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In recent years, the complexity of designing embedded signal processing sys-

tems for wireless communications has increased significantly based on the need to

support increasing levels of operational flexibility and adaptivity, while also sup-

porting increasing data rates and bandwidths. These trends pose important design

and implementation challenges to meet the required demands on communication

system performance, real-time operation, energy efficiency, and reconfigurability.

Dataflow models of computation provide a useful framework that can be built

upon to address these challenges. Dataflow models provide high-level abstractions

for specifying, analyzing and implementing a wide range of embedded signal pro-

cessing applications. They allow designers to specify an application using high-level,

platform-independent representations, and synthesize optimized embedded software

that is targeted to specific types of hardware resources and design constraints.

The growing complexity of wireless communication systems, as motivated

above, along with the complexity of system-on-chip platforms for embedded signal



processing result in new problems that must be addressed in developing effective

dataflow-based design methodologies. First, significant improvements to dataflow-

based models and methods are needed to effectively utilize heterogeneous computing

platforms and multiple forms of parallelism under stringent constraints on real-

time performance and energy consumption. Second, effective modeling and analysis

methods for handling dynamic parameters within dataflow graph components are

needed for reliable and efficient management of system-level adaptivity and recon-

figuration.

In this thesis, we address these problems by developing an integrated frame-

work that exploits pipeline, data and task-level parallelism in dataflow models un-

der memory constraints, and proposing novel dataflow modeling concepts and per-

formance optimization techniques for design and implementation of dynamically

parameterized communication systems. The main contributions of the thesis are

summarized as follows:

(1) Software synthesis framework for heterogeneous signal processing plat-

forms. We have developed an integrated dataflow-based design framework called

DIF-GPU, which provides a toolset for specification, optimization and software

synthesis of embedded software targeted to heterogeneous CPU-GPU platforms.

DIF-GPU incorporates novel models and methods in the dataflow interchange for-

mat (DIF) that are geared toward design optimization of signal processing systems

on heterogeneous architectures composed of multicore CPUs and GPUs. DIF-GPU

helps to free developers from low-level, platform-specific fine-tuning, and allows

them to focus on higher-level aspects of communication system design.



(2) Vectorization in DIF-GPU. In the context of dataflow models for embedded

signal processing, vectorization is an important transformation for exploiting data

parallelism. We have developed new techniques for integrated dataflow graph vector-

ization and scheduling on heterogeneous platforms. These techniques are developed

in the DIF-GPU framework to provide optimized vectorization and scheduling capa-

bilities for hybrid CPU-GPU platforms under memory constraints. For the targeted

class of platforms, these techniques are shown to provide significantly better pro-

cessing throughput compared to previous methods for a given memory constraint.

We demonstrate our integrated vectorization and scheduling techniques by applying

them to an Orthogonal Frequency Division Multiplexing (OFDM) receiver system.

(3) Modeling parameterized, dynamic dataflow behavior. We introduce a novel

modeling method, called parameterized sets of modes (PSMs), that enables efficient

representation and analysis of adaptive and dynamically reconfigurable signal pro-

cessing functionality. PSMs can be viewed as high-level abstractions that model pa-

rameterized functionality involving groups of related regimes of operation (“modes”)

for dynamic dataflow models. We develop formal foundations for PSM-based mod-

eling, and demonstrate the utility of this form of modeling by using it to develop

efficient methods for scheduling dynamically parameterized dataflow graphs on dif-

ferent types of relevant platforms.
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Chapter 1

Introduction

The evolution of technologies to support fifth generation (5G) wireless com-

munication systems has resulted in rapidly increasing requirements on throughput

and flexibility in design and implementation of embedded signal processing systems

for wireless communications. On one hand, to support key components in 5G com-

patible user devices, such as massive multiple input, multiple output (MIMO) sys-

tems [1], interference alignment [2] and device-to-device (D2D) communication [3],

the baseband processing speed of 5G user devices needs to be dramatically im-

proved. Meanwhile, capabilities such as context-awareness and multi-radio-access

technologies require 5G user devices to be highly flexible with cognitive capabilities

for spectrum sensing and multi-layer reconfiguration (e.g., see [4, 5, 6]).

Dataflow models of computation provide a useful framework that can be built

upon to address these challenges. Dataflow models provide high-level abstractions

for specifying, analyzing and implementing a wide range of embedded system ap-

plications (see [7]). A dataflow graph is a directed graph G = (V,E) with a set of

vertices (actors) V and a set of edges E. An actor v ∈ V represents a computational

task of arbitrary complexity. An edge e = (u, v) ∈ E represents a first-in, first-out

(FIFO) buffer that stores data values as they are produced by u and consumed by

v.
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Figure 1.1: Overview of dataflow-based design framework.

Dataflow models offer a promising foundation for systematic design method-

ologies for those developing wireless communication systems, in part because they

provide natural, scalable and retargetable representations of signal processing appli-

cations [7]. Figure 1.1 demonstrates the general workflow of dataflow-based design.

Key advantages provided by effective incorporation of dataflow-based design

methodologies include:

• Rapid Prototyping — Given libraries of dataflow graph components (actors and

FIFOs), designers can quickly generate system-level prototypes for concept

validation and analysis under multiple design constraints [8].

• Retargetability — Since dataflow graphs are high-level abstractions of the un-

derlying applications, designers can migrate a common dataflow model of an

application across different types of computing platforms, while changes are

mostly localized to the implementations of individual actors and FIFO types.

• Explicit Parallelism — In dataflow graphs, pipeline-, data- and task-level par-

2



(a) (b) (c)

Figure 1.2: Parallelism expressed in a synchronous dataflow graph. (a) Task paral-
lelism. (b) Pipeline parallelism. (c) Data parallelism by actor vectorization.

allelism are explicitly exposed, as illustrated in Figure 1.2. Pipeline parallelism

can be achieved by overlapping the execution of actor firings that belong to

different graph iterations (see Figure 1.2(a)); task parallelism can be exploited

by assigning different actors to different processors or processor cores (see Fig-

ure 1.2(b)); and data parallelism can be exploited by actor vectorization, where

different firings of the same actor execute simultaneously to process different

tokens (see Figure 1.2(c)).

These advantages of applying dataflow-based design methodologies can sig-

nificantly improve the designer’s productivity and effectiveness in validating and

optimizing complex signal processing implementations that must satisfy stringent,

multi-dimensional constraints.

Software synthesis from dataflow graphs [9] is the process of generating effi-

cient embedded software implementations from applications specified as dataflow

graphs. As described above, new requirements on flexibility and throughput emerg-

ing from 5G technologies pose novel constraints on software synthesis from dataflow

graphs. First, significant improvements to dataflow-based models and methods are

needed to effectively utilize heterogeneous computing platforms and multiple forms

3



of parallelism under stringent constraints on real-time performance and energy con-

sumption. Second, effective modeling and analysis methods for handling dynamic

parameters within dataflow graph components are needed for reliable and efficient

management of system-level adaptivity and reconfiguration.

In this thesis, we address these problems by developing an integrated frame-

work that exploits pipeline, data and task-level parallelism in dataflow models under

memory constraints, and proposing novel dataflow modeling concepts and perfor-

mance optimization techniques for design and implementation of dynamically pa-

rameterized communication systems. We outline the contributions of this thesis in

the remainder of this chapter.

1.1 Contributions

In this thesis, we develop an integrated framework that synthesizes high-

throughput embedded software from applications specified using dataflow models.

The synthesized software is targeted to hybrid CPU-GPU platforms (HCGPs), which

is a class of heterogeneous computing platforms that is of increasing relevance in em-

bedded signal processing systems. We have also developed new modeling techniques

for representation of reconfigurable applications using dynamic dataflow graphs, and

efficient scheduling of these graphs. Here, by scheduling, we mean the assignment

of actors to processing resources, and the ordering of actors that share the same re-

source. Scheduling is a critical aspect of software synthesis that has strong influence

on relevant implementation metrics.
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Although our work is driven by emerging challenges in design and implementa-

tion of wireless communication systems, it is envisioned that the tools and techniques

developed in this work can be readily adapted across a wide range of other signal

processing application areas in which system-level reconfiguration capabilities and

heterogeneous multi-processor architectures are relevant. Investigating such adap-

tations is a useful direction for future work.

The contributions of this thesis are presented in three main parts. The first

part presents an integrated software synthesis framework for mapping dataflow

graphs onto HCGPs. The second part develops new models and methods for

memory-constrained, HCGP-targeted vectorization and scheduling of dataflow graphs.

The third part introduces new methods to specify and analyze parameterized dy-

namic dataflow functionality for reconfigurable signal processing systems.

1.1.1 Design Framework for Heterogeneous Platforms

Software development for heterogeneous embedded platforms without high-

level, model-based support can be challenging and inefficient, since programming

models for heterogeneous platforms, such as CUDA [10] and OpenCL [11], require

the developer to manually manage low level operations including data transfer,

task scheduling, and processor synchronization. In addition, the performance gain

on CPU-GPU platforms is dependent on various complex factors, including the

nature of the computational tasks that are executed, details of the targeted hardware

platforms, and the amount of parallel data available (e.g., see [12]). Thus, case-by-

5



case derivation and implementation at the system level can be highly error-prone

and time-consuming. Without careful consideration of the hardware details, the

speedup gain from GPU can be reduced or depleted (e.g., see [13, 14]).

A major challenge in developing such high-level, model-based design tools for

CPU-GPU platforms is the optimized exploitation and integration of heterogeneous

forms of parallelism, including pipeline, data, and task parallelism. Such optimiza-

tion is critical to effective utilization of CPU-GPU platforms and is complicated due

to inter-related design issues that include task scheduling, interprocessor communi-

cation, and memory management.

In this thesis, we have developed an integrated dataflow-based design frame-

work called DIF-GPU, which addresses this challenge, and provides new methods

for synthesis and optimization of embedded software targeted to HCGPs. DIF-GPU

builds on the dataflow interchange format (DIF) package, which is a software envi-

ronment for developing and experimenting with dataflow-based design methods and

synthesis techniques for embedded signal processing systems [15]. Our framework

frees developers from low-level, platform-specific fine-tuning, and allows designers

to focus on higher level aspects of system design, such as iteration on the set of

supported application features or quality-of-service trade-offs.

The main contributions of this framework are summarized as follows. (1)

We have developed novel techniques for integrating dataflow vectorization into the

scheduling process as an effective way to exploit data-parallelism when implementing

SDF graphs on hybrid CPU-GPU platforms. (2) We have developed compile-time

tools and a run-time system for scheduling vectorized dataflow actors on CPU-
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GPU platforms in a manner that provides significant throughput improvement over

conventional scheduling techniques. (3) We have integrated vectorization, scheduling

and code generation capabilities in the DIF-GPU framework to provide a high level

of automation in generating efficient embedded software from SDF representations.

The details of the DIF-GPU framework are presented in Chapter 3.

1.1.2 Memory-Constrained Vectorization and Scheduling

System-level performance optimization requires efficient utilization of both

CPU cores and GPUs on HCGPs. Manual performance tuning on a case-by-case

suffers from inefficiency and can lead to sub-optimal solutions. When system con-

straints or the target platforms are changed, designer often need to repeat the same

process, which further reduces development productivity. Therefore, methods based

on high-level models that systematically explores parallelization opportunities in the

presence of system constraints on various HCGPs are highly desirable.

GPUs can achieve high throughput gain over CPUs when parallel data are

abundant; when parallel data is insufficient, however, GPU performance can be

inferior to CPU cores. For SDF graphs, such amount of parallel data may not ex-

plicitly present; in this case, vectorization is needed for effective exploitation of data

parallelism and GPU utilization. However, this situation has been largely neglected

by previous research efforts, which assume the SDF models has expressed adequate

data parallelism. Because actor firing time scales differently with vectorization on

CPU and GPU, throughput optimization problem on HCGPs faces more challenges
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as it has to take both vectorization and scheduling into consideration. We refer the

problem that considers vectorization, scheduling and pipelining together for data,

task and pipeline-parallelism exploitation on SDF graphs as the SDF vectorization-

scheduling throughput optimization (VSTO) problem.

In this thesis, we present novel vectorization and scheduling techniques that

aims at solving VSTO under memory constraint. Our contributions are summa-

rized as follows. (1) We formally present the VSTO problem on HCGPs. (2) We

propose effective vectorization and scheduling strategy for for VSTO problem. (3)

We extend the DIF-GPU integrated framework to analyze, optimize VSTO problem

to synthesize throughput efficient implementation on hybrid CPU-GPU platforms.

(4) We show that our methods can achieve greater throughput improvement than

previous methods under same memory constraint. We demonstrate our approach

by applying our methods to Orthogonal Frequency Division Multiplexing (OFDM)

Receiver (OFDM-RX), a practical wireless communication application.

The details of vectorization and scheduling methods are presented in Chap-

ter 4.

1.1.3 Modeling Parameterized Dynamic Dataflow

For complex embedded applications, implementation at various levels based on

multidimensional criteria, is important to meet the design requirements for system

functionality. Dataflow modeling and analysis techniques for static dataflow models,

such as Synchronous Dataflow (SDF) [16] and cyclo-static dataflow (CSDF) [17],
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are well established. However, the static models lack the ability to express dynamism

in the application such as parameterization, data-dependent state transition, and

reconfiguration.

The Core Functional Dataflow (CFDF) is proposed to express dynamics in

complex signal processing applications. CFDF applies the concept of actor “modes”,

where different modes can have differing dataflow behavior, and mode transitions

can be data-dependent. CFDF is tailored to natural design of actors with dynamic

functionality, and facilitates prototyping of dataflow applications, as well as identi-

fication of more specialized dataflow behaviors [18].

When using CFDF, a designer specifies the behavior of the different modes of

each CFDF actor, and the transitions among these modes. The trend of increasing

flexibility in DSP systems has resulted in complex design spaces, involving large

sets of user-constraints, system parameters, hardware specifications, and their in-

teraction. Assigning an one-to-one correspondence between an actor’s mode and a

configuration will create a large number of modes. As the number of modes grows

and the mode transitions become more complex due to increased dynamic behav-

ior in the application, CFDF formulations can become unwieldy in terms of actor

specification, analysis and implementation.

In this thesis, our contributions in modeling dynamic dataflow behavior are

summarized as follows. (1) We introduce a novel modeling method, called parameter-

ized sets of modes (PSM), which is a high-level abstraction that efficiently represents

parameterized functionality within groups of related modes for CFDF actors. (2) We

have developed the formal foundations of PSM-based modeling, and demonstrate its
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utility through combining with analysis of static scheduling regions [19] and proces-

sor selection on CPU-GPU heterogeneous platform. (3) We develop two case studies

as examples of PSM applications, involving the mapping of reconfigurable wireless

communication functionality into efficient implementations.

The concept of PSM and its application to efficient scheduling are presented

in detail in Chapter 5.

1.2 Outline of Thesis

The remainder of this dissertation is organized as follows. Chapter 2 pro-

vides background on various topics that are relevant for this research, including

dataflow modeling, hybrid CPU-GPU computing platforms, and specific dataflow

tools and techniques that our proposed new methods and design framework build

upon. In Chapter 3, we present DIF-GPU, which is an integrated, dataflow-based

tool for vectorization, scheduling, and software synthesis targeted to hybrid CPU-

GPU platforms. The emphasis in this chapter is on the novel capabilities for software

synthesis that are incorporated in DIF-GPU. In Chapter 4, we present in detail the

models and algorithms for vectorization and scheduling that are used in DIF-GPU.

These methods are geared toward optimization of signal processing throughput un-

der memory constraints and constraints on processing resources. In Chapter 5, we

present the formalism of parameterized sets of modes (PSMs) and discuss their ap-

plication to efficient scheduling of dataflow graphs. We conclude in Chapter 6 with a

summary of the developments in the thesis, and a discussion of directions for future
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work.
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Chapter 2

Background

In this chapter, we provide background on core concepts that are applied and

built upon in the work presented in this thesis.

2.1 Synchronous Dataflow

As briefly described in Chapter 1, a dataflow graph is a directed graph G =

(V,E) composed of a set of vertices (actors) V and a set of edges E. An actor v ∈ V

represents a computational task of arbitrary complexity. An edge e = (u, v) ∈ E

represents a first-in, first-out (FIFO) data buffer that stores data values (tokens)

as they are communicated from the output of actor u to the input of v. Tokens

represent the basic unit of data that is processed by actors. Dataflow actors are

executed in terms of discrete units of execution, called firings, of the associated

actors.

Synchronous dataflow (SDF) is a specialized form of dataflow in which the

numbers of tokens produced by an actor onto each output edge and consumed from

each input edge are constant across all firings of the actor [16]. SDF is used widely

in the design and implementation of signal processing systems (e.g., see [7]). An

important feature of properly-constructed SDF graphs is that they can be executed

indefinitely (e.g., on unbounded streams of input data) with bounded memory re-
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quirements, which is important for signal processing systems [16]. Such bounded

memory execution can be achieved using a scheduling construct called a valid peri-

odic schedule or simply valid schedule. SDF graphs for which valid schedules exist

are called consistent SDF graphs. Each edge e in an SDF graph is associated with a

constant production rate and consumption rate, where these “rates” are in terms of

tokens per actor firing. These rates are denoted, respectively, as prd(e) and cns(e).

For each actor v in a consistent SDF graph, there is a unique repetition count

q(v), which gives the minimum number of firings of v in a valid schedule. The vector

q of these repetition counts, indexed by the actors in the associated SDF graph, is

called the repetitions vector of the graph. An SDF actor in DIF-GPU may have

state that can be changed across firings, and affect the computation of the actor

without changing the production and consumption rates. For purposes of analysis

in which stateless actors are assumed (e.g., for certain kinds of throughput analysis

algorithms), an actor with state can be converted to a stateless actor by modeling

the state externally to the actor through a self-loop edge. Here, by a self-loop edge,

we mean an edge whose source and sink vertices are the same. We refer to an actor

without state as a stateless actor, and an SDF graph containing only stateless actors

as a stateless SDF graph.

2.2 Core Functional Dataflow

As system complexity increases, coarse-grained, dynamic dataflow models have

gained increasing significance for their flexibility and their power in exposing high
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level application structure that is relevant for deriving optimized implementations.

Core functional dataflow(CFDF) is a deterministic sub-class of enable-invoke

dataflow (EIDF) [8] in which dynamic functionality in an actor is specified as a set

of actor modes. More formally, each CFDF actor A is characterized by a nonempty

set MA = {m1,m2, . . . ,mn} of modes in which it can execute, and for any given

mode m ∈ MA, the actor A consumes a fixed number of tokens per firing on each

input port, and produces a fixed number of tokens per firing on each output port.

These production and consumption rates may vary across different modes, but must

be constant for any given mode. Each CFDF actor A is also characterized by its

enabling function εA, which determines whether or not, based on a given set of token

populations on its input FIFOs, A is enabled. If A has at least one input port, then

this enabling function can be viewed as a mapping shown in Equation 2.1:

εA : (TA ×MA)→ B, (2.1)

where TA = N |in(A)| denotes the set of all possible buffer populations for input ports

of A (assuming some underlying ordering of these ports) [8]. If A has no input ports,

then its enabling function reduces simply to the Boolean constant true. The CFDF

formulation of enabling functions can easily be generalized to take into account

finite-capacity output buffers (i.e., by requiring sufficient free space on output buffers

before allowing an actor to be fireable).

When A fires, A executes in its current mode, then selects one next mode

from its set of modes. In each mode, A possesses SDF dataflow behavior, meaning
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that the production/consumption rates on all actor output/input ports are known,

constant values. The next mode determines the mode in which the next actor

invocation executes (unless the actor mode is reset or otherwise overridden by the

controlling scheduler). The next mode determined during an actor invocation can

be fixed (known at compile time) or data dependent.

Although algorithms to compute periodic schedules for static dataflow models

have been established, the problem of finding periodic schedules for buffer-bounded

execution for CFDF and other dynamic dataflow models is still unsolved. For brevity

and clarity, we suppress details of bounded buffer CFDF execution in this thesis,

and we simply assume that FIFOs have unbounded token capacity, unless otherwise

stated.

