulation of the improved feasible region to guarantee dynamic balance alongside the satisfaction of both actuation and kinematic limits for arbitrary terrains in an efficient manner. To incorporate the feasibility of the kinematic limits, we introduce an algorithm that computes the reachable region of the CoM. Furthermore, we propose an efficient planning strategy that utilizes the improved feasible region to design feasible CoM and body orientation trajectories. Finally, we validate the capabilities of the improved feasible region and the effectiveness of the proposed planning strategy, using simulations and experiments on the HyQ robot and comparing them to a previously developed heuristic approach. Various scenarios and terrains that mimic confined and challenging environments are used for the validation.Comment: 17 pages, 13 figures, submitted to Transaction on Robotic
    corecore