112,509 research outputs found

    Model-Based Engineering for the support of Models of Computation: The Cometa Approach

    Get PDF
    The development of Real-Time Embedded Systems (RTES) increasingly requires the integration of several parts with different purposes. Consequently, the heterogeneous appearance of such systems creates a need to manage their growing complexity mainly due to the difficulty to interconnect the different parts composing them. Model-Based Engineering (MBE) has significantly participated in recent decades to find solutions in terms of methodologies and technical support tailored to the design of RTES. Indeed, several models are used to represent different aspects of the system. However, the interconnection of different modeling paradigms is still a difficult challenge. The handling of such problems requires a clear definition of the execution and interconnection semantics of the different models composing the system. Indeed, the abstraction of the execution semantics of machines or Models of Computation (MoC) can highlight properties for the whole system’s execution. In this paper, we propose an approach that captures these semantics at the earliest modeling phases with the aim of exhibiting properties that ease the design space exploration and performance analysis of systems. Our approach extends the Modeling and Analysis of Real-Time Embedded Systems profile (MARTE) by providing means to express communication semantics of models. We also review existing approaches for defining such execution semantics

    Component-based Design of Heterogeneous Reactive Systems in Prometheus

    Get PDF
    Designing embedded systems increasingly demands coping with heterogeneous systems, involving different models of computation, communication, and execution, on different levels of abstraction and different time scales. The component model BIP (Behavior, Interaction model, Priority) has been designed to support the construction of heterogeneous reactive systems. It enables heterogeneous modeling by separating the notions of behavior, interaction model, and execution model. We present here the design tool Prometheus, which implements the BIP component model, along with a set of algorithms for compositional verification. The use of the component framework is illustrated with two case studies involving different models of computation and communication

    Modeling and Software Synthesis for Multiprocessor Implementation of Wireless Communication Systems

    Get PDF
    In recent years, the complexity of designing embedded signal processing systems for wireless communications has increased significantly based on the need to support increasing levels of operational flexibility and adaptivity, while also supporting increasing data rates and bandwidths. These trends pose important design and implementation challenges to meet the required demands on communication system performance, real-time operation, energy efficiency, and reconfigurability. Dataflow models of computation provide a useful framework that can be built upon to address these challenges. Dataflow models provide high-level abstractions for specifying, analyzing and implementing a wide range of embedded signal processing applications. They allow designers to specify an application using high-level, platform-independent representations, and synthesize optimized embedded software that is targeted to specific types of hardware resources and design constraints. The growing complexity of wireless communication systems, as motivated above, along with the complexity of system-on-chip platforms for embedded signal processing result in new problems that must be addressed in developing effective dataflow-based design methodologies. First, significant improvements to dataflow-based models and methods are needed to effectively utilize heterogeneous computing platforms and multiple forms of parallelism under stringent constraints on real-time performance and energy consumption. Second, effective modeling and analysis methods for handling dynamic parameters within dataflow graph components are needed for reliable and efficient management of system-level adaptivity and reconfiguration. In this thesis, we address these problems by developing an integrated framework that exploits pipeline, data and task-level parallelism in dataflow models under memory constraints, and proposing novel dataflow modeling concepts and performance optimization techniques for design and implementation of dynamically parameterized communication systems. The main contributions of the thesis are summarized as follows: (1) Software synthesis framework for heterogeneous signal processing platforms. We have developed an integrated dataflow-based design framework called DIF-GPU, which provides a toolset for specification, optimization and software synthesis of embedded software targeted to heterogeneous CPU-GPU platforms. DIF-GPU incorporates novel models and methods in the dataflow interchange format (DIF) that are geared toward design optimization of signal processing systems on heterogeneous architectures composed of multicore CPUs and GPUs. DIF-GPU helps to free developers from low-level, platform-specific fine-tuning, and allows them to focus on higher-level aspects of communication system design. (2) Vectorization in DIF-GPU. In the context of dataflow models for embedded signal processing, vectorization is an important transformation for exploiting data parallelism. We have developed new techniques for integrated dataflow graph vectorization and scheduling on heterogeneous platforms. These techniques are developed in the DIF-GPU framework to provide optimized vectorization and scheduling capabilities for hybrid CPU-GPU platforms under memory constraints. For the targeted class of platforms, these techniques are shown to provide significantly better processing throughput compared to previous methods for a given memory constraint. We demonstrate our integrated vectorization and scheduling techniques by applying them to an Orthogonal Frequency Division Multiplexing (OFDM) receiver system. (3) Modeling parameterized, dynamic dataflow behavior. We introduce a novel modeling method, called parameterized sets of modes (PSMs), that enables efficient representation and analysis of adaptive and dynamically reconfigurable signal processing functionality. PSMs can be viewed as high-level abstractions that model parameterized functionality involving groups of related regimes of operation ("modes") for dynamic dataflow models. We develop formal foundations for PSM-based modeling, and demonstrate the utility of this form of modeling by using it to develop efficient methods for scheduling dynamically parameterized dataflow graphs on different types of relevant platforms

