305 research outputs found

    A bipartite graph based proportional fair scheduling strategy to improve throughput with multiple resource blocks

    Get PDF
    The fifth-generation wireless communication is expected to provide a huge amount of capacity to cater to the need of an increasing number of mobile consumers, which can be satisfied by device-to-device (D2D) communication. Reusing the cellular user’s resources in an efficient manner helps to increase the spectrum efficiency of the network but it leads to severe interference. The important point in reusing cellular user resources is that D2D communication should not affect the cellular user’s efficiency. After achieving this requirement, the focus is now turned toward the allocation of resources to D2D communication. This resource allocation strategy is to be designed in such a way that it will not affect communication among the cellular user (CU). This scheme improves various performance objectives. This paper aims at designing a proportional fair resource allocation algorithm based on the bipartite graph which maintains the quality of service (QoS) of CUs while providing D2D communication. This algorithm can be merged with any other scheme of resource allocation for improving QoS and adopting changing channels. In this scheme, a D2D pair can be allocated with one or more than one resource blocks. The MATLAB simulations analyze the performance of the proposed scheme

    Distributed power allocation for D2D communications underlaying/overlaying OFDMA cellular networks

    Get PDF
    The implementation of device-to-device (D2D) underlaying or overlaying pre-existing cellular networks has received much attention due to the potential of enhancing the total cell throughput, reducing power consumption and increasing the instantaneous data rate. In this paper we propose a distributed power allocation scheme for D2D OFDMA communications and, in particular, we consider the two operating modes amenable to a distributed implementation: dedicated and reuse modes. The proposed schemes address the problem of maximizing the users' sum rate subject to power constraints, which is known to be nonconvex and, as such, extremely difficult to be solved exactly. We propose here a fresh approach to this well-known problem, capitalizing on the fact that the power allocation problem can be modeled as a potential game. Exploiting the potential games property of converging under better response dynamics, we propose two fully distributed iterative algorithms, one for each operation mode considered, where each user updates sequentially and autonomously its power allocation. Numerical results, computed for several different user scenarios, show that the proposed methods, which converge to one of the local maxima of the objective function, exhibit performance close to the maximum achievable optimum and outperform other schemes presented in the literature

    Resource and power management in next generation networks

    Get PDF
    The limits of today’s cellular communication systems are constantly being tested by the exponential increase in mobile data traffic, a trend which is poised to continue well into the next decade. Densification of cellular networks, by overlaying smaller cells, i.e., micro, pico and femtocells, over the traditional macrocell, is seen as an inevitable step in enabling future networks to support the expected increases in data rate demand. Next generation networks will most certainly be more heterogeneous as services will be offered via various types of points of access (PoAs). Indeed, besides the traditional macro base station, it is expected that users will also be able to access the network through a wide range of other PoAs: WiFi access points, remote radio-heads (RRHs), small cell (i.e., micro, pico and femto) base stations or even other users, when device-to-device (D2D) communications are supported, creating thus a multi-tiered network architecture. This approach is expected to enhance the capacity of current cellular networks, while patching up potential coverage gaps. However, since available radio resources will be fully shared, the inter-cell interference as well as the interference between the different tiers will pose a significant challenge. To avoid severe degradation of network performance, properly managing the interference is essential. In particular, techniques that mitigate interference such Inter Cell Interference Coordination (ICIC) and enhanced ICIC (eICIC) have been proposed in the literature to address the issue. In this thesis, we argue that interference may be also addressed during radio resource scheduling tasks, by enabling the network to make interference-aware resource allocation decisions. Carrier aggregation technology, which allows the simultaneous use of several component carriers, on the other hand, targets the lack of sufficiently large portions of frequency spectrum; a problem that severely limits the capacity of wireless networks. The aggregated carriers may, in general, belong to different frequency bands, and have different bandwidths, thus they also may have very different signal propagation characteristics. Integration of carrier aggregation in the network introduces additional tasks and further complicates interference management, but also opens up a range of possibilities for improving spectrum efficiency in addition to enhancing capacity, which we aim to exploit. In this thesis, we first look at the resource allocation in problem in dense multitiered networks with support for advanced features such as carrier aggregation and device-to-device communications. For two-tiered networks with D2D support, we propose a centralised, near optimal algorithm, based on dynamic programming principles, that allows a central scheduler to make interference and traffic-aware scheduling decisions, while taking into consideration the short-lived nature of D2D links. As the complexity of the central scheduler increases exponentially with the number of component carriers, we further propose a distributed heuristic algorithm to tackle the resource allocation problem in carrier aggregation enabled dense networks. We show that the solutions we propose perform significantly better than standard solutions adopted in cellular networks such as eICIC coupled with Proportional Fair scheduling, in several key metrics such as user throughput, timely delivery of content and spectrum and energy efficiency, while ensuring fairness for backward compatible devices. Next, we investigate the potentiality to enhance network performance by enabling the different nodes of the network to reduce and dynamically adjust the transmit power of the different carriers to mitigate interference. Considering that the different carriers may have different coverage areas, we propose to leverage this diversity, to obtain high-performing network configurations. Thus, we model the problem of carrier downlink transmit power setting, as a competitive game between teams of PoAs, which enables us to derive distributed dynamic power setting algorithms. Using these algorithms we reach stable configurations in the network, known as Nash equilibria, which we show perform significantly better than fixed power strategies coupled with eICIC