2.3 Heterogeneous Computing Platforms

Heterogeneous computing platforms (HCPs) consist of multiple processor types,

such as mixed combinations of CPUs and GPUs. In this thesis, we target the class of

hybrid CPU-GPU architectures, which is of growing popularity in embedded signal

processing systems. Each platform in this class consists of a multicore CPU that

is integrated with one or more GPUs. The CPU controls overall execution flow,

and is thus referred to as the “host” of the enclosing heterogeneous multiprocessor

platform. The GPU receives instructions and data from the CPU, and is referred

to as the (acceleration) device.

Each GPU has its own memory (device memory), which is separated from
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main memory and other device memory. In the class of HCPs that we target in

this thesis, a shared bus is used for data transfer between the CPU and the GPUs,

and for any data transfer between different GPUs. The CPU can read and write

directly on the main memory; however, when data required for a GPU task in an

HCP is outside the device memory, the GPU copies the data into device memory

via the shared bus. Data transfers between the host and each device are referred to

as host-to-device or device-to-host data transfers depending on the direction. These

types of data transfers can result in large overhead that can significantly reduce the

performance gain of HCPs [14].
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Chapter 3

DIF-GPU Design Framework

Heterogeneous computing platforms with multicore CPUs and GPUs are of

increasing interest to designers of embedded signal processing systems since they

offer the potential for significant performance boost while maintaining the flexibility

of software-based design flows. Developing optimized implementations for CPU-

GPU platforms is challenging due to complex, inter-related design issues, including

task scheduling, interprocessor communication, memory management, and modeling

and exploitation of different forms of parallelism. In this part of thesis, we present

an automated, dataflow based, design framework called DIF-GPU for application

mapping and software synthesis on heterogeneous CPU-GPU platforms. DIF-GPU

is based on novel extensions to the dataflow interchange format (DIF) package, which

is a software environment for developing and experimenting with dataflow-based

design methods and synthesis techniques for embedded signal processing systems.

DIF-GPU exploits multiple forms of parallelism by deeply incorporating efficient

vectorization and scheduling techniques for synchronous dataflow specifications, and

incorporating techniques for streamlining interprocessor communication. DIF-GPU

also provides software synthesis capabilities to help accelerate the process of moving

from high-level application models to optimized implementations.

Material described in this chapter has been published in [20].
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3.1 Introduction

Driven by continuously growing demand for functionality and performance,

many types of embedded signal processing systems now utilize heterogeneous multi-

processor platforms. Among a variety of available classes of heterogeneous platforms,

multicore CPU-GPU platforms, which integrate multicore CPUs and GPU devices,

have been shown to provide significant performance gains on a wide range of em-

bedded applications. Examples of widely-used CPU-GPU product families are the

NVIDIA Tegra and ARM Mali.

As motivated in Chapter 1 and elaborated on in [7], model-based design

methodologies for embedded signal processing help to free developers from low-

level, platform-specific fine-tuning, and enable more design effort to be directed to

higher-level aspects of system design. However, important challenges must be ad-

dressed in the development of model-based design tools that are of practical utility

for state-of-the-art CPU-GPU platforms. These challenges include effective meth-

ods for analysis and design optimization that incorporate integrated consideration

of:

• exploitation of pipeline, data, and task-level parallelism;

• management of interprocessor data transfer and synchronization;

• buffer allocation; and

• task scheduling.

The DIF-GPU design framework that we have developed aims to address these

18



challenges, and provides new methods for synthesis and optimization of embedded

software targeted to heterogeneous CPU-GPU platforms. DIF-GPU is based specifi-

cally on the synchronous dataflow (SDF) model of computation [16], which is widely

used for model-based design of embedded software (e.g., see [7]). DIF-GPU ex-

ploits pipeline, task and data parallelism in SDF-based application specifications by

systematically integrating actor (dataflow software component) level vectorization,

dataflow graph scheduling, dataflow buffer management, interprocessor communi-

cation, and software synthesis.

Figure 3.1(a) demonstrates a simple example of an SDF graph. This graph

represents an upsampling subsystem that contains a signal source src, a signal sink

snk (e.g., an interface to a memory buffer or file where the upsampled output stream

is to be stored), and an upsampler usp.

In addition to applying the DIF package, as mentioned above, DIF-GPU also

applies the lightweight dataflow environment (LIDE) [21], which provides a pro-

gramming methodology and associated application programming interfaces (APIs)

for implementing dataflow graph actors and edges in a wide variety of platform-

oriented languages, such as C, C++, CUDA, and Verilog.

3.2 Related Work

A variety of model-based design frameworks has been explored previously for

heterogeneous multiprocessor platforms. For example, StreamIt [22] provides a

dataflow-based programming model and design infrastructure for stream process-
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Figure 3.1: An example dataflow application graph. (a) Original SDF graph. (b)
Vectorized SDF graph νb(G). (c) νb(G) after insertion of data transfer actors.

ing applications. StreamIt provides dataflow abstractions for computing blocks

and facilitates mapping strategies for various computing platforms. The works

in [23, 24, 25] extend the StreamIt back-end to support heterogeneous CPU-GPU

platforms and develop throughput optimization techniques for dataflow programs

running on GPUs. The focal point in these works is to improve the throughput

of the GPU kernels generated from dataflow graphs by optimizing GPU memory

accesses, register allocation and processor utilization. In this thesis, however, our

focus is optimization across heterogeneous platforms that utilize both CPUs and

GPUs for computational tasks. Another distinguishing feature of our work is that

we allow any number of kernels to be generated and scheduled from a single dataflow

graph, while these related works each generate a single kernel from each graph.
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A workflow that combines vectorization, a Mixed Integer Programming (MIP)

scheduler, and integration with the GNU Radio environment is proposed in [26].

The DIF-GPU framework provides unique capabilities compared to [26] by provid-

ing a highly automated, standalone toolset (independent of GNU Radio); its sup-

port for multicore CPUs; its incorporation of efficient scheduling heuristics that are

adapted for CPU-GPU implementation; and its extensibility for easily integrating

other scheduling heuristics.

Various other research efforts have also targeted heterogeneous platforms from

dataflow graphs and related models. For example, tools for generating CUDA code

from task graph specifications are presented in [27, 28]. In contrast to DIF-GPU,

these prior works do not exploit data parallelism resulting from vectorizing dataflow

actors. In [29], a dataflow-based tool is built on top of OpenCL to execute applica-

tions specified as SDF graphs on heterogeneous systems. This tool provides high-

level abstractions for parallel actor invocations and FIFO communication, along

with an OpenCL code synthesizer. In this tool, however, exploitation of data par-

allelism is restricted to stateless SDF graphs. Furthermore, automated scheduling

capabilities are not provided for mapping the input SDF graphs. DIF-GPU goes

beyond the aforementioned methods and tools through its deep integration of graph-

and actor-level vectorization into the scheduling process, and its integration of SDF

graph scheduling and software synthesis facilities.

Programming models supporting run-time task scheduling and parallelization

on hybrid CPU-GPU platforms have been proposed, such as FastFlow [30] and

OmpSS [31]. DIF-GPU is different compared to these approaches in its foundation
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in formal dataflow semantics, and its integrated emphasis on compile-time dataflow

transformations, scheduling, and software synthesis.

3.3 DIF-GPU Framework

DIF-GPU integrates important aspects of synthesizing high performance soft-

ware targeted to hybrid CPU-GPU platforms from dataflow models. These aspects

include vectorization, scheduling, and code synthesis of cooperating C and CUDA

subsystems. The DIF-GPU framework is depicted in Figure 3.2. The framework

provides systematic approaches for exploiting data, task and pipeline parallelism in

the given dataflow model, and managing interprocessor data transfers efficiently. In

the following sections, we describe the different steps that comprise the integrated

workflow of DIF-GPU.

3.3.1 Dataflow Graph Specification

The workflow in DIF-GPU begins with a dataflow model representing the

given DSP application, which is specified in the DIF language. The DIF language,

supported as a component of the DIF package introduced in Section 3.1, is a de-

sign language for specifying signal processing systems in terms of dataflow models

of computation. The DIF language is focused on representing abstract modeling

structure in terms of actors, edges, hierarchical subgraphs, and their interconnec-

tions and associated model-specific properties, such as production and consumption

rates for SDF components, and production and consumption sequences for cyclo-
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Figure 3.2: The DIF-GPU framework.

static dataflow (CSDF) [17] components. A variety of different dataflow modeling

styles, including SDF, CSDF, Boolean dataflow [32], and core functional dataflow [8],

are supported in the DIF language. For further background on the DIF language,

we refer the reader to [33, 15].

Signal processing applications specified in the DIF language are referred to

as DIF specifications. DIF-GPU supports only DIF specifications that are based

on SDF. Extension of DIF-GPU to work with other forms of dataflow is a useful

direction for future work. In DIF-GPU, DIF specifications are first parsed and

converted into internal representations in the DIF package. The vectorization and

scheduling features of DIF-GPU, as well as the code synthesis capabilities, operate

on these internal representations. Figure 3.3 shows the DIF specification of the
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sdf usp_graph {

topology {

nodes = src, usp, snk;

edges = e1 (src,usp), e2 (usp,snk);

}

production {e1 = 2; e2 = 3; }

consumption {e1 = 1; e2 = 2; }

attribute edge_type {

e1 = "float"; e2 = "float";

}

actor src {

name = "src_1f";

port_0 : OUTPUT = e1;

}

actor usp {

name = "usp3";

GPU_enabled = 1;

port_0 : INPUT = e1;

port_1 : OUTPUT = e2;

}

actor snk {

name = "snk_1f";

port_0 : INPUT = e2;

}

}

Figure 3.3: A DIF specification of the example graph shown in Figure 3.1(a).

acyclic dataflow graph depicted in Figure 3.1(a), where usp has GPU-accelerated

implementation, while src and snk does not.

Currently in DIF-GPU, we assume the input SDF graph is acyclic. A wide

variety of practical signal processing systems can be represented as acyclic SDF

graphs (e.g., see [7]). For SDF graphs that contain cycles, the delays within cycles

impose bounds on the amount of vectorization that can be applied [34]. Investigating

systematic approaches for vectorization with cycle- and delay-induced bounds in

DIF-GPU is a useful direction for future work.
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3.3.2 Implementation of Actors and Edges

To implement the internal functionality of actors and edges in DIF-GPU, we

employ the lightweight dataflow environment (LIDE), which was introduced in Sec-

tion 3.1. In this section, we provide a brief overview of selected aspects of LIDE

with emphasis on aspects that are especially relevant to DIF-GPU. For more details

on LIDE and its underlying dataflow semantics, which are based on core functional

dataflow (of which SDF is a special case), we refer the reader to [21, 35, 8].

Developing an actor in LIDE requires implementation of four methods for the

actor — these are called the new, enable, invoke and terminate methods. The new

method performs memory allocation and initialization for the actor. The enable

method returns a Boolean value indicating the enable condition for the actor — i.e.,

whether there is sufficient data on its input edges, and sufficient empty space on

its output edges to support a firing of the actor. Use of the enable method can

be bypassed if the enable condition can be validated at compile time — e.g., when

implementing a static schedule for an SDF graph. The invoke method consumes

input tokens from the actor input edges, performs the computation associated with

a firing of the actor, and produces the resulting output tokens on the actor output

edges. LIDE does not place restrictions on the complexity of the invoke method.

In DIF-GPU, we parameterize the invoke method by the vectorization degree N

that is applied to the actor. Thus, N firings of the original (unvectorized) actor

can be executed in parallel on the target GPU through an invocation of the invoke

method (assuming that there are sufficient resources available on the GPU to support
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this many parallel firings). The terminate method frees memory that has been

dynamically allocated for the actor.

The APIs for actor implementation in LIDE are abstract (language-

independent), and can be realized in arbitrary actor implementation languages.

When the APIs are realized in a particular implementation language XYZ, we re-

fer to the resulting specialized version of LIDE as LIDE-XYZ. In our experiments

with DIF-GPU in this chapter, we use LIDE-C for actor implementation targeted

to a CPU and LIDE-CUDA for actor implementation targeted to an NVIDIA GPU.

This combined use of LIDE-C and LIDE-CUDA provides the actor implementation

approach for the CPU-GPU platform that we target in our experiments.

Figure 3.4 shows the LIDE-C/CUDA dataflow structure and interface method

declarations of actor usp in the example graph.

3.3.3 Vectorization

In DIF-GPU, we apply both actor-level and graph-level vectorization for ef-

fective exploitation of data parallelism. In this chapter, we describe graph-level

vectorization, which is conceptually simpler than actor-level vectorization, as a first

demonstration of vectorization techniques within the DIF-GPU framework. Our

contributions to actor-level vectorization are presented in Chapter 4.

The amount of graph-level vectorization applied is in general a positive integer,

which is referred to as the graph-level vectorization degree (GVD). Use of a GVD

in scheduling that is greater than 1 implies scheduling an unfolded version of the
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struct usp_context{

#include "actor_context_common.h"

enable_function_type enable;

invoke_function_type invoke;

/* Input and output FIFOs */

fifo_pointer fifo_input;

fifo_pointer fifo_output;

int prod_rate;

int cons_rate;

/* State variables */

/* ... */

};

/* new method */

usp_context* usp_new(fifo_pointer fifo_input,

fifo_pointer fifo_output,

int prod_rate, int cons_rate,

int processor_type);

/* enable method */

boolean usp_enable(usp_context *context);

/* invoke method */

void usp_invoke(usp_context *context);

/* terminate method */

void usp_terminate(usp_context *context);

Figure 3.4: Dataflow Structure and interface method declarations of LIDE-CUDA
usp actor in Figure 3.1(a).
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input dataflow graph [36]. This is a specialized form of unfolded scheduling where

successive executions of individual actors are constrained to execute in blocks, as

determined by the GVD. The vectorization degree of a given actor v in the input

dataflow graph is given as q(v)× b, where b is the GVD.

Let b be a GVD that is applied to an SDF graph G = (V,E) in DIF-GPU.

Then we derive another SDF graph νb(G), called the the b-vectorized graph of G.

The b-vectorized graph may also be referred to simply as the vectorized graph. In

νb(G), the actors and edges are in one-to-one correspondence with the actors and

edges in G, respectively. Each actor v in νb(G) represents a vectorized version of

the corresponding actor in G with vectorization degree b × q(v), where q is the

repetitions vector of G. Accordingly, the dataflow rate (production or consumption

rate) associated with each actor port in νb(G) is b times the dataflow rate of the

corresponding actor port in G. Figure 3.1(b) shows the transformed version of the

graph in Figure 3.1(a) after graph-level vectorization is applied.

Note that the repetition count of any actor in a b-vectorized graph is unity,

independently of the value of b. In other words, if r represents the repetitions vector

of the b-vectorized graph of G, for some b ≥ 1, then r(v) = 1 for every actor v

in νb(G). Because the repetition counts are uniformly equal to unity, νb(G) can be

scheduled by drawing from the large class of existing task graph scheduling algorithms

(e.g., see [37]). Here, by a task graph, we mean an acyclic SDF graph in which all

actors are fired at the same average rate. DIF-GPU exploits this connection to

task graph scheduling for derivation of efficient vectorized schedules. Scheduling

techniques in DIF-GPU are discussed further in Section 3.3.4.
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In DIF-GPU, we require that the LIDE-CUDA actor implementations em-

ployed are vectorized. That is, each actor A should incorporate a positive-integer-

valued vectorization parameter vect(A), which specifies the number of successive

firings of A that are “treated as a single unit” for scheduling purposes, and effec-

tively transforms A into the vectorized version of A in νb(G).

3.3.4 Scheduling

Dataflow scheduling for heterogeneous platforms is a complex problem. The

problem is complicated by differences in actor execution times among different types

of processors, and the overhead of interprocessor communication. Although find-

ing optimal schedules in this context is NP-hard, a variety of heuristics has been

developed for related task graph scheduling problems [37].

In DIF-GPU, the scheduler takes the vectorized SDF graph νb(G) produced in

the vectorization step, and generates a schedule for the given CPU-GPU target plat-

form. νb(G)’s schedule encompasses the transient phase and one or more iterations

of the periodic phase. The periodic schedule can then be encapsulated within an

infinite- or finite-iteration loop to coordinate iterative execution of the application.

As described in Section 3.3.3, νb(G) is in the form of a task graph, and thus,

various available task graph scheduling techniques can be applied. Currently, DIF-

GPU incorporates the following two scheduling methods.

First Come First Serve (FCFS). The FCFS method is a greedy algorithm that

manages a list of actors (the “ready list”) that have sufficient data to be executed at
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the current stage in the scheduling process. As the schedule evolves, the ready list is

updated. When a processor becomes available, the scheduler assigns an actor with

the shortest execution time in the ready list to that processor. FCFS scheduling has

been studied previously in the context of CPU-GPU implementation by Teodoro et

al. [38].

Heterogeneous Earliest Finish Time (HEFT) [39]. HEFT is a list scheduling

heuristic that takes into account the different running times of the task graph actors

as well as data transfer times for the targeted heterogeneous platform. The HEFT

scheduler manages a list of actors that are ready to be executed and evaluates,

at each scheduling step, all combinations of enabled actors and processors. To

schedule an actor, it selects the actor-processor pair with the earliest finish time,

and schedules the actor onto the corresponding processor with an insertion-based

approach.

In DIF-GPU, each actor has a profile containing its estimated execution time

on each type of processor as a function of the vectorization degree. The profile is

derived experimentally by running the actor for a selected subset of vectorization

degrees and measuring the resulting execution times. During scheduling, the exe-

cution time of an actor with a given vectorization degree is estimated using linear

interpolation on the actor’s profile.

DIF-GPU uses a self-timed scheduling approach for implementing schedules [40].

The timing information used to construct the schedule is discarded before the code

generation phase, and only the sequence of vectorized actor firings on each processor

is used. At run time, each processor is configured to execute its assigned subset of
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Figure 3.5: Illustration of methods for handling CPU-GPU data transfers in dataflow
schedules. (a) Host-centered FIFO allocation. (b) Mapping-dependent FIFO allo-
cation.

actors in the order specified by the schedule, and this order repeats in successive

graph iterations.

3.3.5 Managing Interprocessor Data Transfers

As described in Chapter 2, CPUs and GPUs in the targeted class of platforms

have separate memory spaces. Dataflow actors mapped to a processor p1 are not

able to access data in the space of another processor p2 unless the data is first

transferred to the space of p1. To support separate memory spaces in a dataflow

design framework, one simple solution is to require data transfers between the mem-

ory spaces to be handled within actor implementation, while maintaining all FIFO

buffers (associated with the graph edges) in the host memory. We refer to this

approach, depicted in Figure 3.5(a), as Host-Centered FIFO Allocation (HCFA).

HCFA is simple to implement within the DIF-GPU framework, but leads
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to large amounts of overhead due to excessive CPU-GPU data transfer. In Fig-

ure 3.5(a), for example, executing actor v on the GPU using this method requires v

to transfer output data from a GPU-allocated buffer buf 3 to a host-allocated FIFO

e3; similarly, executing actor x requires transfer of its input data from e3 to the in-

ternal GPU memory buffer. These two data transfer requirements can significantly

reduce performance.

To provide more efficient interprocessor communication, we apply a method

that we call Mapping-Dependent FIFO Allocation (MDFA). In MDFA, FIFOs corre-

sponding to dataflow graph edges are allocated in host or device memory depending

on which processor the source actor of an edge is assigned to — that is, the FIFO

for edge e is assigned to the memory space of the processor that executes the actor

connected to the source of e (rather than unconditionally being assigned to host

memory). To handle interprocessor communication, we introduce two special types

of actors, h2d and d2h, which stand for host-to-device transfer and device-to-host

transfer, to explicitly move data between host and device processors.

In DIF-GPU, h2d and d2h actors are inserted after scheduling and prior to

code generation in the DIF-based intermediate representation for software synthesis.

Insertion of these actors in illustrated in Figure 3.5(b). In this way, interprocessor

data transfer only occurs at locations where such data transfer is necessary, as

determined by the schedule.

More specifically, for each application dataflow graph edge e = (u, v) in which

u is mapped to the CPU and v is mapped to a GPU, we instantiate an h2d actor

µ, connect u to µ with an edge ec, and connect µ to v with an edge eg. Edge ec
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is implemented using a FIFO buffer that is allocated in host memory, while eg is

implemented using a FIFO in GPU memory. The original edge e is then removed

from the internal representation graph. A similar transformation is performed for

each edge e = (u, v) in which u is mapped to a GPU and v is mapped to the CPU.