    Integrated Design Tools for Embedded Control Systems

    Get PDF
    Currently, computer-based control systems are still being implemented using the same techniques as 10 years ago. The purpose of this project is the development of a design framework, consisting of tools and libraries, which allows the designer to build high reliable heterogeneous real-time embedded systems in a very short time at a fraction of the present day costs. The ultimate focus of current research is on transformation control laws to efficient concurrent algorithms, with concerns about important non-functional real-time control systems demands, such as fault-tolerance, safety,\ud reliability, etc.\ud The approach is based on software implementation of CSP process algebra, in a modern way (pure objectoriented design in Java). Furthermore, it is intended that the tool will support the desirable system-engineering stepwise refinement design approach, relying on past research achievements ¿ the mechatronics design trajectory based on the building-blocks approach, covering all complex (mechatronics) engineering phases: physical system modeling, control law design, embedded control system implementation and real-life realization. Therefore, we expect that this project will result in an\ud adequate tool, with results applicable in a wide range of target hardware platforms, based on common (off-theshelf) distributed heterogeneous (cheap) processing units

    Software for Embedded Control Systems

    Get PDF
    The research of our team deals with the realization of control schemes on digital computers. As such the emphasis is on embedded control software implementation. Applications are in the field of mechatronic devices, using a mechatronic design approach (the integrated and optimal design of a mechanical system and its embedded control system). The ultimate goal is to support the application developer (i.e. mechatronic design engineer) such that implementing control software according to ðo it the first time right¿ becomes business as usual

    The TASTE Toolset: turning human designed heterogeneous systems into computer built homogeneous software.

    Get PDF
    The TASTE tool-set results from spin-off studies of the ASSERT project, which started in 2004 with the objective to propose innovative and pragmatic solutions to develop real-time software. One of the primary targets was satellite flight software, but it appeared quickly that their characteristics were shared among various embedded systems. The solutions that we developed now comprise a process and several tools ; the development process is based on the idea that real-time, embedded systems are heterogeneous by nature and that a unique UML-like language was not helping neither their construction, nor their validation. Rather than inventing yet another "ultimate" language, TASTE makes the link between existing and mature technologies such as Simulink, SDL, ASN.1, C, Ada, and generates complete, homogeneous software-based systems that one can straightforwardly download and execute on a physical target. Our current prototype is moving toward a marketed product, and sequel studies are already in place to support, among others, FPGA systems

    Concurrent Design of Embedded Control Software

    Get PDF
    Embedded software design for mechatronic systems is becoming an increasingly time-consuming and error-prone task. In order to cope with the heterogeneity and complexity, a systematic model-driven design approach is needed, where several parts of the system can be designed concurrently. There is however a trade-off between concurrency efficiency and integration efficiency. In this paper, we present a case study on the development of the embedded control software for a real-world mechatronic system in order to evaluate how we can integrate concurrent and largely independent designed embedded system software parts in an efficient way. The case study was executed using our embedded control system design methodology which employs a concurrent systematic model-based design approach that ensures a concurrent design process, while it still allows a fast integration phase by using automatic code synthesis. The result was a predictable concurrently designed embedded software realization with a short integration time

    Programming MPSoC platforms: Road works ahead

    Get PDF
    This paper summarizes a special session on multicore/multi-processor system-on-chip (MPSoC) programming challenges. The current trend towards MPSoC platforms in most computing domains does not only mean a radical change in computer architecture. Even more important from a SW developer´s viewpoint, at the same time the classical sequential von Neumann programming model needs to be overcome. Efficient utilization of the MPSoC HW resources demands for radically new models and corresponding SW development tools, capable of exploiting the available parallelism and guaranteeing bug-free parallel SW. While several standards are established in the high-performance computing domain (e.g. OpenMP), it is clear that more innovations are required for successful\ud deployment of heterogeneous embedded MPSoC. On the other hand, at least for coming years, the freedom for disruptive programming technologies is limited by the huge amount of certified sequential code that demands for a more pragmatic, gradual tool and code replacement strategy

    Contract Aware Components, 10 years after

    Get PDF
    The notion of contract aware components has been published roughly ten years ago and is now becoming mainstream in several fields where the usage of software components is seen as critical. The goal of this paper is to survey domains such as Embedded Systems or Service Oriented Architecture where the notion of contract aware components has been influential. For each of these domains we briefly describe what has been done with this idea and we discuss the remaining challenges.Comment: In Proceedings WCSI 2010, arXiv:1010.233
    corecore