    Floating band D2D:exploring and exploiting the potentials of adaptive D2D-enabled networks

    Get PDF
    In this paper, we propose Floating Band D2D, an adaptive framework to exploit the full potential of Device-to-Device (D2D) transmission modes. We show that inband and outband D2D modes exhibit different pros and cons in terms of complexity, interference, and spectral efficiency. Moreover, none of these modes is suitable as a one-size-fits-all solution for today's cellular networks, due to diverse network requirements and variable users' behavior. Therefore, we unveil the need for going beyond traditional single-band mode-selection schemes. Specifically, we model and formulate a general and adaptive multi-band mode selection problem, namely Floating Band D2D. The problem is NP-hard, so we propose simple yet effective heuristics. Our results show the superiority of the Floating Band D2D framework, which dramatically increases network utility and achieves near complete fairness

    Analytical characterization of inband and outband D2D Communications for network access

    Get PDF
    Mención Internacional en el título de doctorCooperative short-range communication schemes provide powerful tools to solve interference and resource shortage problems in wireless access networks. With such schemes, a mobile node with excellent cellular connectivity can momentarily accept to relay traffic for its neighbors experiencing poor radio conditions and use Device-to-Device (D2D) communications to accomplish the task. This thesis provides a novel and comprehensive analytical framework that allows evaluating the effects of D2D communications in access networks in terms of spectrum and energy efficiency. The analysis covers the cases in which D2D communications use the same bandwidth of legacy cellular users (in-band D2D) or a different one (out-band D2D) and leverages on the characterization of underlying queueing systems and protocols to capture the complex intertwining of short-range and legacy WiFi and cellular communications. The analysis also unveils how D2D affects the use and scope of other optimization techniques used for, e.g., interference coordination and fairness in resource distribution. Indeed, characterizing the performance of D2D-enabled wireless access networks plays an essential role in the optimization of system operation and, as a consequence, permits to assess the general applicability of D2D solutions. With such characterization, we were able to design several mechanisms that improve system capabilities. Specifically, we propose bandwidth resource management techniques for controlling interference when cellular users and D2D pairs share the same spectrum, we design advanced and energy-aware access selection mechanisms, we show how to adopt D2D communications in conjunction with interference coordination schemes to achieve high and fair throughputs, and we discuss on end-to-end fairness—beyond the use of access network resources—when D2D communications is adopted in C-RAN. The results reported in this thesis show that identifying performance bottlenecks is key to properly control network operation, and, interestingly, bottlenecks may not be represented just by wireless resources when end-to-end fairness is of concern.Programa Oficial de Doctorado en Ingeniería TelemáticaPresidente: Marco Ajmone Marsan.- Secretario: Miquel Payaró Llisterri.- Vocal: Omer Gurewit
    • …
    corecore