In addition to improving the efficiency of interprocessor communication, use

of h2d and d2h actors in DIF-GPU simplifies the process of actor implementation,

as it frees designers from the need to manage details of memory allocation and data

transfer associated with interprocessor communication. Furthermore, it is sufficient

in the framework to employ only LIDE-CUDA actors in which computational kernels

produce and consume data in the same memory space.

3.3.6 Runtime

Parallel execution of actor firings on heterogeneous multiprocessors is imple-

mented in DIF-GPU by using POSIX threads. Each processor is assigned a single

POSIX thread, and all actors mapped to that processor are fired by the correspond-

ing thread. During execution, each thread monitors the enable conditions of the

actors assigned to it (see Section 3.3.2), and fires actors once they are enabled.

When an actor finishes execution, the enclosing thread sends a message to other

threads notifying them to check the enable conditions for their actors. When a

thread has no enabled actors, it is blocked until it is notified by another thread.

Blocking of threads that do not have any enabled actors allows DIF-GPU to avoids

wasteful “busy-waiting” by threads.
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3.3.7 Code Generation

DIF-GPU generates well-structured, human readable source code for compi-

lation with back-end tools associated with the targeted HCP. Given a dataflow

application graph G that is provided as input to DIF-GPU, we refer to the resulting

synthesized software implementation as the synthesized package of G. The synthe-

sized package contains a C++ header file (.h file), a C++ implementation file (.cpp

file), and code that implements the schedule for each processor.

The C++ header and implementation files define a class that encapsulates the

computation for G. Graph-level input streams, output streams, and parameters can

be applied through constructor arguments. In this manner, DIF-GPU generates an

object-oriented module rather than generating a main function as the entry point for

the derived implementation. Through their modular structure, the implementations

generated by DIF-GPU can be integrated flexibly into different design frameworks.

This flexibility of integration is useful, for example, for generating DSP components

in larger designs where it is not desired to employ dataflow techniques for all parts

of the designs.

Figure 3.6 and Figure 3.7 show the synthesized code for the header and im-

plementation files, respectively, when the GVD is set as b = 2, and the actor-to-

processor assignment shown in Figure 3.1(d) is used. The synthesized C++ class

usp_graph contains a constructor, a destructor, and an execute method. The

member variables of the synthesized class include (1) a thread list that contains

the threads to execute the dataflow graph on the target platform, as described in
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Declaration

Macro 

Definitions

Headers
#include <stdio.h>

/* ... */

#define SRC 0

#define USP 1

#define SNK 2

#define H2D_0 3

#define D2H_0 4

#define ACTOR_COUNT 5

#define CPU 0

#define GPU 1

#define NUMBER_OF_THREADS 2

class usp_graph {

public:

usp_graph();

~usp_graph();

void execute();

private:

thread_list* thread_list;

actor_context_type* actors[ACTOR_COUNT];

fifo_pointer edge_in_h2d_0;

fifo_pointer edge_out_d2h_0;

fifo_pointer edge_in_d2h_0;

fifo_pointer edge_out_h2d_0;

};

Figure 3.6: Generated header file code for the example of Figure 3.1(a).

Section 3.3.4; (2) a list of pointers to the actor contexts; and (3) a list of pointers

to the FIFOs that implement the dataflow graph edges. The context of an actor A

in LIDE is a data structure that encapsulates relevant details, including pointers to

the FIFOs that are associated with the edges incident to A; function pointers to the

enable and invoke methods of A; and parameters and state variables associated

with A [35].

3.4 Experiments

In this section, we demonstrate the DIF-GPU framework through experiments

using an Intel Core i7-2600K Quad-core CPU with an NVIDIA GeForce GTX680
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#include "usp_graph.h"

usp_graph::usp_graph(){

/* Create edges */

edge_in_h2d_0 = fifo_new(4, sizeof(float), CPU);

edge_out_d2h_0 = fifo_new(12, sizeof(float), CPU);

edge_in_d2h_0 = fifo_new(12, sizeof(float), GPU);

edge_out_h2d_0 = fifo_new(4, sizeof(float), GPU);

/* Create actors */

actors[D2H_0] = (actor_context_type*) memcpy_new(

edge_in_d2h_0,edge_out_d2h_0,12,12,sizeof(float), GPU);

actors[SNK] = (actor_context_type*) snk_1f_new(

edge_out_d2h_0,12, CPU);

actors[H2D_0] = (actor_context_type*) memcpy_new(

edge_in_h2d_0,edge_out_h2d_0,4,4,sizeof(float), GPU);

actors[USP] = (actor_context_type*) usp3_new(

edge_out_h2d_0,edge_in_d2h_0,4,12, GPU);

actors[SRC] = (actor_context_type*) src_1f_new(

edge_in_h2d_0,4, CPU);

/* Create schedules of each thread */

const char* thread_schedules[NUMBER_OF_THREADS] =

{"thread_0.txt","thread_1.txt"};

thread_list = thread_list_init(NUMBER_OF_THREADS,

thread_schedules, actors, ACTOR_COUNT);

}

void usp_graph::execute(){

thread_list_scheduler(thread_list);

}

usp_graph::~usp_graph(){

/* Terminate threads */

thread_list_terminate(thread_list);

/* Free FIFOs */

fifo_free(edge_in_h2d_0);

fifo_free(edge_out_d2h_0);

fifo_free(edge_in_d2h_0);

fifo_free(edge_out_h2d_0);

/* Destroy actors */

memcpy_terminate((memcpy_context_type*)actors[D2H_0]);

snk_1f_terminate((snk_1f_context_type*)actors[SNK]);

memcpy_terminate((memcpy_context_type*)actors[H2D_0]);

usp3_terminate((usp3_context_type*)actors[USP]);

src_1f_terminate((src_1f_context_type*)actors[SRC]);

}

Figure 3.7: Generated implementation file code for the example of Figure 3.1(a).
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Figure 3.8: An illustration of the vectorized MP-Sched benchmark.

GPU running Ubuntu Linux 12.04. LIDE-C and LIDE-CUDA code for the actor

implementations is compiled using GCC 4.6.3 and the NVIDIA CUDA compiler

(NVCC) 7.0, respectively.

3.4.1 Benchmarks

In our experimental evaluation, we employ MP-Sched, which is a parameter-

ized family of benchmarks [26] that is representative of an important class of digital

processing subsystems for wireless communications, and was designed originally for

use with the GNU Radio environment [41]. MP-Sched is illustrated in Figure 3.8.

The MP-Sched benchmarks are defined by a parameterized signal processing flow

graph that consists of a grid of P ×S finite impulse response (FIR) actors, where P

is the number of signal processing pipelines and S is the number of stages in each

pipeline.

We apply graph-level and actor-level vectorization, as discussed in Section 3.3.3,

to optimize GPU-based execution of MP-Sched. If b denotes the GVD, then each
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vectorized FIR filter actor consumes b tokens from its input edge and produces b

tokens on its output edge. Additionally, the SRC actor produces b tokens on each

output edge, and the SNK actor consumes b tokens from each input edge.

The operation employed in the FIR filter actors is given as follows:

y[n] =
L−1∑
k=0

W [k]x[n− k], (3.1)

where x is the input, y is the output, W is an array of filter coefficients, and L

is the number of coefficients. In our experiments, we use L = 8. Equation 3.1

involves data-parallel operations that can be efficiently exploited on a GPU (e.g.,

see [42]). The vectorized LIDE-CUDA FIR actor used in this benchmark is im-

plemented with GPU-acceleration so that data-parallelism can be exploited using

actor-level vectorization, as discussed in Section 3.3.3.

The topology of this benchmark also exhibits task-level parallelism, as actors

from different pipelines can be executed concurrently on different processors. To

evaluate the performance gain achieved by using the DIF-GPU framework, we define

the throughput of an implementation of the MP-Sched benchmark as:

Th = b/T, (3.2)

where b is the GVD used in the implementation, and T is the time to complete

one iteration of the schedule of the vectorized graph. The units of this throughput

metric are SDF graph iterations (relative to the original, unvectorized graph) per

unit time. Table 3.1 shows the benchmark, platform, and scheduler configurations
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Table 3.1: Benchmark, platform and scheduler configurations. Here “CC” stands
for “CPU Core”.

Item Value
Grid Size 2x5, 4x4, 6x3
Platform 1 CC + 1 GPU, 3 CCs + 1 GPU
Scheduler HEFT, FCFS

used in our experimentation with the DIF-GPU Framework.

3.4.2 Evaluation of Actor Performance and Data Transfer Cost

Figure 3.9 shows the speedups measured for the LIDE-CUDA-based FIR actor

implementation running on a GPU for a wide range of vectorization degrees (from

27 to 219). The speedups reported here do not include the cost of CPU-GPU data

transfer, as data transfer is handled separately in this framework (i.e., through the

software synthesis process rather than through the actor implementation process).

From these results, we see that the speedup increases gradually when the vector-

ization degree b ranges from 27 to 210, and then rapidly from 211 and 216, as larger

numbers of SIMD processors are utilized to process increasing amounts of data. The

speedup saturates as b approaches 217. When b ≤ 28, the actor runs more slowly

compared to the CPU when mapped onto a GPU because the resources in the GPU

are significantly under-utilized.

To evaluate the data transfer overhead of applying the HCFA and MDFA

techniques for FIFO allocation in DIF-GPU, we map the SRC and SNK actors

on the CPU and all of the FIR actors on the GPU, and we apply a vectorization

degree of b = 4096. Table 3.2 compares the resulting throughput and percentage

39



Figure 3.9: Speedup of the FIR filter actor.

Table 3.2: Throughput and data transfer overhead for FIFO implementation based
on HCFA and MDFA.

Topology 2 x 5 4 x 4 6 x 3

HCFA
Th(106/s) 4.80 2.84 2.52

D2H 37.4% 37.6% 37.1%
H2D 16.4% 16.2% 15.8%

MDFA
Th(106/s) 6.71 4.06 3.59

D2H 17.2% 15.5% 20.8%
H2D 6.7% 9.9% 8.2%

of time spent on H2D and D2H data transfers. These results show that the MDFA

strategy for FIFO allocation improves application throughput by a large margin —

40.0%, 43.0% and 42.5% on 2x5, 4x4 and 6x3 MP-Sched configurations, respectively.

Thus, incorporating MDFA within the DIF-GPU software synthesis framework helps

significantly to streamline interprocessor communication and synchronization within

the framework.
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3.4.3 System-Level Evaluation

We evaluate the performance gain achieved by applying DIF-GPU with differ-

ent benchmark (MP-Sched grid dimensions), scheduler, and platform configurations.

We carry out this evaluation by comparing the achieved throughput to that mea-

sured from single-core baselines. These evaluations are performed using the different

system configurations summarized in Table 3.1.

Figure 3.10 shows the throughput achieved for different system configurations.

Here, the “single CPU baseline” (CPU baseline) maps all actors onto a single CPU

core, while the “single GPU baseline” (GPU baseline) maps all FIR actors on the

GPU and maps the SRC and SNK actors onto a single CPU core. The GPU baseline

does not provide a throughput gain over the CPU baseline when b ≤ 256 for the

2x5 and 4x4 MP-Sched benchmarks, and when b ≤ 512 for the 6x3 benchmark.

We expect that this is because the limited data block size prevents the GPU from

achieving sufficient speedup from data-parallelism to overcome the data transfer

overhead that is incurred. As b increases, the amount of available data parallelism

increases accordingly, and the GPU baseline overtakes the performance of the CPU

baseline. The maximum measured speedups of the GPU baseline compared to the

CPU baseline are 4.0, 4.2, and 3.7, respectively, for the 2x5, 4x4, and 6x3 benchmark

configurations.

The limited speedup of the GPU baseline over the CPU baseline is due to the

range of vectorization degrees selected for our experiment, where b ≤ 11, 264. For

b > 11, 264, the GPU speedup continues to increase to significantly higher values.
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However, in this range of b values — where the GPU has very large speedups —

the targeted hybrid platform (multi-core CPU with single GPU) would not provide

significant advantage over the GPU-baseline. Since the emphasis in this work is

on techniques for hybrid CPU-GPU platforms, we focus on this range of smaller b

values to demonstrate the joint utilization of CPU cores and the GPU device in our

framework. Such smaller b values may be preferable, for example, due to system

constraints on latency and buffer sizes.

The throughput data shown in Figure 3.10 is averaged from measurements

that are repeated 50 times for each configuration. Figure 3.11, 3.12 and 3.13 show

box plots of throughput for different configurations under 2x5, 4x4 and 6x3 FIR

filter grids, respectively. We observe that under some configurations, the through-

put measurements show significant variances. These large variances have occurred

under different target platforms, schedulers and FIR grid sizes. We expect that the

throughput variations result from multiple factors across the entire operating system

(OS) / hardware platform environment, including cache operations, multi-tasking

and storage management.

To help demonstrate the utility of DIF-GPU in comparing CPU + GPU con-

figurations over CPU-only or GPU-only solutions, we combine the CPU baseline and

GPU baseline together into one “single processor” baseline by taking the maximum

throughput of the CPU-only and GPU-only mappings. For small vectorization de-

grees, 3 CPU cores + 1 GPU generally provide the most throughput improvement

over the single processor baselines, as the CPU cores are comparable to the GPU

in terms of computational power when the data size is small. This improvement
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Figure 3.10: Throughput of M × N MP-Sched benchmarks for different platform
configurations and schedulers. (a) 2x5 with FCFS and HEFT; (b) 4x4 with HEFT;
(c) 4x4 with FCFS; (d) 6x3 with HEFT; (e) 6x3 with FCFS.
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(a) (b)

(c) (d)

Figure 3.11: Throughput box plots of 2 × 5 MP-Sched benchmarks with different
platform configurations and schedulers: (a) CPU-base; (b) GPU-base; (c) 1 CPU +
1 GPU, HEFT scheduler; (d) 1 CPU + 1 GPU, FCFS scheduler.

by employing more CPU cores can be seen for the (4x4, HEFT), (4x4, FCFS), and

(6x3, EFT) configurations when b ≤ 1024, and for (6x3, FCFS) when b ≤ 2048.

The maximum speedups measured over the single processor baseline are 2.5x and

2.0x for the 4x4 and 6x3 MP-Sched benchmarks, respectively.

For large vectorization degrees (b > 2048), 1 CPU + 1 GPU generally achieves

maximum throughput rather than the 3 CPU cores + 1 GPU configuration, as shown

in Figure 3.10(b)–(e). The maximum measured throughput improvements of 1 CPU

+ 1 GPU over the GPU baseline are 33%, 43% and 65%, respectively, for the 2x5,

4x4 and 6x3 MP-Sched benchmarks. In some cases, 3 CPU cores + 1 GPU cannot

provide consistent improvement over the GPU baseline when the FCFS scheduler is

used, as shown in Figure 3.10(c) and 3.10(e).
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Figure 3.12: Throughput box plots of 4 × 4 MP-Sched benchmarks with different
platform configurations and schedulers: (a) CPU-base; (b) GPU-base; (c) 1 CPU
core + 1 GPU, HEFT scheduler; (d) 1 CPU core + 1 GPU, FCFS scheduler; (e) 3
CPU cores + 1 GPU, HEFT scheduler; (e) 3 CPU cores + 1 GPU, FCFS scheduler.
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Figure 3.13: Throughput box plots of 6 × 3 MP-Sched benchmarks with different
platform configurations and schedulers: (a) CPU-base; (b) GPU-base; (c) 1 CPU
core + 1 GPU, HEFT scheduler; (d) 1 CPU core + 1 GPU, FCFS scheduler; (e) 3
CPU cores + 1 GPU, HEFT scheduler; (e) 3 CPU cores + 1 GPU, FCFS scheduler.
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In summary, implementation of the MP-Sched benchmarks involves complex

trade-offs among resource utilization (the number and types of processors employed),

the vectorization degree, and the achieved throughput. In this section, we have

demonstrated the utility of DIF-GPU in exploring such trade-offs through its auto-

mated and flexibly-configurable software synthesis capabilities.

3.4.4 Scheduling

To experiment with the effect of the scheduling strategy in DIF-GPU, we

compare the throughput improvement of the HEFT and FCFS schedulers over the

GPU baseline, as shown in Figure 3.14. For the 1 CPU + 1 GPU target, HEFT

achieves greater improvement when the vectorization degree is smaller than some

lower threshold bl, or greater than an upper threshold bu, depending on the bench-

mark grid dimensions. For bl ≤ b ≤ bu, FCFS achieves greater improvement. For

the 3 CPU cores + 1 GPU target, HEFT consistently performs better than FCFS.

We would like to emphasize here that DIF-GPU is not limited to use of HEFT

or FCFS as the framework can readily be extended with other scheduling techniques.

The objective of these experiments is to demonstrate the utility of DIF-GPU in ex-

ploring complex design spaces involving different combinations of platforms, schedul-

ing strategies, vectorization degrees, and levels of application complexity.

The overall results indicate that in the investigated design space, neither sched-

uler is uniformly better in terms of throughput improvement; the preferred scheduler

depends on the vectorization, application (benchmark), and platform (VAP) config-
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urations. However, HEFT is more consistent in providing throughput gains across

different regions of the design space. Among all of the VAP combinations evaluated,

HEFT provides throughput improvement on all combinations except for: (a) 1 CPU

+ 1 GPU with 2x5 MP-Sched, and b ∈ {5,120, 6,148, 7,192}; and (b) 3 CPU cores

+ 1 GPU with 4x4 MP-Sched, and b = 11,264. Intuitively, we expect that this is

because HEFT takes interprocessor data transfer time into account, and is able to

keep slower processors (in this case the CPU) idle and select the processor that is

able to finish a task at the earliest possible time, even if that processor happens to

be busy at the current time.

3.5 Summary

In this chapter, we have presented a new model-based software synthesis frame-

work, called DIF-GPU, that integrates high level dataflow graph specification, vec-

torization, scheduling, and code generation for heterogeneous CPU-GPU platforms.

We have demonstrated the ability of DIF-GPU to synthesize, through its highly

integrated design flow, implementations that significantly outperform conventional

CPU-GPU mappings (i.e., where all actors for which GPU implementations are

available are unconditionally mapped to the GPU). Furthermore, we have demon-

strated the utility of DIF-GPU in (a) enhancing application performance through

optimized management of interprocessor communication for given scheduling and

vectorization configurations, and (b) exploring complex design spaces in the map-

ping of applications onto CPU-GPU platforms.
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Figure 3.14: Speedup of MP-Sched benchmarks using the HEFT and FCFS sched-
ulers. (a) 2x5, (b) 4x4, (c) 6x3.
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Chapter 4

Memory-Constrained Vectorization and Scheduling

The increasing use of heterogeneous embedded systems with multi-core CPUs

and GPUs presents important challenges in effectively exploiting pipeline, task and

data-level parallelism to meet throughput requirements of DSP applications. Hand

optimization of code to satisfy these requirements is inefficient and error-prone, and

can therefore, greatly slow down development time or result in highly underutilized

processing resources. In this chapter, we present dataflow graph vectorization and

scheduling methods to effectively exploit multiple forms of parallelism for through-

put optimization on hybrid CPU-GPU platforms, while considering system-level

memory constraints. We demonstrate that our methods provides significantly im-

proved throughput compared to previous approaches under a given memory con-

straint. We also present a practical case-study of applying our methods to the

implementation of an orthogonal frequency division multiplexing (OFDM) receiver

system.

4.1 Introduction

Heterogeneous multiprocessor platforms are of increasing relevance in the de-

sign and implementation of many kinds of embedded systems. Among these plat-

forms, heterogeneous CPU-GPU platforms (HCGPs), which integrate multicore cen-
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tral processing units (CPUs) and graphics processing units (GPUs), have been shown

to significantly boost throughput for many applications. System-level performance

optimization requires efficient utilization of both CPU cores and GPUs on HCGPs.

In embedded system designs, multiple system constraints must be met including

memory, latency or cost requirements. Manual performance tuning on a case-by-

case suffers from inefficiency and can lead to highly sub-optimal solutions. When

system constraints or the target platforms are changed, the designer often needs

to repeat the same process, which further reduces development productivity, and

increases the chance of introducing implementation errors. Therefore, methods for

HCGPs that are based on high-level models, and systematically explore paralleliza-

tion opportunities are highly desirable.

GPUs in HCGPs accelerate computational tasks by supporting large-scale data

parallelism with hundreds or thousands of SIMD (single instruction multiple data)

processors. GPUs can achieve high throughput gain over CPUs when parallel data

is abundant. However, when parallel data is insufficient, GPU performance can be

worse compared to CPU cores. For an SDF graph, a sufficient amount of parallel

data may not be present to effectively utilize a GPU. In this case, vectorization

can be of great utility in improving the degree of exposed data parallelism, and the

effective utilization of GPU resources. However, previous research on scheduling

and software synthesis from SDF graphs has focused largely on task and pipeline

parallelism, therefore providing inadequate support of GPU-targeted design flows.

The developments in this chapter are intended to address this gap.

In general, the average time required for an actor firing scales differently in
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terms of the vectorization factor between a CPU and GPU. Additionally, over-

heads involving interprocessor communication and synchronization can limit or even

negate performance gains achieved through vectorization. Thus, effective through-

put optimization for HCGPs requires rigorous joint consideration of vectorization

and scheduling. In this chapter, we develop techniques for software synthesis tar-

geted to HCGPs that jointly consider vectorization and scheduling for through opti-

mization of SDF graphs. We refer to this problem of joint vectorization and schedul-

ing as the SDF vectorization-scheduling throughput optimization (VSTO) problem,

or simply as “VSTO”.

Our contribution is summarized as follows. First, we formally present the

VSTO problem for HCGPs. Second, we develop a novel vectorization and scheduling

strategy for the VSTO problem. Third, we demonstrate our approach to VSTO by

applying them to an Orthogonal Frequency Division Multiplexing (OFDM) receiver,

and to a large collection of synthetic, randomly-generated dataflow graphs.

4.2 Related Work

SDF throughput analysis under resource constraints using explicit state space

exploration has been studied in [43]. In [44], the authors present a scheduling al-

gorithm for SDF graphs that applies static topological analysis and vectorization

to improve SDF throughput and memory usage on shared-memory, multicore plat-

forms. In [45], a buffer optimization technique for pipelined, multicore schedules is

discussed.
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Earlier work on SDF vectorization has focused on throughput optimization

for single-processor implementation on programmable digital signal processors, and

more recently, on multicore implementation. SDF vectorization techniques to maxi-

mize throughput for single-processor implementation were developed in [34]. In [46],

the authors presented methods to construct vectorized, single-processor schedules

that optimize throughput under memory constraints. In [47], the authors presented

techniques for maximizing throughput when simulating SDF graphs on multicore

platforms. These techniques simultaneously optimize vectorization, inter-thread

communication, and buffer memory management. In these works, SIMD archi-

tectures are not involved, and vectorization is applied to reduce synchronization

overhead and context switching rather than to exploit data-parallelism.

Various studies have targeted automated exploitation of parallelism to map

dataflow models onto heterogeneous computing platforms. Design tools that ex-

ploit various forms of parallelism using CUDA or OpenCL have been developed

in [27, 48, 29]. These tools assume that vectorization has been specified by the de-

signer, and map an actor onto a GPU whenever a GPU-accelerated implementation

of the actor is available. For such actors, these tools do not take into account the pos-

sibility that CPU-targeted execution may be more efficient. In [26], SDF graphs are

automatically vectorized, transformed to single-rate SDF graphs, and then sched-

uled using Mixed-Integer Programming techniques. However, this approach does

not take memory constraints into account. Intuitively, a single-rate SDF graph is

one in which all actors are fired at the same average rate. This concept is discussed

in more detail in Section 4.3.
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When SDF graphs are converted to single-rate graphs, they can be sched-

uled in the same way that task graphs are scheduled in programming environments

such as StarPU [49], FastFlow [30], and OmpSS [31]. These environments support

run-time task graph scheduling and parallelization on hybrid CPU-GPU platforms.

StarPU, for example, uses the Heterogeneous Earliest Finish Time (HEFT) heuristic

to schedule tasks on HCGPs. However, these programming models cannot directly

be applied to multirate SDF graphs; a designer must manually vectorize the graph

and convert it to a single-rate SDF graph before working with it in such environ-

ments. In addition to requiring such manual transformation, this process limits

the flexibility in vectorization and scheduling for SDF execution, which can lead to

inefficient memory usage and execution time performance.

In this part of thesis, we go beyond the previous works by jointly consider-

ing SDF vectorization and scheduling for HCGPs under memory constraints. To

our knowledge, our work is the first to take memory constraints into account in

the context of SDF vectorization and scheduling for heterogeneous computing plat-

forms. Our methods are not restricted to single-rate SDF graphs, and are capable of

deriving efficient, memory-constrained vectorization configurations for acyclic SDF

graphs. Acyclic SDF graphs are suitable for a modeling broad class of applications

across many areas of signal processing (e.g., see [7]). Furthermore, we present in this

chapter the DIF-GPU framework, which integrates vectorization, scheduling and

software synthesis processes for a highly automated workflow. DIF-GPU incorpo-

rates techniques for minimizing runtime overhead through compile-time scheduling

and incorporation of carefully-designed protocols for interprocessor communication.
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The work presented in this chapter extended Chapter 3 significantly by devel-

oping:

• memory constrained actor vectorization methods,

• scheduling methods for multirate SDF graphs on HCGPs,

• experiments on a large number of synthetic SDF graphs, and

• a case study of an OFDM receiver application.

These new developments are integrated with DIF-GPU so that implementa-

tions that employ these new vectorization techniques can be generated automatically

through software synthesis. These new vectorization-integrated software synthesis

capabilities are applied in our experimental evaluation (Section 4.6 and Section 4.7).

4.3 Background

The HCGPs that we target in this chapter consist of one multi-core CPU and

one GPU each. This class of single CPU / single CPU architectures is widely used

in embedded systems. In our targeted class of HCGPs, we refer to the CPU as the

host, as it controls overall execution flow and manages the associated GPU, and we

refer to the GPU as the device. The device receives instructions and data from the

host.

Additionally, in the target architecture model, the CPU can read and write

directly from/to main memory, while the GPU has its own device memory, which is

separate from the main memory. When data required for a processor is outside of its
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directly-accessible memory, the processor copies the data from the other processor’s

memory to its own memory through a shared bus. Such data copying between the

host and the device is referred to as host-to-device (H2D) or device-to-host (D2H)

data transfer, depending on the direction. H2D data transfer can result in large

overhead and significantly reduce the performance gain of HCGPs [14].

Signal processing systems represented as SDF graphs are often required to be

executed indefinitely — that is, iterated through a number of iterations for which

no useful bound is known in advance. To support such indefinite execution, the

concepts of consistency and periodic schedules in SDF graphs are important [16].

An SDF graph is consistent if it has a periodic schedule, which is a sequence of actor

executions that does not deadlock, fires each actor at least once, and produces no

net change in the number of tokens on each edge. Consistent SDF graphs can be

executed indefinitely with finite buffer memory requirements. Furthermore, for each

actor v ∈ V in a consistent SDF graph G = (V,E), there is a unique repetition count

q(v), which gives the minimum number of firings of v in a periodic schedule. We call

a set of actor firings in which each actor v fires exactly q(v) times an iteration of G.

If q(v) = 1 for every actor v ∈ V , then G is called a single-rate SDF graph. We refer

to an acyclic single-rate SDF graph as a task graph. A wide variety of algorithms

have been developed for scheduling task graphs onto multiprocessor systems (e.g.,

see [37]). In cases where the graph G may not be understood from context, we

apply a minor abuse of notation and represent the repetition count of an actor v by

q(G, v).

Given an SDF graph G = (V,E) and an actor v ∈ V , we denote the sets of
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input and output edges of v as in(v) and out(v), respectively. Given an edge e ∈ E,

we denote the source and sink actors of e by src(e) and snk(e), respectively. We

denote as prd(e) the number of tokens produced onto e by each firing of src(e), and

similarly, we denote as cns(e) the number of tokens consumed from e by each firing

of snk(e). For implementation of G, we assume a static buffer allocation model,

where we allocate a FIFO buffer of fixed, finite size (“buffer bound”) size(e) for

each edge e ∈ E. When an actor v fires, it must satisfy that (1) for each edge

ei ∈ in(v), ei contains at least cns(ei) tokens, and (2) for each edge eo ∈ out(v), eo

contains no more than (size(eo)− prd(eo)) tokens. When this condition is met, the

actor is said to be bounded-buffer fireable, and SDF graph execution following this

rule is called bounded-buffer execution.

As mentioned in Section 4.2, we assume in this chapter that the input SDF

graphs for vectorization and software synthesis are acyclic. Extension of the methods

in this chapter to SDF graphs that contain cycles is a useful direction for future work.

We represent the individual processors in the target multiprocessor platform

as P = {p1, p2, . . . , pN}, where p1, p2, . . . , pN−1 represent the available CPU cores,

and pN represents the GPU. When scheduling G onto the platform, actor firings are

assigned to processors to be executed. In this context, we say that an actor v ∈ V

is mapped onto processor p ∈ P if all firings of v are assigned to execute on p.
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4.4 Problem Formulation

In this section, we formally define the VSTO problem for HCGPs. We begin by

defining the concept of actor-level vectorization. Given a consistent SDF graph G =

(V,E), and an actor v ∈ V , the vectorization of v by a vectorization degree (VCD)

b is defined as a transformation of G that involves the following set of operations:

(1) replacing v by vb, where firing vb is equivalent to b consecutive firings of v; (2)

replacing each edge ei ∈ in(v) by an edge e′i such that cns(e′i) = b× cns(ei); and (3)

replacing each edge eo ∈ out(v) by an edge e′o such that prd(e′o) = b× prd(eo). We

refer to the actor vb as the b-vectorized actor of v, and the transformed graph that

results from the vectorization operation as vect(G, v, b).

If G is a consistent, acyclic SDF graph, then vect(G, v, b) is also consistent for

any v ∈ V , and any positive integer b. However, in this work, we restrict the set of

allowable vectorization degrees to the set allowable(G, v), which is defined as

allowable(G, v) = {n ∈ {1, 2, . . .} | (n isafactorof q(v)}) or (n isamultipleof q(v)}).

(4.1)

If G is understood from context, then we may apply a minor abuse of notation to

write allowable(v) in place of allowable(G, v). This restriction enables fast derivation

of repetition counts for G′ = vect(G, v, b) to facilitate incremental vectorization tech-

niques, where actors are selected for vectorization one at a time according to specific

greedy criteria. In particular, if b is a factor of q(v), then q(G′, v) = q(G, v)/b , while
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the repetition counts of all other actors are unchanged. Similarly, if b is a multiple of

q(v), then q(G′, v) = 1, while for any other actor u 6= v, q(G′u) = bq(G, u)/q(G, v).

In Section 4.5, we discuss specific techniques for incremental vectorization that apply

these forms of repetition count updates.

On HCGPs, vectorized actors can take advantage of SIMD processors such

as GPUs to execute multiple firings of the same actor in parallel. However, in the

presence of memory constraints, there are limits to the amount of vectorization that

can be applied.

Figure 4.1 shows an example of how vectorization can increase the minimum

buffer requirement. By the minimum buffer requirement for an SDF graph, we mean

the minimum over all periodic schedules of the amount of memory (in units of tokens)

required to implement the dataflow edges in a given graph, assuming that separate

storage is dedicated for each edge. The figure shows an SDF graph, alternative

vectorization configurations for the graph, and the corresponding minimum buffer

requirements. The annotation in angle brackets above each actor gives the repetition

count associated with the actor.

A lower bound on the minimum buffer requirement for a delayless SDF edge

e can be determined by the following equation 4.2 (see [9]):

mbr(e) = prd(e) + cns(e)− gcd(prd(e), cns(e)), (4.2)

where gcd represents the greatest common divisor operator.

In the example SDF graph, it can be shown that the minimum buffer require-
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ment is equal to the sum (over all edges) of the bound given by Equation 4.2. As

we can seen in Figure 4.1(b)(c)(d), different ways of vectorizing actors in the SDF

graph result in different increases to the minimum buffer requirement.

To represent SDF graphs with vectorized actors and their relationships with

the original graphs, we define vectorized SDF graphs (VSDFs) as follows.

Definition 1. Suppose that G = (V,E) is a consistent SDF graph, bv ∈

allowable(v,G) is a VCD for each v, and B = {(v, bv) | v ∈ V }. Then the B-

vectorized SDF graph of G is defined as GB = (VB, EB), where (1) each vB ∈ VB

is the bv-vectorized actor of v, (2) each edge eB = (xB, yB) in GB is derived

from the corresponding edge (x, y) ∈ E, and (3) for each eB = (uB, vB) ∈ EB,

prd(eB) = bu × prd(e), and cns(eB) = bv × cns(e), where e = (u, v).

The vectorized graph GB is an SDF graph. We defined a restricted form of

vectorization, called graph-level vectorization (GLV), in which a common “repeti-

tions vector multiplier” β ∈ {1, 2, . . .} is used for all actors in the input graph. That

is, bv = β × q(G, v) for all v ∈ V . In this context, we refer to β as the graph vector-

ization degree (GVD). Under GLV , GB is a single-rate SDF graph. To distinguish

with GLV, we refer to the more general form of vectorization, where actors can have

different VCDs, as actor-level vectorization (ALV).

As discussed in Section 4.2, the conventional approach to solving VSTO in-

volves 3 steps: (1) the designer or design tool sets the GVD based on memory

constraints, (2) converts the SDF graph into a single-rate SDF graph using GLV,

and (3) generates a schedule using task graph scheduling methods. Compared to
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(a)

(b)

(c)

(d)

Figure 4.1: Example of vectorization and minimum buffer requirements. (a) Orig-
inal graph. (b) Vectorization of A by 2. (c) Vectorization of all actors by 2. (d)
Vectorization of B by 2.
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ALV, GLV can require significantly larger buffers (see Figure 4.1(c)). The vec-

torization methods that we present in this chapter go beyond these conventional

approaches by considering general ALV solutions instead of being restricted only to

GLV solutions.

In addition to involving a larger design space, ALV is is more challenging com-

pared to GLV because the transformed graphs are not single-rate graphs, and thus,

conventional task-graph scheduling methods are not applicable at the back-end of

the vectorization process. For multiprocessor scheduling of ALV solutions, we in-

troduce in this work a general scheduling strategy, which is suitable for HCGPs,

and can loosely be viewed as a variant of the list scheduling strategy. This variant

is adapted for memory-constrained, multiprocessor mapping of transformed graphs

that result from ALV. This strategy is a static scheduling strategy that operates us-

ing compile-time estimates of actor execution times. The general strategy is defined

as follows.

Definition 2. Given a consistent SDF graph G = (V,E), and a multiprocessor

target architecture with a set of processors P , the Σ-scheduling strategy (1) statically

assigns each actor v ∈ V to a processor p ∈ P , (2) statically determines a buffer

bound buf (e) for each edge e ∈ E, and (3) iteratively selects a bounded-buffer firable

actor to fire on its assigned processor p as soon as p has completed all executions.

An algorithm that conforms to this scheduling strategy completes when all actors in

G have been scheduled using the iterative process of Step (3).

The Σ-scheduling strategy is closely related to the Ω-scheduling strategy, which
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was introduced in [47]. Both the Σ and Ω strategies satisfy Parts (1) and (2)

of Definition 2; the main difference is that in Part (3), Σ schedules actors onto

a finite number of processors, while Ω-scheduling assumes an unlimited number

of processors. Additionally, in our application of Σ-scheduling, we perform ALV

to construct the input graph to the strategy. In contrast, Ω-scheduling in [47] is

applied to the original (unvectorized) SDF graph.

To determine the buffer bounds {buf (e)} in Σ-scheduling, we apply the Ω-

buffering technique defined in [47]. This technique derives the buffer bounds by

applying Ω-scheduling, and determining the buffer bounds to be equal to the corre-

sponding buffer sizes {buf (e)} that result from Ω-scheduling. We refer to the buffer

bound buf (e) for each edge e that is computed in this way as the Ω buffer bound for

e. It is shown that Ω-buffering sustains maximum throughput for SDF graphs under

Ω scheduling [47] so that imposing these bounds imposes no theoretical limitation on

throughput. Given an SDF graph G = (V,E), we denote by Ωbuf (G) the total buffer

memory cost for G as determined by Ω-scheduling: Ωbuf (G) = sume∈E(buf (e)).

Definition 3. Suppose that G = (V,E) is a consistent SDF graph, bv ∈

allowable(v,G) is a VCD for each v, B = {(v, bv) | v ∈ V }, SB is a periodic sched-

ule for the B-vectorized graph GB, and T (SB) is an estimate of the time required to

execute a single iteration of SB. Then from the fundamental properties of periodic

SDF schedules [16], we can derive a unique positive integer J(SB, G), which we call

the blocking factor of SB relative to G, such that SB executes each v ∈ V exactly

(J(SB, G)× q(G, v)) times. In this context, we define the relative throughput of SB
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or the throughput of SB relative to G by the quotient J(SB, G)/T (SB). This metric

gives the average number of iterations of the original (unvectorized) SDF graph is

executed per unit time by the schedule SB.

Intuitively, vectorization improves relative throughput when T (SB) < J(SB)×

T (S), where S is the best available minimal-periodic (unvectorized) schedule for S.

Such efficiency in the vectorized execution time T (SB) can be achieved due to im-

proved utilization of processing resources under carefully-optimized GLV and ALV

configurations. For example, if a vectorized actor vb is mapped onto a GPU, it

may be possible to process up to b firings of v in parallel to gain significant speed

improvement across blocks of b firings. The techniques in this chapter are designed

to systematically exploit this kind of execution efficiency under given memory con-

straints.

A limitation of the techniques developed in this chapter is that they may

increase latency, and thus, they may not be suitable for implementations in which

latency is a critical performance metric. However, it is envisioned that the methods

developed in this chapter provide a useful foundation that can be built upon for

latency-aware vectorization. Investigating adaptations of the these methods to take

latency constraints into account is an interesting direction for future work.

Based on the definitions introduced in this section, we formulate the VSTO

problem as follows.

Definition 4. Let G = (V,E) be a consistent SDF graph, P = {p1, p2, . . . , pN} be

the set of processors in an HCGP, where p1, p2, . . . , pN−1 represent the CPU cores,
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and pN represents the GPU. Given a total memory budget M (a positive integer),

the vectorization-scheduling throughput optimization problem, or VSTO problem

associated with G and P is the problem of finding a set B of vectorization degrees,

and a schedule SB for GB = (VB, EB) such that the throughput of SB relative to G

is maximized subject to Ωbuf (GB) ≤M .

We refer to a set of ordered pairs C = {(v, cv) | (v ∈ V ) and cv ∈

allowable(G, v)} as an ALV configuration for G. Note that if an actor is not repre-

sented within a given ALV configuration (i.e., it does not appear as the first element

of any ordered pair in the set), then the actor is assumed to be unvectorized (equiv-

alent to a vectorization degree of 1). Thus, the VSTO problem can be thought

of as the problem of jointly determining an ALV configuration B together with a

schedule for GB such that the resulting schedule optimizes throughput subject to a

given buffer memory constraint M .

The vectorization formulation and techniques developed in this chapter assume

that each SDF edge (FIFO buffer) is implemented in a separate block of memory.

Various techniques have been developed in recent years to share memory efficiently

among edges in multirate SDF graphs (e.g., see [50, 51]). Extending the techniques

in this chapter to incorporate such memory sharing techniques is a useful direction

for future work.
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4.5 Vectorization and Scheduling with Memory Constraints

As discussed in Section 4.4, vectorization and scheduling are interdependent

factors in throughput optimization of SDF graphs on HCGPs. The joint considera-

tion of these factors is highly complex given the high complexity of multiprocessor

scheduling in and of itself, along with the large number of alternative ALV con-

figurations that can exist for dataflow graphs that contain significant numbers of

actors. In this section, we develop in detail a set of efficient heuristics for integrated

vectorization and scheduling that collectively address the VSTO problem for acyclic

SDF graphs.

Specifically, in this section we develop three main heuristics called Incremental

Actor Vectorization (IAV), N -candidates IAV, and Mapping-Based Devectorization.

These three heuristics can be viewed as “peers” in the sense that any one of them

may be the preferable choice for a given application. Thus, the designer or a design

tool can apply all three of these complementary methods and select the best result for

a given application. This is how we have integrated the three heuristics in our DIF-

GPU software framework. More details on the integration with software synthesis

and associated experimental results are discussed in Section 4.6 and Section 4.7.

4.5.1 Incremental Actor Vectorization

In this section, we define a general approach for searching the space of ALV

configurations that is based on selecting and vectorizing actors one at a time based

on some specific greedy criteria. We refer to this general approach as Incremental
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Actor Vectorization (IAV). Each iteration of IAV, called an IAV iteration, involves

the selection and vectorization of a single actor. This results in a sequence of

intermediate vectorized graphs, I1, I2, . . . , IN , where Ii is the transformed graph

that results from IAV iteration i, and N is the total number of iterations before

IAV terminates. The approach is incremental in both the dimensions of actors and

vectorization degrees — that is, each IAV iteration selects a single actor v, and

increases its vectorization degree to the next highest element of allowable(G, v).

Given an actor v that has an associated vectorization degree bv, we refer to this

process of replacing bv with the next highest element min(x ∈ allowable(v) | x > bv)

as stepping up the vectorization of v or just “stepping up v”.

In IAV, we define a “score” function to guide the vectorization process. At

each algorithm iteration, IAV selects an actor that has the highest score among

all actors whose stepping up would not result in a violation of the given memory

budget M . Analogous to how different priority functions can be used to select tasks

in multiprocessor list scheduling (e.g., see [37]), different score functions can be used

to apply different ALV criteria in IAV. This contributes to a novel design space for

development of integrated vectorization and scheduling techniques.

The specific score functions that we experiment with in this work first apply

Σ-scheduling to generate a schedule µ(i) of the current Ii (intermediate vectorized

graph) onto the target HCGP P , and then use a specific metric to estimate the

potential “gain” of each candidate stepping up operation relative to the processor

assignment associated with µ(i). Given a schedule S returned by Σ-scheduling, we

define the associated processor assignment associated with S and dataflow graph
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G = (V,E) as the function mpS : V → P such that for each v ∈ V , mpS(v) gives

the processor to which actor v is mapped according to S. The initial schedule µ(0)

is derived by applying Σ-scheduling to the input (unvectorized) graph for IAV.

Algorithm 1 shows a pseudocode description of the IAV approach that employs

this mapping-based method of score function formulation. In the remainder of this

chapter, we refer to the mapping-based form of IAV shown in Algorithm 1 as “Σ-

IAV”.

Algorithm 1 Integrated Vectorization and Mapping using Σ-IAV.

Function incrementalVectorize(G,P,M)
initialize configs = ∅, GB = G, B = {(v, 1)|v ∈ V }
while memSize(GB) ≤M do

mp = generateMapping(GB, P )
v∗ = argmaxv∈V score(B,mp, v)
B(v∗) = nextVCD(v)
GB = vectorize(G,B)
if memSize(GB) ≤M then

configs = configs ∪ {(B,mp)}
end

end
return argmaxc∈configs throughput(G, c)

In Algorithm 1, generateMapping is a placeholder for any Σ-scheduling tech-

nique that is applied to map a given intermediate vectorized graph onto the targeted

heterogeneous platform P . In our implementation of Σ-IAV, we employ a spe-

cific Σ-scheduling technique called Incremental Actor Re-assignment (IAR) as the

generateMapping function. The IAR technique is discussed further in Section 4.

The function throughput referenced in Algorithm 1 represents a placeholder

for any function that is used to estimate the throughput of a mapping that is gen-

erated by generateMapping for an intermediate vectorized graph. In our imple-
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mentation of Σ-IAV, we employ an efficient simulation-based approach for this kind

of throughput estimation. This simulation approach is discussed further in Sec-

tion 4.5.5.

We formulate and experiment with two specific score functions in this work.

We refer to these score functions as time-saving (TMSV) and time-saving-per-byte

(TMSVPB). The TMSV score for actor v during IAV iteration i is defined as largest

adjusted execution time reduction achievable (across all processors in P ) when step-

ping up v. This “adjusted” time reduction is computed relative to the execution

of v on mpµ(i)(v), and is normalized by the vectorization degree. The units of this

adjusted time reduction are thus “seconds per unit of vectorization”. This score can

be expressed as:

tmsv(v, i) = max
p∈P

(
t(v, b,mpµ(i)(v))

b
− t(v, b′, p)

b′
), (4.3)

where t represents a function that is used to retrieve statically-derived ALV profiling

data, b is the current VCD of v (in IAV iteration i), and b′inallowable(v) is the VCD

that would result from stepping up v. The function t provides access to profiling

data that is collected for a finite subset profiled(v) ⊂ allowable(v) of contiguous

elements in allowable(v) starting at 1. For a given actor v, vectorization degree

b ∈ profiled(v), and processor p ∈ P , t(v, b, p) gives the profiling-derived estimate

for the execution time of v on p with vectorization degree b.

Here, we use “profiling” as a general term that encompasses any method for

deriving a compile-time estimate for the execution time of a vectorized actor execu-

70



tion. The specific approach to profiling that we use in our experiments is discussed

in Section 4.6.

Intuitively, a lower incremental time required to execute additional firings leads

to a higher TMSV score. An extreme (theoretical) case is when an unlimited number

of firings of a given actor can be executed in unit time on any available processor

type — in this case, fs(v, i) = 1/b′ − 1/b. TMSV also favors actors that have lower

vectorization degrees since fs(v, i)→ 0 as b→∞.

Figure 4.2 shows a simple example of vectorization using the TMSV score

function. The table in this figure provides analytical models, in terms of the vec-

torization degree v, that are used to derive the profiling function t. For example,

the models estimate that actor A requires approximately (0.5× v) units of time to

execute.

The IAV process begins with an unvectorized graph and an initial mapping

where all actors are mapped to the CPU core. In the first IAV iteration (i = 0)

shown in Figure 4.2, A has the largest TMSV score, so it is selected, and a new

mapping is generated based on the VCDs. In the second iteration, B has the largest

TMSV score, so B is vectorized (stepped up), and the mapping is updated again.

This process continues until no more vectorization operations can be carried out

without exceeding the memory budget M .

Under memory constraints, we expect that it will be more useful to consider

the increase in buffer requirements when selecting actors for ALV. This motivates

our formulation of the TMSVPB score function. This memory-aware score function

can be formulated as:
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Figure 4.2: A simple example to illustrate Σ-IAV using the TMSV score function.

tmsvpb(v, i) = max
p∈P

(
t(v, b,mpµ(i)(v))/b− t(v, b′, p)/b′

Ωbuf (GB′)− Ωbuf (GB(i))
), (4.4)

where B(i) represents the current ALV configuration in ILV iteration i, and B′ =

B(i) − {(v, b)} + {(v, b′)} represents the candidate configuration that results from

stepping up v. Thus, the TMSVPB function favors actors whose vectorization results

in throughput improvement without excessive increase in buffer requirements.

4.5.2 N -Candidates IAV

Our proposed Σ-IAV approach has two drawbacks — (1) it selects only one

actor at each step, and (2) with the TMSV and TMSVPB score functions, the

selections are based on actor execution times only, without taking into account the

SDF graph topology. We alleviate the first drawback by storing multiple vectorized-
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graph candidates to consider in each IAV iteration following the very first iteration.

In particular, we store N candidate graphs that provide the highest throughput

when processed by by Σ-scheduling. Here, N is a parameter that can be controlled

by the designer or tool developer.

The second drawback can be addressed by applying Σ-scheduling to optimize

throughput over each actor for every candidate graph. That is, for each candidate

graph Y that is stored, and each actor v, we apply Σ-scheduling to the transformed

graph that results from stepping up v in Y . We then take the best result from

all of these Σ-scheduling-based evaluations to determine the vectorization operation

that is to be applied in the associated IAV iteration. This approach results in some

increase in complexity, but has the potential to perform significantly more thorough

optimization at a relatively high level of design abstraction.

We refer to this modified Σ-IAV approach as N-candidates IAV. Algorithm 2

provides a pseudocode description of N -Candidates IAV. Here, the notation c.1

denotes the first element of the ordered pair c, and configs [1 : N ] denotes the list

that consists of the first N elements of the list configs .

As with our implementation of Σ-IAV, we employ in our implementation of

N -candidates IAV the IAR technique (Section 4) as the generateMapping function.

Similarly, our implementation ofN -candidates IAV incorporates the simulation-

based throughput estimation technique that is discussed in Section 4.5.5. This esti-

mation technique corresponds to the function called throughput in Algorithm 2.

Intuitively, N -candidates IAV is a greedy method that tries to avoid unsatisfac-

tory search paths by retaining multiple intermediate vectorized graphs during each
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Algorithm 2 A pseudocode description of N -candidates IAV.

Function nCandidatesVectorize(G = (V,E), P,M,N)
initialize B = {(v, 1)|v ∈ V },
mp = generateMapping(G,P ), configs = {(B,mp)}, flag = true
while flag = true do

flag = false
foreach c ∈ configs do

foreach v ∈ V do
B′ = c.1− {(v, bv)} ∪ {(v, nextVCD(v, bv)}
if (visited(B′) = true)and(Ωbuf (GB′) ≤M) then

mp = generateMapping(GB′ , P )
configs = configs ∪ {(B′,mp)}
flag = true

end

end

end
sortByThroughput (configs)
configs = configs [1 : N ]

end
return argmaxc∈configs throughput(G, c)

IAV iteration. Larger values for the parameter N allow more extensive design space

exploration at the cost of greater running time. When N = 1, N -candidates IAV re-

duces to IAV with the score function being the estimated throughput (“throughput”)

of the transformed graph that results from the selected vectorization operation. In

our implementation of N -candidates IAV, we estimate throughput using simulation.

This simulation approach is discussed further in Section 4.5.5. In Algorithm 2,

throughput(G, c) represents the estimate of throughput that is derived in this way

for a given intermediate vectorized graph G that is based on ALV configuration c.

Other score functions can be used in N -candidates IAV other than through-

put. However, in our experiments, we found that among TMSV, TMSVPB, and

throughput, the throughput score function produces the best results. Investigation

of other score functions in this context is an interesting direction for future work.
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In our experiments, we used N = |V | as the number of candidates to be stored.

4.5.3 Mapping-Based Devectorization

N -candidates IAV is an incremental vectorization method that starts with

an unvectorized graph, and gradually increases the VCDs of selected actors. In

some cases, it may be advantageous to also consider decreasing VCDs during the

optimization process. Such decreasing of VCDs can be useful to reduce memory

consumption associated with selected actors so that memory can be dedicated to

groups of other actors that provide greater throughput benefit through vectorization.

A specific form of decrease that we consider in this section is devectorization, where

an actor with VCD b > 1 is transformed to have no vectorization (VCD of unity).

Figure 4.3(a) shows an example of this kind of scenario. Here, S (source),

K (sink), F (fork), and C (combine) are computationally simple actors without

potential for GPU acceleration, and only very limited potential for speedup through

CPU-based vectorization. On the other hand, actors A1, A2, A3, A4 have GPU-

accelerated versions with significant throughput gain. In this case, however, the

overall throughput gain is limited by the slowest of the four Ais so that incrementally

vectorizing individual Ais does not directly impact throughput gain.

To provide memory efficient vectorization in which this kind of scenario is

of dominant concern, we propose another vectorization method called Mapping-

Based Devectorization (MBD). In contrast with ALV-based incremental vectoriza-

tion, MBD applies GLV to first vectorize all vectorizable actors, and then performs
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(a)

(b)

Figure 4.3: An example that illustrates the utility of devectorization. (a) The
original graph. (b) The graph with GVD = N and devectorization applied to all
CPU-mapped actors — C,F,K, S.

devectorization on the transformed graph derived from GLV. MBD is useful in devec-

torizing actors that have have relatively low CPU-based performance gain through

vectorization, and in jointly considering vectorization improvements produced by

groups of actors.

MBD performs GLV, generates a processor assignment A, and then evaluates

for devectorization each actor that is mapped to a CPU core in A. If a given

devectorization operation does not reduce the original throughput by a pre-defined

threshold r, the actor is devectorized. In our experiments, we set the threshold r

empirically by experimenting with different values of r. We found in our experiments

that r = 0.95 achieves the maximum throughput gain for MBD (see Section 4.6).

In principle, the processor assignment A can be generated using any multipro-

cessor task graph scheduling technique. In our implementation of MBD, we employ

the Heterogeneous Earliest Finish Time (HEFT) heuristic (e.g., see [49, 39]) to gen-
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erate a schedule for the transformed graph that results from GLV, and then we

extract the processor assignment from this generated schedule.

Devectorization saves memory from low-impact vectorization of actors that are

mapped onto CPU cores. When memory constraints are loose enough to allow GLV,

the MBD technique, based on the memory savings achieved through devectorization,

may improve throughput by allowing greater GVDs to be applied.

Figure 4.3(b) illustrates the application of MBD. In this example, since actors

C, F , K, and S are mapped onto CPU cores, they are devectorized. As a result of

this devectorization, the buffer requirements on edges (S, F ) and (C,K) are reduced

to 1 for each edge.

Algorithm 3 provides a pseudocode description for MBD.

Algorithm 3 Mapping-Based Devectorization (MBD).

Function mappingBasedDevectorize(G = (V,E), P,M)
initialize B = {(v, 1)|v ∈ V }, mp = generateMapping(G,P ),
configs = {(B,mp)}, GB = G, gvd = 1
repeat

B′ = B, mp ′ = mp
B = graphVectDegrees(G, gvd)
GB = vectorize(G,B)
mp = generateMapping(GB)
cpu actors = {v ∈ V |v ismappedtoaCPUcore}
foreach v ∈ cpu actors do

B′′ = B − {(v, b)} ∪ {(v, 1)}
if throughput(G, (B′′,mp)) ≥ r × throughput(G, (B,mp)) then

B = B′′

end

end
gvd = gvd + 1

until memSize(GB) ≤M ;
return (B′,mp ′)
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4.5.4 Mapping Actors onto HCGPs

The Σ-IAV and N -candidates IAV methods presented in Section 4.5.1 and Sec-

tion 4.5.2, respectively, both employ Σ-scheduling throughout the optimization pro-

cess to generate schedules for intermediate vectorized graphs. The Σ-scheduling ap-

proach is useful in our iterative optimization context because it provides moderate-

complexity, bounded-buffer scheduling of multirate SDF graphs. As mentioned in

Section 4.5.1 and Section 4.5.2, we develop a specific Σ-scheduling technique called

Incremental Actor Re-assignment (IAR) for use in both Σ-IAV and N -candidates

IAV. In this section, we elaborate on the IAR technique.

In contrast to time-intensive scheduling methods such as Mixed Linear Pro-

gramming and Genetic Algorithms, IAR is designed with computational efficiency

as a primary objective. This is because IAR is invoked repeatedly during each IAV

iteration — in particular, it is invoked for each candidate ALV configuration.

Intuitively, IAR incrementally moves actors in Σ schedules from “busier” (more

loaded) processors to less busy ones. Algorithm 4 provides a pseudocode description

of the IAR method. IAR initializes the actor assignment by mapping all actors that

have GPU-accelerated versions onto the GPU, and all other actors onto a single

CPU core. This results in an initial assignment that utilizes at most two processors

(the GPU and one CPU core).

Although the MBD algorithm begins by applying GLV, the algorithm produces

solutions that are in general ALV solutions. This is because of the application of

devectorization later in the algorithm, which in general results in heterogeneous
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Algorithm 4 Incremental Actor Re-assignment (IAR).

Function generateMapping(G,P )
for v ∈ V , initialize bestMp(v) = pN if
t(v, pN) <∞ and bestMp(v) = p1 otherwise
initialize bestTh = throughput(G, bestMp)
foreach v ∈ V do

mp = bestMp, th = bestTh, p∗ = bestMp(v)
Q = {q ∈ P |q 6= p∗}
foreach p ∈ Q do

mp ′ = mp − {(v,mp(v))} ∪ {(v, p)}
th ′ = throughput(G,mp ′)
if th ′ > th then mp = mp ′, th = th ′ ;

end
if th > bestTh then bestMp = mp,bestTh = th ;

end
return (bestMp, bestTh)

vectorization degrees across the set of actors in the input graph.

Then IAR iteratively computes the maximum throughput gain for all actor-

processor pairs, and selects the pair that gives the highest throughput at each it-

eration. In this context, selection of an actor-processor pair (a, p) means that the

current processor assignment of actor a will be discarded, and actor a will be as-

signed (“moved”) to processor p. For this selection process, only actors that have

not yet been selected during previous iterations are considered. The throughput gain

is computed with the aid of the function denoted in Algorithm 4 as throughput.

This function invokes the simulation-based throughput estimator discussed in Sec-

tion 4.5.5. Each actor is moved only once during execution of IAR.

4.5.5 Throughput Estimation

For compile-time throughput estimation, we have developed a throughput sim-

ulator for SDF graphs that follows bounded-buffer execution semantics (defined in
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Section 4.3) with a statically-determined processor assignment, as derived by the Σ

strategy introduced in Section 4.4. The inputs to the simulator are: (1) the trans-

formed SDF graph Gv that results from the candidate set of vectorization operations

that is under evaluation; (2) the Σ mapping for Gv that is generated by IAR; (3) the

Ω buffer bound for each edge in Gv; (4) an estimate of the execution time for each

actor in Gv; and (5) an estimate of the data transfer time between the main memory

and the device memory on the target platform. In our experiments, the execution

time estimates under different vectorization degrees for each actor as well as the

data transfer time are derived by using measurements of actor and data transfer

execution on the target HCGP.

As described above, this simulator applies SDF bounded-buffer execution se-

mantics. When an actor a is bounded-buffer fireable, its assigned processor p is idle,

and no other actors assigned to p are bounded-buffer fireable, actor a is fired on

p. When multiple actors are bounded-buffer fireable on an idle processor, we select

the actor with the earliest finish time to fire. The throughput simulator naturally

incorporates pipelined parallelism, as firings of an actor can be executed whenever

they satisfy the bounded-buffer firing condition, without the need to wait until actor

firings from previous graph iterations are completed .

4.5.6 Summary

Figure 4.4 summarizes the developments of this section by illustrating rela-

tionships among the key analysis and optimization techniques that have been in-
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Figure 4.4: Layered structure of vectorization, scheduling, and performance estima-
tion in the proposed design optimization framework.

troduced. Recall that IAV, HEFT, and MBD stand, respectively for incremental

actor vectorization, heterogeneous earliest finish time, and mapping-based devector-

ization. Each directed edge in Figure 4.4 represents usage of one technique (at the

sink of the edge) by another (at the source of the edge). For example, IAR is used

by Σ-IAV.

In the remainder of the chapter, we develop an experimental evaluation of

our proposed new design optimization framework for mapping SDF graphs onto

heterogeneous, CPU/GPU platforms, and we study the contributions of the different

components shown in Figure 4.4 to the overall effectiveness of the framework.

4.6 Experiments using Synthetic Graphs

In this section, we demonstrate the effectiveness of the models and methods

developed in Section 4.5 through experiments that study throughput gain and run-

ning time. We compare our methods with the approach of applying graph-level

vectorization (GLV) followed by task-graph scheduling.

We use Heterogeneous Earliest Finish Time (HEFT) as the task-graph schedul-
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ing method in this comparison. HEFT is a commonly used task-graph scheduling

method for HCGPs (e.g., see [49]). The integration of HEFT with GLV can be

viewed as a natural way to integrate SDF vectorization and scheduling using conven-

tional techniques. We refer to the combination of GLV and HEFT as the GLV-HEFT

baseline or simply as GLV-HEFT. As implied by this terminology, GLV-HEFT

is employed in this experimental study as a baseline for evaluating our proposed

methods. The GLV-HEFT baseline applies both GPU acceleration and CPU-GPU

multi-processor scheduling. We demonstrate in this section that the ALV and IAR

scheduling methods developed in this chapter provide significant throughput gain

over this baseline approach under given memory constraints.

4.6.1 Experimental Setup

The vectorization and scheduling techniques that we have developed in this

part of thesis have been integrated into DIF-GPU (see Chapter 3) to provide a

streamlined workflow that combines actor-level / graph-level vectorization, multi-

rate / single-rate SDF scheduling, code generation, and runtime support on hetero-

geneous computing platforms with multi-core CPUs and GPUs.

In the experiments presented in this section, we employ an HCGP consisting of

a quad-core Intel i5-6400 CPU and an NVIDIA Geforce GTX750 GPU. Actor imple-

mentations that are developed for multi-core CPU and GPU execution are compiled

using GCC 4.6.3 and the NVIDIA CUDA compiler (NVCC) 7.0, respectively.
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4.6.2 Synthetic Graph Generation

We use Task Graphs For Free (TGFF) [52] to generate large sets of synthetic

SDF graphs with varied size and complexity. From the graph topologies generated

by TGFF, we randomly map each graph vertex to a specific DSP actor type that

has both a CPU-targeted and GPU-targeted implementation. We perform this

vertex-to-actor mapping for all actors in each randomly-generated graph. A broad

set of DSP actor types — including actors for cross-correlation, FIR filtering, FFT

computation, and vector algebra — are considered when performing this mapping.

The GPU-accelerated implementations of these actors provide speedups from 1X to

20X compared to the corresponding multicore CPU implementations. This use of

TGFF in conjunction with randomly generated actor mappings helps us to evaluate

the performance of our proposed methods on a large variety of graph topologies.

In our experiments, the source and sink actors are selected from a pool of

different implementations of data sources and sinks. Because the input/output

interfacing functionality in an embedded HCGP is typically implemented on a CPU,

we assume that source and sink actors can only be mapped onto CPU cores.

We profile the actors by measuring the execution times of the actors’ firings

on the target platform under a series of vectorization degrees. This profiled data is

then used as input to the evaluated vectorization and scheduling techniques. The

profiled data is also used to simulate the vectorization-integrated schedules that are

derived from the proposed and baseline techniques. This simulation is based on the

throughput simulator presented in Section 4.5.5. We use simulation here to enable
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efficient, automated comparisons across a large variety of different graph structures.

In Section 4.7, we complement this simulation-based evaluation approach with our

experimental evaluation of a case study involving an orthogonal frequency-division

multiplexing (OFDM) receiver. The evaluation in Section 4.7 is performed by syn-

thesizing software using DIF-GPU for the targeted HCGP platform, executing the

synthesized software on the target platform, and measuring the resulting execution

time performance.

4.6.3 IAR Scheduling

Our first experiment analyzes the impact of IAR scheduling on the targeted

HCGP with various degrees of GLV. We first apply IAR scheduling on graph-level-

vectorized SDF graphs with a series of GVDs, and compare the simulated through-

put gain with HEFT scheduling under the same vectorization settings. We refer to

these two methods as GLV-IAR and GLV-HEFT, respectively.

Figure 4.5 shows the speedup of GLV-IAR over GLV-HEFT using (a) 1 CPU

core and 1 GPU, and (b) 3 CPU cores and 1 GPU. This comparison is performed

based on simulated throughput results measured from 100 synthetic graphs that are

generated using the methods described in Section 4.6.2, and vectorized using GVDs

that range from 1 to 10.

The results shown in Figure 4.5 indicate that GLV-IAR achieves a throughput

improvement over GLV-HEFT on average, and that the gain can vary significantly

between different input graphs. The results also suggest that the distribution of
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speedup is not strongly dependent on the GVD that is applied to the graph. While

for some input graphs, GLV-IAR can achieve a speedup that significantly exceeds

1, there are other input graphs for which the speedup falls in the range of 0.5X-

1.0X. The average speedups over GLV-HEFT are 1.06 and 1.15 for the 1 CPU core

/ 1 GPU target, and 3 CPU cores / 1 GPU target, respectively. The maximum

speedups of GLV-IAR over GLV-HEFT measured in this experiment are 1.78 and

2.64, respectively, for these two target platform configurations.

From these results, we conclude that using IAR scheduling on SDF graphs

that are graph-level-vectorized provides some average increase in throughput per-

formance, although this average increase is not dramatic.

However, we emphasize here that the more important advantage of IAR com-

pared to HEFT in our investigated design flow is not its potential for throughput

gain, but rather its applicability to multirate SDF graphs. Recall from our discussion

in Section 4.4 that HEFT applies to acyclic single-rate graphs (task graphs), while

IAR is designed to operate directly on arbitrary acyclic SDF graphs, including both

single-rate and multirate graphs. This applicability to multirate graphs enables its

efficient integration with ALV, which in turn enables derivation of more memory-

efficient vectorization solutions compared to GLV. In Section 4.6.4, we present an

experimental study on the utility of IAR for ALV.
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Figure 4.5: Simulated speedup compared between the vectorized schedules generated
by GLV-IAR and GLV-HEFT. Two target platform configurations are considered
in this evaluation: (a) 1 CPU core + 1 GPU, and (b) 3 CPU cores + 1 GPU.
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4.6.4 Vectorization

In this section, we apply the different ALV methods introduced in Section 4.5

to a large collection of synthetic SDF graphs, and evaluate the performance of the de-

rived schedules by simulating their bounded-buffer execution. The synthetic graphs

are generated using TGFF together with randomized vertex-to-actor mappings, as

described in Section 4.6.3. We evaluate the speedup over the GLV-HEFT baseline

under different memory constraints.

To compare speedups across SDF graphs that have different sizes (i.e., differ-

ent numbers of actors and edges) and different multirate properties (as defined by

the production and consumption rates on the actor ports), we introduce a concept

of relative memory bounds as a normalized representation for memory constraints.

Given an algorithm A for performing GLV, the relative memory bound M(G) for

an SDF graph G is defined as M(G) = M0 × α, where M0 is the memory cost of

the GLV solution derived by Algorithm A when applied to G with GVD = 1, and

α is a constant that represents the “tightness/looseness” of the applied memory

constraint. In our experiments, we experiment with α ∈ {1.0, 1.5, . . . , 5, 5} to cover

a series of memory constraints ranging, respectively, from tight to loose.

Figure 4.6 shows the simulated speedup that we measured from a set of ran-

domly generated SDF graphs for different techniques for ALV that were introduced

in Section 4.5. These results are for a target platform configuration that consists of

1 CPU core and 1 GPU. Here, “TMSV Σ-IAV” and “TMSVPB Σ-IAV” represent

the Σ-IAV algorithm with the TMSV and TMSVPB score functions, respectively.
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The results in Figure 4.6 show that each of the four ALV methods provides unevenly

distributed throughput gains over the test set, where the measured throughput gain

ranges from 0.8X to 2.4X. The speedup obtained by the ALV methods can also

exhibit significant variation from one SDF graph to another. The Graph IDs along

the horizontal axis in Figure 4.6 are arranged in random order.
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Figure 4.6: Speedups measured for four different ALV techniques that were intro-
duced in Section 4.5: (a) TMSV Σ-IAV, (b) TMSVPB Σ-IAV, (c) N-candidate IAV,
and (d) MBD. The target platform configuration consists of 1 CPU core and 1 GPU.

Table 4.1 shows the average and maximum speedups measured for the four

ALV methods — TMSV Σ-IAV, TMSVPB Σ-IAV, N-candidates IAV, and MBD —

that are represented in Figure 4.6. As mentioned previously, these speedups are

in comparison to baseline solutions that are derived using the GLV-HEFT baseline

technique.
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The column labeled ALV-IAR in Table 4.1 represents the meta-algorithm that

results from applying all four of the proposed ALV techniques, and selecting the best

result from among the four derived solutions. In Section 4.7, we perform further

experimental analysis of the ALV-IAR method, which provides a way to leverage

complementary benefits of all of the key ALV techniques introduced in Section 4.5.

ALV-IAR is useful, in particular, for design scenarios that can tolerate the relatively

large optimization time that is required by N-candidates IAV, which dominates the

time required by ALV-IAR.

From this table, we see that N -candidates IAV provides the largest average

speedup by a significant margin, and this algorithm also provides the largest max-

imum speedup. We anticipate that this is because N -candidates IAV uses more

vectorization candidate solutions throughout the search process. The other three

ALV techniques achieve similar average and maximum throughput gain.

Although the MBD method and the two Σ-IAV methods achieve smaller av-

erage speedup compared to NIAV, they run significantly faster (see Section 4.6.5),

and can be useful in cases where quicker turnaround time is desired from the soft-

ware synthesis process. In addition, there are cases where they perform better than

NIAV. Thus, when the quality of the derived solutions is of utmost importance,

it useful to apply the ALV-IAR meta-algorithm described above. This ALV-IAR

method demonstrates average and maximum speedup values of 1.36X and 2.9X on

the benchmark set that we have experimented with.
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Table 4.1: Average and maximum speedup results of the four investigated ALV
techniques compared to the GLV-HEFT baseline technique.

TMSV TMSVPB NIAV MBD ALV-IAR
Average 1.17 1.16 1.33 1.16 1.36

Max 2.7 2.6 2.9 2.5 2.9

4.6.5 Runtime

In this section, we compare the measured running times of the four proposed

ALV techniques. We tested the running times of the ALV techniques on the same

set Sg of randomly generated SDF graphs that we used in the experiments reported

on in Section 4.6.3 and Section 4.6.4. The set Sg consists of 120 graphs, where the

of number of nodes in a given graph ranges from 3 to 30.

Figure 4.7 shows the measured running times for the four ALV methods with

respect to the number of nodes in the input graph. For each of the four ALV

methods, there are 120 points plotted in each part of the figure — one point for

each graph in Sg. Thus, Figure 4.7(a) and Figure 4.7(b) each depicts a total of

4× 120 = 480 plotted points. From these points, we can observe trends in how the

running time increases with the size of the input graph.

Figure 4.7 presents running time results associated with two different memory

constraints — M = 2M0 in Figure 4.7(a), and M = 4M0 in Figure 4.7(b) (see

the discussion on relative memory bounds in Section 4.6.4). These two memory

constraints are used to represent relatively tight and loose memory budgets, respec-

tively. The vertical axes in Figure 4.7 correspond to s1/4, where s is the measured

running time in seconds. Here, we apply an exponent of (1/4) to help improve

clarity in depicting the large number of displayed points.
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Figure 4.7: Runtime of ALV methods under different memory constraints: (a) M =
2M0, and (b) M = 4M0.
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Table 4.2: The running times (in seconds) of the ALV methods on a specific SDF
graph with 22 nodes and 33 edges.

TMSV Σ-IAV TMSVPB Σ-IAV NIAV MBD
M = 2M0 2.0 8.4 320 0.1
M = 4M0 13.0 35.9 3500 0.7

The list of the ALV methods sorted from the fastest to the slowest are: MBD,

Σ-IAV with the TMSV score function, Σ-IAV with the TMSVPB score function, and

NIAV. Table 4.2 shows the running times of the ALV methods on a specific graph

with 22 nodes and 33 edges. This graph is selected randomly to provide further

insight into variations in the running time among the four ALV methods.

In our experiments, we find that typically MBD finishes within 1 second, while

the running times of the two Σ-IAV methods usually range from several seconds up

to a few minutes. We expect that this kind of running time profile is acceptable

in many coarse grain dataflow design scenarios in the embedded signal processing

domain, where actors typically perform higher level signal processing operations,

and therefore the number of nodes in the graphs is limited compared to other types

of dataflow graphs that are based on fine-grained actors.

The running time of NIAV is generally the longest among all four methods,

and grows rapidly with the number of nodes. In our experiments with an SDF graph

having 30 nodes, for example, NIAV takes 3 hours to finish its computation. The

fast growth of the running time in NIAV arises because the algorithm maintains

information about multiple search paths in the vectorization space, which in turn

results in the need to keep track of multiple, intermediate vectorized graphs. There-

fore, NIAV is more suitable in situations when the SDF graph is relatively small,

93



(a)

(b)

Figure 4.8: SDF model of OFDM-RX application. (a) The original graph. (b)
The transformed graph that results from vectorization of syn by a factor of 3, and
insertion of the actors h2d and d2h.

design turnaround time is not critical, or solution quality is of utmost importance.

Additionally, NIAV has various parameters that can be experimented with to trade

off solution quality and running time. These parameters can be used to config-

ure NIAV into a form that is more suitable for a specific design context. Deeper

investigation into the configurability of NIAV is a useful direction for future work.

4.7 Case Study: OFDM

In this section, we demonstrate the effectiveness of our new ALV-integrated

software synthesis framework through a case study involving an orthogonal frequency-

division multiplexing (OFDM) receiver (OFDM-RX). The OFDM-RX is an adapted

version of the OFDM system described in [53]. Figure 4.8 shows an SDF model for

the OFDM-RX application. The value above each actor in Figure 4.8 gives the repe-

tition count of the actor. Table 4.3 lists the actors in this SDF model and describes

their corresponding functions. The system can operate with different parameter

values, as shown in Table 4.4.
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Table 4.3: Actors in the OFDM-RX application.

Actor Description
src Read samples of the input signal.
syn Perform time-domain synchronization.
cfo Remove carrier frequency offsets.
rcp Remove cyclic prefix.
fft Perform Fast-Fourier Transform on symbols.
dmp Map OFDM symbols into bit stream.
snk Write bit stream onto the output.

Table 4.4: Parameters in the OFDM-RX application model, along with the settings
or ranges (“values”) of these parameters that we use in our experiments.

Description Values
L Number of subcarriers per OFDM symbol [128, 256, 512, 1024]
N Number of OFDM symbols per frame 10
Lcp Length of cyclic prefix for each OFDM symbol (9/128)L
M Number of bits per sample 4
D Length of data excluding training symbols (N − 1)(L+ Lcp)
F Length of a frame N(L+ Lcp)
S Size of sample stream 2F

Multiple forms of data parallelism can be exploited in OFDM-RX at different

levels: (1) Frame Level: multiple frames can be processed in parallel in syn and

cfo; (2) Symbol Level: OFDM symbols can be processed in parallel in rcp, fft , and

dmp; (3) Subcarrier Level: Computation involved with arrays of subcarriers, such

as convolution, FFT computations and vector operations, can be parallelized within

each actor.

4.7.1 System Implementation and Profiling

We have implemented the OFDM-RX actors using the Lightweight Dataflow

Environment (LIDE), which provides a programming methodology and associated

application programming interfaces (APIs) for implementing dataflow graph actors
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and edges in a wide variety of platform-oriented languages, such as C, C++, CUDA,

and Verilog [21, 35]. In our OFDM-RX system, GPU-accelerated implementations

are available for all actors other than the src and snk actors. The src and snk

actors are not mapped to the GPU in our implementation because of input/output

operations that are involved in these actors.

We have profiled the execution times for the OFDM-RX actors on both the

CPU and GPU. Figure 4.9 summarizes the Average execution Times per SDF graph

Iteration (ATSIs) for the actors, as derived through this profiling process. The

ATSI tT (v) for an actor v can be expressed as tT (v) = q(v)t(v), where q represents

the repetitions vector of the enclosing SDF graph, and t(v) represents the average

execution time measured for a single firing of v. These execution time estimates are

measured on both the CPU and GPU when L = 256, and the actors are vectorized

to process different numbers of data frames per vectorized invocation. Observe from

Figure 4.9 that the distribution of the ATSIs in OFDM-RX are uneven, and that the

syn and cfo actors dominate the execution times both on the CPU and GPU. Also,

observe that although actor execution times are roughly proportional to the number

of frames NF , they increase at different rates in relation to NF — for example,

tT (cfo) on the GPU grows very slowly with increases in NF , and tT (syn) grows

much faster.
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Figure 4.9: ATSIs on the CPU and GPU when actors are vectorized to process
multiple frames in each firing. (a) CPU. (b) GPU.
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4.7.2 Software Synthesis with GLV-HEFT

We first measure the performance improvement achieved by GLV-HEFT when

integrated in our DIF-GPU software synthesis framework. Here, we measure the sys-

tem throughput under 11 different configurations without any memory constraints

imposed. These measurements are performed on software implementations that are

generated automatically using DIF-GPU integrated with GLV-HEFT.

In contrast to the relative throughput metric (see Section 4.4) that is used as a

general performance metric in Section 4.6, the throughput metric we that employ in

this section and in Section 4.7.3 is frames per second, which is of specific relevance

to the OFDM-RX application.

We denote the results (throughput values) from these measurements by

Th0,Th1, . . . ,Th10. Here, Th0, denotes the throughput when the input graph is

not vectorized and all actors are mapped onto a single CPU core. On the other

hand, for b ∈ {1, 2, . . . , 10}, Thb represents the throughput obtained when GLV is

applied with GVD = b, and HEFT is used to schedule the resulting vectorized graph

(GLV-HEFT) [20].

Figure 4.10 shows the speedup in throughput of GLV over the single-CPU

implementation. The maximum measured speedups achieved here are 10.1X, 18.1X,

31.9X, 41.1X for L = 128, 256, 512, 1024, respectively. Table 4.5 compares Th0 and

Th10 in more detail for different values of L.
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Figure 4.10: Speedup of the OFDM-RX application over a single CPU implemen-
tation for different GVD values and different values of the bandwidth parameter
L.

Table 4.5: OFDM-RX system throughput.

L Th0 (103/s) Th10(103/s)
128 1.94 19.6
256 0.62 11.2
512 0.17 5.43
1024 0.044 1.8

99



4.7.3 Software Synthesis with ALV-IAR

In this section, we perform measurements and comparisons that involve soft-

ware implementations that are generated automatically using DIF-GPU integrated

with ALV-IAR. Recall from Section 4.6 that ALV-IAR applies TMSV Σ-IAV, TMSV-

PB Σ-IAV, N-candidates IAV, and MBD, and then selects the best result from among

the four derived solutions. The experiments are performed under different memory

budgets and different levels of bandwidth L (an application-level parameter). For

comparison, we apply DIF-GPU integrated with GLV-HEFT to synthesize soft-

ware that incorporates vectorized schedules constructed using GLV-HEFT instead

of ALV-IAR.

Table 4.6 shows an example of the vectorization degrees and processor assign-

ments derived for OFDM-RX under a specific memory constraint. This memory

constraint is selected to represent one that is neither very tight nor very loose.

These vectorized scheduling results are derived by ALV-IAR, and the throughput

is measured by executing the resulting software implementation that is synthesized

by DIF-GPU. The vectorization and processor assignment (mapping) results are

shown in Table 4.6 as lists of values that correspond to the graph actors in their

topological order (src, syn, . . . , snk). The numbers 0 and 1 in the Mapping col-

umn represent the CPU-core and GPU, respectively. The results in Table 4.6 show

that ALV-IAR produces a 1.2X speedup compared to the baseline technique for the

selected memory constraint.

The memory budgets are set to M = b log(L)× 105, where b = {1, 2, . . . , 10}.
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Table 4.6: Vectorization degrees and mapping results generated by ALV-IAR and
GLV-HEFT under the memory constraint M = 2.8 Mb, and L = 512.

Method Vectorization Mapping Th(103/s)
ALV-IAR [1,3,12,1,1,1,1] [0,1,1,0,0,0,0] 3.15

GLV-HEFT [4,4,4,36,36,36,144] [0,1,1,1,1,0,0] 2.60

We compare the throughput levels of implementations generated using the two meth-

ods — ALV-IAR and GLV-HEFT — as shown in Figure 4.11. The results shown in

Figure 4.11 show that using actor-level vectorization and Σ scheduling, we are able

to obtain system throughput that consistently exceeds that provided by the baseline

method under same memory constraint.

When memory constraints are relatively tight, GLV has difficulty in adequately

exploiting data parallelism in the OFDM-RX system. ALV-IAR alleviates this prob-

lem by focusing memory resources to vectorize selected, performance-critical actors.

Specifically, ALV-IAR successfully identifies syn and cfo as the two actors that ben-

efit the most from vectorized execution on the GPU. Prioritizing the vectorization

of these two actors helps to avoid wasting memory on vectorizations that have rela-

tively little or no impact on overall system performance. This is reflected by a large

throughput gain when b ≤ 4. When the memory constraint is relaxed, the gap in

the throughput gain between ALV-IAR and GLV is reduced, as data-parallelism in

the system can exploited more effectively by GLV under loose memory constraints.

When optimizing the OFDM-RX system, ALV-IAR maps only syn and cfo

onto the GPU, and assigns the other actors to the CPU to utilize pipeline parallelism

in the system. Under this mapping, firings of syn and cfo from subsequent frames

can be executed in parallel with firings of rcp, fft , dmp and snk from earlier frames.
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Figure 4.11: Memory-constrained throughput of OFDM-RX systems with different
levels of memory budget M and bandwidth L using ALV-IAR compared to the
GLV-HEFT baseline: (a) L = 128, (b) L = 256, (c) L = 512, (d) L = 1024.
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In these experiments, the maximum measured speedup values of ALV-IAR

over GLV-HEFT are 2.66X, 2.45X, 1.94X and 1.71X for L = 128, 256, 512, 1024,

respectively. The maximum speedup values of ALV-IAR compared to a single-core,

unvectorized CPU baseline implementation are 11.1X, 19.8X, 33.8X, and 47.6X, for

L = 128, 256, 512, 1024, respectively.

In summary, the throughput improvement obtained by HCGP acceleration

using the methods developed in this work facilitates real-time, memory constrained

processing of OFDM signals that can benefit a variety of software-defined radio and

cognitive radio applications.

4.8 Summary

In this chapter, we have investigated memory-constrained, throughput opti-

mization for synchronous dataflow (SDF) graphs on heterogeneous CPU-GPU plat-

forms. We have developed novel methods for Integrated Vectorization and Schedul-

ing (IVS) that provide throughput- and memory-efficient implementations on the

targeted class of platforms. We have integrated these IVS methods into the DIF-

GPU Framework, which provides capabilities for automated synthesis of GPU soft-

ware from high-level dataflow graphs specified using the dataflow interchange format

(DIF). Our development of novel IVS methods and their integration into DIF-GPU

provide a streamlined workflow for automated exploitation of pipeline, data and task

level parallelism from SDF graphs. We have demonstrated our IVS methods through

extensive experiments involving a large collection of diverse, synthetic SDF graphs,
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as well as on a practical embedded signal processing case study involving a wireless

communications receiver that is based on orthogonal frequency division multiplex-

ing. The results of our experiments demonstrate that our proposed new methods

for IVS provide significant improvements in system throughput when mapping SDF

graphs onto CPU-GPU platforms.
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Chapter 5

Parameterized Sets of Modes

As previously described in Chapter 1, reconfigurable signal processing sys-

tems present challenges at many levels of design, including configuration, control

and system-level optimization. To meet requirements of bandwidth, flexibility and

reconfigurability, systematic methods to model and analyze cognitive radio designs

on signal processing platforms are desired. To help address these challenges, we

present in this chapter a novel dataflow modeling technique, called parameterized

set of modes (PSM). PSMs allow efficient representation, manipulation and applica-

tion of related groups of processing configurations for functional design components

in signal processing systems. PSMs lead to more concise formulations of actor be-

havior, and a unified modeling methodology for applying a variety of techniques for

efficient implementation. In the following sections, we develop the formal founda-

tions of PSM-based modeling, and demonstrate its utility through two case studies

involving the mapping of reconfigurable wireless communication functionality into

efficient implementations.

5.1 Introduction

Recent developments in embedded systems and applications have motivated

new research towards design methodologies for configurable, high-performance em-
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bedded software. As an example, Cognitive Radio (CR) enables a wireless transceiver

to cognitively manage its wireless spectrum for improved agility and efficiency. Flex-

ibility and reconfigurability of the implementation at various layers, including RF,

baseband, and MAC layers, with cross-layer modeling and control, will be impor-

tant to realize the efficiency potential of spectrum sharing. Realizing the potential

of cognitive radio will also require transceivers to dynamically reconfigure communi-

cation parameters based on multidimensional criteria, including channel conditions,

link performance, and user requirements. Meanwhile, increasing bandwidths and

data rates pose new challenges to the baseband (BB) processing chain, as well as

to radio frequency (RF) processing. Therefore, Software Defined Radio architecture

is needed for Cognitive Radio systems to meet the requirements of configurability,

agility, etc., and to efficiently utilize various kinds of high-performance computing

devices, ranging from multi-core programmable digital signal processors (PDSPs),

streaming SIMD extensions (SSE), to general purpose graphics processing units

(GPGPUs).

On the other hand, practical and systematic approaches to reconfiguration

based on programmable paradigms are still lacking. For example, software-based

adaptive configuration of radio frequency chains is still in its infancy, but is a key

ingredient of the frequency agile radios needed for cognitive devices and flexible

RF spectrum use. The trend of increasing diversity and flexibility in both the

functionality and the computational platforms of wireless systems results in complex

design spaces that must be considered during design and implementation. The

complexity of these design spaces and their novel constraints strongly motivate the
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development of new design methodologies.

To express dynamics in complex signal processing applications like Cognitive

Radios, a number of dynamic dataflow models have been proposed, including pa-

rameterized synchronous dataflow (PSDF) [54], Boolean dataflow (BDF) [32], and

core functional dataflow (CFDF) [8]. PSDF provides semantics to manipulate appli-

cation parameters in dataflow models at run-time. BDF introduces special control

actors to allow data-dependent invocation of actors. CFDF applies the concept

of actor “modes”, where different modes can have differing dataflow behavior, and

mode transitions can be data-dependent. CFDF is tailored to natural design of ac-

tors with dynamic functionality, and facilitates prototyping of dataflow applications,

as well as identification of more specialized dataflow behaviors [18], such as BDF,

cyclo-static dataflow (CSDF) [17] or synchronous dataflow (SDF) [16].

When using CFDF, a designer specifies the behavior of the different modes of

each CFDF actor, and the transitions among these modes. However, as the number

of modes grows and the mode transitions become more complex, CFDF formula-

tions can become unwieldy in terms of actor specification, analysis and implemen-

tation. In this chapter, we present a novel modeling method, called parameterized

set of modes (PSM), which is a high-level abstraction that efficiently represents pa-

rameterized functionality within groups of related modes for CFDF actors. PSMs

enable novel ways for representing, manipulating and applying related groups of

actor modes that lead to more concise formulations of actor behavior, and a unified

modeling methodology for applying a variety of techniques for efficient implementa-

tion. We develop the formal foundations of PSM-based modeling, and demonstrate
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its utility through two case studies involving the mapping of reconfigurable wireless

communication functionality into efficient implementations.

Material described in this chapter has been published in [55].

5.2 Related Work

A technique called mode grouping for CFDF graphs has been developed in [56].

It is demonstrated that mode grouping can improve scheduling results by aiding the

discovery of statically schedulable subgraphs. In [57], CFDF is applied in simulation

of dynamic communication systems. CFDF modeling is also applied as the semantic

basis for the lightweight dataflow design environment, which is introduced and ap-

plied to design and implementation of wireless communication systems in [58]. These

works apply the CFDF model in various useful ways, but are unable to streamline

their associated analysis or implementation when manipulating groups of modes that

are related through parameterization. The mode-based parameterization techniques

introduced in this chapter are developed to bridge this gap.

Various research efforts have been directed towards integrating dynamic be-

havior into dataflow models. In [59], a design framework called SysteMoc is de-

veloped for applying dataflow structures, similar to those used in CFDF, involving

guarded invocations and state transitions specified by finite state machines (FSMs).

The work also includes design space exploration and code synthesis for FPGA plat-

forms. In [60], SysteMoc is applied to perform dynamic partial re-configuration of

SDF graphs that are mapped on FPGAs. In [61], a dataflow based analysis method
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is proposed for SDR applications. This method adopts the concept of “SDF sce-

narios” to incorporate some degree of dynamism for better estimation of system

resource requirements and throughput. Moreover, methods for quasi-static schedul-

ing of statically-schedulable sub-graphs within larger dynamic dataflow graphs are

explored in [62].

In the context of the related work described above, the main contributions of

this chapter are described as follows. We enhance the CFDF model of computation

by introducing the concept of parameterized set of modes (PSM), which incorporates

dynamic parameterization into actor modes, thereby increasing the effectiveness

with which designers can design and implement CFDF-based, dynamic dataflow

models for signal processing systems. PSM-based modeling of actors provides a

common framework for integrated specification, analysis and implementation that

deeply integrates mode- and parameter-based actor characterizations. Although we

develop the PSM model in the context of CFDF in this chapter, we envision that

the ideas can be adapted to related dataflow modeling and programming techniques,

such as, for example, SysteMoc [59] and CAL [63]. Exploring and applying such

adaptations is a useful direction for future work.

5.3 Formulation of PSMs

In this section, we define the concept of parameterized set of modes (PSM), for

incorporating dynamically parameterized modes efficiently into the CFDF modeling

framework.
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5.3.1 Notation

To develop the PSM concept precisely, we first introduce some notation and

review the definition of the CFDF model of computation. For a given dataflow

graph actor A, we denote the set of input ports of A by in(A). We also denote the

set of nonnegative integers by N , and the set of Boolean values by B. We denote

the values in B as true and false.

When using PSMs, we allow CFDF actors to have arbitrary sets of parameters.

Following notation similar to that of parameterized dataflow graphs [54], we denote

the set of parameters of a given actor A as param(A), and for each parameter in p ∈

param(A), we denote the set of permissible values of p as domain(p). At any given

point during dataflow graph execution, an actor parameter p has associated with it

a unique parameter value v ∈ domain(p), which is referred to as the configuration

of p at that point in time. A configuration for A can then be specified as a set of

configurations for all of the parameters in param(A). Some combinations of possible

parameter values may be considered invalid because they do not make sense together.

The set of all valid configurations for A is denoted as DOMAIN (A). At a given point

during execution, the specific configuration for A that is determined by its current

parameter values is referred to as the active configuration of A. Similarly, the specific

mode that a CFDF actor is in during a given firing is referred to as the active mode

for the actor.

If S1 and S2 are sets, then by S1 ⊂ S2, we mean that S1 is a subset (not

necessarily a proper subset) of S2. Thus, S1 can be empty, equal to S2, or a proper
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subset of S2.

5.3.2 Motivation for Parameterized Sets of Modes

The CFDF formulation can become unwieldy when working with parameter-

ized actors that have large parameter sets, especially if one or more actor parameters

can affect the production and consumption rates of an actor. For example, consider

a parameterized downsampler actor that provides an N : 1 downsampling of its in-

put signal. Such an actor requires N distinct modes in its CFDF specification even

though the operation of all N alternative modes have closely related (parameterized)

functionality. Using the PSM concept introduced in this section, we can group all

of these related modes together into a single mode set σ, where the individual mode

in σ that is active during any given actor firing is determined uniquely by the actor

parameter set (in this case, by the parameter N).

As a slightly more elaborate example, consider an actor S that can function

either as a downsampler or an upsampler depending on its configuration. Such an

actor could be useful, for example, as part of a programmable, multistage subsystem

for sample rate conversion. This actor can be parameterized with two parameters u

and N , where u is Boolean-valued and indicates whether or not S functions as an

upsampler (if u = false, then the actor functions as a downsampler), and N provides

the upsampling or downsampling factor. Using the PSM concept, this actor can be

specified precisely using two mode sets — one for the upsampling-related modes,

and the other for the downsampling-related modes. In any given mode set, the
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production and consumption rates are determined uniquely by the actor parameters.

For example, in the mode set associated with upsampling (u = true), N = 3 yields

a consumption rate of 1 and production rate of 3.

Intuitively, a PSM-enhanced CFDF specification, or PSM-CFDF specification,

allows an actor’s modes to be grouped into “clusters” or sets that have related

functionality, and are therefore efficient to work with as distinct units — e.g., in

terms of design tasks such as specification, analysis, optimization, profiling, and

integration. In general, the actor groups may overlap, but collectively, they should

“cover” the entire set of modes of the associated CFDF actor. Furthermore, the

actor groups in a PSM-based specification should be related uniquely to the actor

modes through the parameters of the given actor.

5.3.3 Formal Definition of PSM-CFDF

Given a PSM-CFDF actor A with mode set MA, a PSM ρ for A is a 3-tuple

ρ = (S,C, f), where S ⊂ MA, C ⊂ DOMAIN (A), and f : C → S. The set C,

denoted as psa domain(ρ), can be viewed as the set of possible actor configurations

when the actor is firing in mode set S. The set S, denoted psa modeset(ρ), is the set

of modes in actor A that is associated with ρ — i.e., whenever A fires in PSM ρ, it

fires one of the modes within psa modeset(ρ). Finally, the mapping f , denoted Fρ,

specifies the unique mode within psa modeset(ρ) that is active whenever A executes

in mode set S and a given actor configuration is active.

Given a PSM-CFDF actor A with mode set MA, and a set R of PSMs for A,
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we say that R covers A if every mode in MA is contained in the mode set of at least

one element of R — that is, if

MA =
⋃
ρ∈R

psa modeset(ρ). (5.1)

A PSM-CFDF actor A is a CFDF actor with an associated set R of PSMs that

covers A, and a family of mappings {psa nextr,c : I(Fr(c)) → R | r ∈ R and c ∈

DOMAIN (A)}. Here, for a given mode m ∈MA, I(m) denotes the set of all possible

combinations of inputs — i.e., all possible n-tuples of token vectors, where n = |in|,

and the size of (number of elements in) each token vector is equal to the consumption

rate of the corresponding port in mode m.

In other words, for each pair (r, c), there is a mapping psa nextr,c, called the

next PSM function of PSM r under actor configuration c, that determines uniquely

a specific mode m′ for any given input data set for that mode; this mode m′ can be

interpreted as the next PSM for the actor — i.e., the PSM that should be active for

the next firing of A.

For a PSDF-CFDF actorA, we denote the associated set of PSMs at PSMset(A),

and the associated family of mappings as mappings(A).

The next PSM function is related to the invoking function of A, as defined

by CFDF semantics. In particular, for a given actor firing, the next mode, as

determined by the invoking function, should agree with (be an element of) the next

PSM, as determined by psa next(r, p). For details on the CFDF invoking function,

we refer the reader to [8].
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The concept of PSM is a level of abstraction that helps the designer to bet-

ter understand and expose connections between the actor’s parameters and modes.

PSM analysis can be combined with various processes in a design framework, such

as scheduling and processor selection, to name a few. By grouping into a single

PSM the modes of an actor that share some common property, a designer can ma-

nipulate the associated modes and apply aspects of the property in an integrated

and systematic way.

5.3.4 PSM Transition Graph

For a PSM-CFDF actor, the next PSM function defines the range of modes

in which the actor executes in its next invocation. The structure of transitions

among PSMs therefore can provide valuable information about the actor’s dynamic

behavior. These transitions can be expressed formally by a construction that we

call the PSM transition graph.

The PSM transition graph for a PSM-CFDF actor A is a directed graph

Gpsm = (Vpsm , Epsm), where Vpsm is the set of vertices and Epsm is the set of

edges. The set of vertices is in one to one correspondence with the PSMs of A;

the PSM transition graph vertex associated with PSM r is denoted as vpsm(r). Two

PSM transition graph vertices vpsm(x) and vpsm(y) are connected by a directed edge

e = (vpsm(x), vpsm(y)) if there exist an input vector ν and a configuration c such

that y = psa nextx,c(ν). Such an edge e is annotated with a label, label(e) = c. Note

that multiple edges can have the same label if different next PSMs are “reachable”
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from the same current PSM and same configuration under different input vectors.

Compared to finite state machine (FSM) representation of state transitions, the

PSM transition graph contains higher level information on the structure of PSMs.

Such higher level structure may be difficult to extract or intuitively understand from

conventional FSM-style representations (i.e., where each mode corresponds to a sep-

arate FSM state), especially when the number of modes is large or their connections

are irregular.

Figure 5.1(b) shows an example of a PSM transition graph. Further details

about the actor in this example are discussed in Section 5.5.4.

5.3.5 Implementation Considerations

When implementing a PSM-CFDF actor, we do not anticipate that designers

will typically need to explicitly implement the mappings (mathematical functions)

Fρ and psa next{r, p}. These mappings are useful as analytical tools, but their

explicit realization in software is not in general essential for the PSM-CSDF model

— e.g., an actor designer would not need to provide a software function/method

or hardware description language module that is dedicated to implementing each

of these mappings. Instead, for example, critical aspects of Fρ may be validated

through unit testing, and the next PSM may be determined as a by-product of

actor firing — e.g., through an actor-level application programming interface (API)

that is used by schedulers to invoke the actor.
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5.3.6 Application Example

In this section, we show an example of applying PSM-CFDF concepts in actor

design for a reconfigurable OFDM demodulator that is geared towards cognitive

radio systems. Such systems can involve significant amounts of parameterization in

actor designs. Figure 5.1(a) shows a parameterized demodulator actor that supports

different operational modes, including QPSK and QAM16. The actor maps the B

samples into an M×B bit stream. This actor has two parameters: M for the number

of bits per sample, and B for the vectorization degree (see [34] for fundamental

developments on actor-level vectorization for signal processing dataflow graphs).

Since M represents the number of bits for each symbol, M = 2, 4 correspond, for

example, to QPSK, QAM16, respectively. B can take on any integer value between

1 and Bmax , where Bmax is the maximum vectorization degree (e.g., as a designer

or design tool might set based on memory constraints). The parameter B allows

symbols to be buffered and processed together in batches (block processing). For

example, if B = 1, then each actor invocation processes a single input symbol; if

B = 10, then 10 symbols are buffered and processed together in one invocation.

The de-mapper in Figure 5.1(a) is modeled as a PSM-CFDF actor A as follows.

Actor configurations are specified in the form (M,B). The set of modes of the actor

is given as:
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Figure 5.1: An example of a PSM-CFDF actor: OFDM demapper example. (a)
Actor interface. (b) PSM transition graph.

MA = {INIT ,QPSK 1,QPSK 2, . . . ,QPSKBmax
,

QAM16 1,QAM16 2, . . . ,QAM16Bmax
}

(5.2)

Based on the functionality, MA can be clustered into 3 PSMs: {ρi = (Si, Ci, fi) |

i = 1, 2, 3}, where S1 = {QPSK n | 1 ≤ n ≤ Bmax}, C1 = {(2, n) | 1 ≤ n ≤ Bmax},

f1(M,B) = QPSKB; S2 = {QAM16 n | 1 ≤ n ≤ Bmax}, C2 = {(4, n) | 1 ≤ n ≤

Bmax}, f2(M,B) = QAM16B; S3 = {INIT}, C3 = {(m,n) | m = 2, 4; 1 ≤ n ≤

Bmax}, f3(M,B) = INIT .

Based on this decomposition into PSMs, Figure 5.1(b) illustrates the PSM

transition graph for the demapper actor. Upon initialization or reset, the actor

enters the INIT mode, the only mode in ρ3. After initialization, the actor enters

a mode in ρ1, or ρ2, based on the configuration. For any mode in ρ1, the ratio of

the production rate prd(A) to the consumption rate cns(A) is 2. Similarly, for any

mode in ρ2, prd(A)/cns(A) = 4. To avoid clutter in the diagram, edge labels are

not shown.
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5.3.7 Summary

In this section, we have presented an enhancement to the framework of CFDF

modeling called parameterized sets of modes (PSM), and we have introduced the

PSM-CFDF approach to the modeling of dynamic dataflow actors with dynamically

variable parameters. To illustrate the approach, we have presented a detailed exam-

ple of an OFDM demapper actor that is modeled in terms of PSM-CFDF semantics.

This example and its associated PSM transition graph representation concretely il-

lustrate the novel form of higher level modeling structure that is exposed by the

PSM modeling concept and the associated PSM-CFDF design methodology.

5.4 PSM-level Static Scheduling for CFDF Graphs

In this section, we demonstrate the application of PSM to efficient scheduling

of CFDF-based programs.

A general scheduling approach for CFDF graphs is the so-called canonical

scheduling approach discussed in [18]. In canonical scheduling, a sequential ordering

L of the dataflow graph actors is constructed [18]. At run-time, the scheduler

iteratively traverses the list L, and upon visiting each actor A, the scheduler checks

the enabling condition (availability of sufficient input data) for A, and invokes A if

the enabling condition is satisfied. This scheduling approach is useful in the sense

that it is very general (applicable to any CFDF graph), easy to understand, and

easy to implement. However, the efficiency of canonical scheduling can be relatively

low because of the frequency with which enabling conditions must be checked.
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5.4.1 Statically Schedulable Regions

Static schedules, where the sequence of actor firings is deterministic and uncon-

ditional (not guarded by actor-level checking of enabling conditions) can be signifi-

cantly more efficient and predictable compared to dynamic scheduling approaches,

such as canonical scheduling. Even if the overall dataflow graph does not allow

for static scheduling (due to the presence of dynamic dataflow), it may be possible

to identify “statically schedulable regions” of the graph — i.e., parts of the graph

that can be scheduled statically. Such regions can be scheduled using efficient static

scheduling techniques, which have been developed extensively in the literature (e.g.,

see [7]), and then the static schedules for the different regions can be integrated

through a “top-level” dynamic scheduling mechanism.

In this section, we develop PSM-based methods for constructing and applying

statically schedulable regions for efficient implementation of CFDF graphs. The

concept of statically schedulable regions itself is not new, and has been studied in

depth, for example, in the implementation of CAL programs [19]. Our contribution

in this section, which we refer to as PSM-level static scheduling, is to demonstrate

methods for integrating the concepts of PSMs and statically schedulable regions,

therefore combining the benefits of both approaches, and enabling structure exposed

from PSMs to help guide the construction of efficient schedules. More specifically, in

our development of PSM-level static-scheduling, we utilize information about actor

parameters to form hierarchical PSMs, where each hierarchical PSM is constructed

based on combinations of actor modes that share common scheduling properties.
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In the remainder of this section, we outline our proposed PSM-level static

scheduling approach and present experimental results on an application example.

5.4.2 PSM-level Static Scheduling

PSM-level static scheduling is a hierarchical scheduling technique, where sub-

graphs within a dataflow specification are combined into hierarchical actors, and

execution of a hierarchical actor corresponds to execution of a schedule for the as-

sociated subgraph. If H is a hierarchical actor with associated subgraph G, we say

that H encompasses G, and G is the nested subgraph of H.

In the class of CFDF-PSM specifications addressed in this work, a hierarchical

actor contains a set of modes, and can also contain a set of PSMs, just as non-

hierarchical (leaf-level) actors. In the case of a hierarchical actor H, each mode

m of H corresponds, respectively, to a mapping Zm : Ve → γ, where Ge = (Ve, Ee)

denotes the graph encompassed by H, γ is the set of all actor modes across all actors

in Ve, and Zm(v) ∈ Mv for all v. Recall here that Mv represents the set of modes

for a given actor v.

Intuitively, execution of H in a given mode m ∈MH corresponds to execution

of the encompassed graph with all actors operating in the modes specified by Zm.

The duration (termination criterion) of such an execution is a design issue associated

with the construction of H, similar in some ways to the concept of “subsystem

iteration” in parameterized dataflow [54]. In this chapter, we assume that each

execution of H in a given mode m corresponds to execution of a minimal static
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periodic schedule of the SDF graph, denoted Gsdf (H,m), that results from fixing

the actors in Ge based on the mode assignments specified by Zm. Exploration of

other kinds of termination criteria in this context is a useful direction for further

work.

In our development of PSM-level static scheduling in this chapter, we assume

that the hierarchical actors employed are provided as part of the specification — i.e.,

as part of the design hierarchy. Another interesting direction for future work is in the

development of automated methods to group (cluster) subgraphs into hierarchical

actors for PSM-level static scheduling.

5.4.3 Construction of SDF Scheduling PSMs

Building on the concepts introduced in Section 5.4.2, we introduce a simple

method to partition the mode set MH of a hierarchical actor H in a manner that

facilitates construction of statically schedulable regions. This leads to a unique

partitioning of MH into a set of PSMs that we refer to as SDF scheduling PSMs. The

method is useful in systematically decomposing the structure of a hierarchical PSM-

CFDF actor in a manner that that captures subsystem-level, multi-mode behavior

that is common in cognitive radio systems.

The process of constructing SDF scheduling PSMs operates by iterating

through all modes in H, and dividing the modes into subsets (PSMs) S1, S2, . . . , Sk,

where all modes in a given Si correspond to the same SDF repetitions vector for

the encompassed graph G(e). In other words, if m1,m2 ∈ Si, and a ∈ Ve, then
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q1(a) = q2(a), where q1 and q2 denote, respectively, the SDF repetitions vectors

of Gsdf (H,m1) and Gsdf (H,m2). The resulting mode sets S1, S2, . . . , Sk are then

parameterized with one more scheduling parameters that can be configured and

adapted based on considerations such as the given performance constraints, rep-

etitions vectors qi, and structure of G(e). This process depends on fundamental

properties of the SDF repetitions vector and requires that the set of SDF graphs

{Gsdf (H,m) | m ∈ Mh} satisfy SDF consistency conditions. For details on SDF

fundamentals and consistency conditions, we refer the reader to [16].

In cognitive radio systems, actors can often be configured statically or dynam-

ically by various parameters, resulting in large sets of possible actor modes. If the

actors’ mode spaces are viewed independently, the total number of possible mode

combinations to consider can grow exponentially, making the system unwieldy and

inefficient for scheduling analysis. The integration of PSM techniques to hierarchical

CFDF modeling techniques, as introduced in this section, introduces an alternative,

more compact designs space — the design space of scheduling parameters for the

PSMs S1, S2, . . . , Sk — that facilitates efficient scheduling, including the application

of SDF scheduling techniques to statically schedulable regions.

5.4.4 Synthetic Example

To illustrate the PSM-level static scheduling technique introduced in Sec-

tion 5.4.2 and Section 5.4.3, Figure 5.2 shows a synthetic CFDF graph with 2

parameters, p1 and p2. Intuitively, the parameters p1 and p2 control (select) the
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Figure 5.2: A synthetic CFDF graph that is used to illustrate PSM-level static
scheduling concepts.

modes of A and C, respectively, and p1 and p2 together control the mode of B. The

parameter values and their corresponding actor modes, production rates, and con-

sumption rates are shown in Table 5.1. Here, the special actor ctrl reads parameter

values from an input source (e.g., a file), checks their validity, and sends them as

tokens to A, B and C.

Now suppose that H is a hierarchical actor that encompasses the subgraph

associated with actors A, B, and C. The actors enter “initialization modes” A0,

B0 and C0, respectively, upon system reset, and wait for parameter tokens that are

passed from ctrl . After receiving the parameter values, the actors continue to their

respective operational modes, as specified by the received parameters, until all data

from src has been processed.

Analyzing the repetitions vectors in MH , and the mode space of H, and con-

structing SDF scheduling PSMs leads to the PSMs outlined in Table 5.2. The

common repetitions vectors in the same scheduling PSM allows a common static

schedule to be applied across all modes in that PSM. For example, for PSM1, the

static schedule σ1 = ABC can be applied as the schedule for H. Similarly, for all
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Table 5.1: Details of actor parameters, modes, and dataflow rates.

Actor Configuration Mode Prod Cons

A
N/A A0 0 (0,1)
p1 = 0 A1 1 (2,0)
p1 = 1 A2 1 (1,0)

B

N/A B0 0 (0,2)
(p1, p2) = (0, 0) B1 2 (1,0)
(p1, p2) = (0, 1) B2 2 (2,0)
(p1, p2) = (1, 0) B3 1 (2,0)
(p1, p2) = (1, 1) B4 1 (1,0)

C
N/A C0 0 (0,1)
p2 = 0 C1 1 (2,0)
p2 = 1 C2 1 (4,0)

Table 5.2: Scheduling PSMs of the hierarchical actor H.

PSMs Mode of H Mode of ABC q

PSM1

H0 A0 B0 C0 (1,1,1)
H1 A1 B1 C1 (1,1,1)
H2 A2 B4 C2 (1,1,1)

PSM2
H3 A1 B2 C2 (1,1,2)
H4 A2 B3 C1 (1,1,2)

modes in PSM2, we can apply the static schedule σ2 = AB(2C). Here, we apply

looped scheduling notation, where a parenthesized term of the form (mX), where m

is a non-negative integer (or a symbolic expression that resolves to a non-negative

integer) and X is a sequence of actor firings, represents the successive execution m

times of the sequence X. For background on the construction and manipulation of

looped schedules for synchronous and parameterized dataflow graphs, we refer the

reader to [64, 54].

For the entire application graph in this example, we can apply the schedule

σtop = srcσH(nsnk), where n is the mode-dependent firing rate (iteration count)

for snk , and σH is configured dynamically as σ1 or σ2 based on the currently-active

scheduling PSM.
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We constructed the PSMs and schedules outlined here by hand, and based

on these constructions, we implemented this synthetic application graph using the

lightweight dataflow environment (LIDE), which is a tool for experimenting with

dataflow techniques in arbitrary simulation- or platform-oriented languages, such

as C, CUDA, MATLAB, and Verilog [58, 35]. Specifically, in our experiments we

employed LIDE-C and LIDE-CUDA, which are C- and CUDA-oriented versions of

the LIDE environment, respectively.

We implemented each actor as a simple sample rate converter that inserts or

discards tokens to achieve the specified dataflow rates. The experiment is carried

out using a desktop computer equipped with an Intel Core i7-2600K 8-core CPU,

and 16GB memory. Figure 5.3 shows the execution time of the graph using CFDF

canonical scheduling and PSM-level static scheduling. For our implementation of

PSM-level static scheduling, we used the hierarchy of schedules σtop , σ1, and σ2

defined above. In this example, the average execution time improvement of PSM-

level static scheduling among the different modes of H is 11.9%.

Although it is based on a synthetic dataflow graph, the simplicity of this ex-

ample helps to demonstrate concisely and concretely the proposed PSM-level static

scheduling approach, and the potential for performance improvement using the ap-

proach.
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Figure 5.3: Execution time comparison between canonical scheduling and PSM-level
static scheduling for the synthetic example of Figure 5.2.
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Table 5.3: Dynamic actors in the rqam application.

Actor Mode Prod Cons

src
INIT 0 1
src1 1 0
src2 2 0

T

INIT 0 (0,1)
BPSK 1 (1,0)
QPSK 1 (2,0)

16 −QAM 1 (4,0)

5.4.5 Application Example

In this section, we demonstrate a practical example of PSM-level static schedul-

ing that is relevant to the cognitive radio domain. Figure 5.4 shows a dynamically

configurable modulator that supports multiple source rates and multiple Phase-

Shift-Keying (PSK) and Quadrature Amplitude Modulation schemes. The hierar-

chical actor R encompasses a subgraph that contains two CFDF actors src (using a

minor abuse of notation), and T , whose modes are shown in Table 5.3. Here, r and

m specify the source rate and the modulation scheme, respectively.
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Figure 5.4: A dynamically configurable modulator in CFDF.

Table 5.4: PSMs of the hierarchical actor R in the rqam application.

PSM Mode of R Mode of src T q

PSM1

R0 INIT ,INIT (1,1)
R1 src1 , BPSK (1,1)
R2 src2 , QPSK (1,1)

PSM2
R3 src1 QPSK (2,1)
R4 src2 , 16 −QAM (2,1)

PSM3 R5 src1 16 −QAM (4,1)
PSM4 R6 src2 BPSK (1,2)
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Figure 5.5: Execution time comparison between canonical scheduling and PSM-level
static scheduling for the rqam application.

Using PSM-level static scheduling, we derive 4 PSMs, as shown in Table 5.4.

The static schedule for each PSM is then constructed by hand, implemented in

LIDE, and compared with canonical scheduling, as in Section 5.4.4. We see from

the results that in this example, the performance improvement from applying PSM-

level static scheduling is higher compared to that of the small, synthetic example

in Section 5.4.4. In terms of the execution time per graph iteration (i.e., per mini-

mal periodic scheduling iteration of the derived SDF subgraphs), PSM-level static

scheduling outperforms canonical scheduling by an average of 45.4%, as shown in

Figure 5.5. Here, the average is taken across the 6 operational modes for the hier-

archical actor R.
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5.4.6 Summary of PSM-level Static Scheduling

In this part of chapter, we have demonstrated a specific method, called PSM-

level static scheduling, for applying the PSM modeling approach. There are many

possible ways of applying PSMs in the design process, and the method presented in

this section can be viewed as a specific way that we have studied and experimented

with to help validate the utility of the PSM model. Although the PSM-level static

schedules experimented with in this section were constructed by hand, their founda-

tion in the PSM and CFDF formalisms makes them amenable to derivation through

general, automated techniques. Development of such automated tool support for

PSM-level static scheduling and other applications of PSMs is a useful direction for

further investigation.

5.5 PSM-level Processor Selection for Heterogeneous Platforms

In this section, we demonstrate the application of PSMs to mapping actors

in a CFDF-based dataflow program onto a heterogeneous platform. The targeted

platform here consists of a general purpose CPU (called “host”), and a graphics pro-

cessing unit (GPU) that is used to accelerate selected actors. The GPU is controlled

by the host, and has a separate memory address space.

5.5.1 Overview

The execution of an actor in this environment on the GPU device generally

involves three steps: host-to-device data transfer, on-device execution, and device-
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to-host data transfer. The data transfers between processors can result in significant

overhead, which makes it unfavorable in some scenarios, such as when the amount

of data to be processed is relatively small. Thus, the selection of actors to exe-

cute on the GPU (processor assignment) is an important problem for performance

optimization.

We first formulate a general version of the processor assignment problem that

is addressed in this section, and we describe our PSM-level processor selection ap-

proach in this general context. Then we present experimental results for PSM-

level processor selection on the specific CPU-GPU heterogeneous platform described

above.

5.5.2 PSM-level Processor Selection

Suppose that we have a CFDF graph G = (V,E), and a target platform

consisting of a (possibly heterogeneous) processor set P = {p1, p2, . . . , pn}. Also,

for an actor A in G, let MA denote the set of CFDF modes of A. The objective

of PSM-level processor selection is to derive a set of PSMs and a “top-level” quasi-

static schedule with the goal of optimizing a pre-defined performance metric. More

specifically, PSM-level processor selection involves the following tasks:

• for each actor A, derivation of a set of n PSMs,

selection(A) = ν(A, 1), ν(A, 2), . . . ν(A, n), where each ν(A, i) represents the

subset of modes in MA that are to be assigned (during graph execution) to

processor pi;
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• construction of a “top-level”, quasi-static schedule that executes actors in

G based on the dynamically-determined processor assignment defined by

{selection(A)} | A ∈ V together with the current parameter values (actor

configurations) of the actors in V .

In our development of PSM-level processor selection in the remainder of this

section, our targeted performance metric is throughput. However, the proposed

processor selection framework can be readily targeted to other metrics, such as

latency or memory utilization or to composite metrics, such as latency-constrained

throughput optimization, and memory-constrained latency optimization.

5.5.3 Profile-based Selection

In this section, we develop a profile-driven approach to PSM-level processor

selection. We refer to this approach as profile- and PSM-based processor selection

(PAPPS). In PAPPS, a three-dimensional “profile table” is used to characterize the

performance of specific actor modes on specific processors. In particular, for a given

mode m ∈MA for an actor A, and a given processor p ∈ P , profile(A,m, p) provides

an estimate of the execution time of mode m for actor A on processor p. The profile

table entries for a given actor can be obtained, for example, by iteratively (e.g.,

through appropriate simulation scripts) executing the actor on each processor in

every mode and averaging the results for each mode.

After the profile table is constructed, PSMs for each actor A are formed by

grouping together modes that perform best on a specific processor with ties being
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broken arbitrarily. Thus, for each actor A and each i ∈ {1, 2, . . . n}, we have that

ν(A, i) =
⋃
{{m} | i = argminjprofile(A,m, pj)}. (5.3)

In the PAPPS approach, ties with respect to the argmin function in Equa-

tion 5.3 are resolved arbitrarily (as implied earlier), although more sophisticated

schemes can be envisioned that take ties or “near-ties” (multiple alternatives that

have competitive performance) into account in strategic ways. Such exploration

of more sophisticated PSM-based processor assignment schemes is an interesting

direction for further work.

Once the PSMs are constructed based on Equation 5.3, a top-level, quasi-static

scheduler is used to visit actors according to some scheduling policy, and to execute

each visited actor A using a target processor that is (dynamically) selected based on

the currently-active PSM for A. In other words, each time an actor A is visited by

the scheduler, the current mode m of A is examined to determine the active PSM

(i.e., the unique ν(A, i) that contains m), and then processor pi is selected as the

processor on which to execute the next firing of A.

Canonical scheduling, described in Section 5.4, is a general policy that can

be used as the top-level scheduling policy in this context. However, in some cases,

static analysis of the parameterized application structure can be applied to stream-

line the policy — for example, by statically fixing the order of schedule traversal in a

way that eliminates or greatly reduces the need for run-time enable condition check-

ing. We demonstrate a simple example of such static-analysis-based streamlining in
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(a)

(b)

Figure 5.6: PSM-CFDF model of a configurable OFDM demodulator. (a) Original
dataflow graph. (b) Vectorized dataflow graph.

Section 5.5.4.

5.5.4 OFDM Demodulation

To demonstrate the PAPPS approach, we have applied it to an OFDM de-

modulator and a heterogeneous CPU/GPU implementation platform, as described

in Section 5.5.2. Orthogonal frequency division multiplexing (OFDM) is used ex-

tensively in high-speed wireless communication systems because of its spectral ef-

ficiency, robustness in terms of multi-path propagation, and high bandwidth effi-

ciency [65]. The OFDM demodulator is one of the fundamental subsystems of LTE

and WiMAX wireless communication systems.

Figure 5.6 illustrates a runtime-reconfigurable OFDM demodulator that is

modeled as a CFDF graph. Here, actor SRC represents a data source that generates

random values to simulate a sampler. In a wideband OFDM system, information is

encoded on a large number of carrier frequencies, forming an OFDM symbol stream.

In baseband processing, a symbol stream can be viewed in terms of consecutive

vectors of length N . The symbol is usually padded with a cyclic prefix (CP) of length
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L to reduce inter-symbol inference (ISI) [66]. In Figure 5.6, the CP is removed by

actor RCP . Then, actor FFT performs a fast Fourier transform (FFT) to convert

the symbol stream to the frequency domain.

In practical systems, further processing, such as frequency domain synchro-

nization and channel estimation, is required to remove various channel effects. In

this case study, however, we use a simpler design that directly performs symbol

demapping to illustrate the PAPPS methodology. Actor Demap is a parameterized

symbol demapper that performs M -ary QAM demodulation, with a configurable

QPSK configuration (M = 2 or M = 4). The output bits are collected by the data

sink (actor SNK ).

For the targeted CPU/GPU platform described in Section 5.5.1, all of the

actors in our OFDM demodulation system have CPU implementations, and some

of the actors have GPU implementations.

Each actor A has a parameter, called the vectorization degree and denoted by

β(A), which is the number of OFDM symbols to be processed in a single activation

(scheduler visit) of the actor. If the actor A is understood from context, then we

sometimes drop the “(A)” and simply write β. Vectorization of signal processing

dataflow graph actors, also referred to as “block processing”, is useful in optimizing

throughput, which is the targeted objective in our development of PSM-level pro-

cessor selection (see Section 5.5.2) [34]. Here we assume that the same demapping

scheme can be applied to all symbols to be processed in one activation, so that

SIMD processing can be applied in vectorized executions.

In addition to β, actors in this design have a parameter M , which prescribes
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Table 5.5: Actor parameters in the OFDM demodulator system.

Parameter Domain
β {1, 10, . . . , 100}
N {512, 1024}
M {2, 4}

the number of bits per symbol. For example, if M = 4 and β = 10, this means that

the system is operating in a mode that uses QAM16 as the demapping scheme, and

executes actors in blocks of 10 firings each. A third actor parameter is the OFDM

symbol length, which we denote by N .

The parameter values in this example determine the mode of each actor, and

the actor mode determines the production and consumption rates. Note that this is

not always the case in CFDF actors, where, for example, the next mode for an actor

can be different from the current mode even though there is no change in parameter

settings (e.g., see [8]). However, because there is no such dynamics involved with

next mode determination in this example, the actors can be mapped into corre-

sponding parameterized synchronous dataflow (PSDF) actors [54]. The example,

therefore demonstrates the applicability to PSM techniques to PSDF graphs.

Table 5.5 shows the valid parameter values for the actors in our OFDM demod-

ulation system. The mode set of Demap is given by Equation 5.2 in Section 5.3.6.

Similarly, for other actors, valid combinations of parameter values lead uniquely to

their mode settings. These details for the other actors are omitted here for brevity.
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5.5.5 Application of PAPPS to the OFDM Demodulation System

The PSM-CFDF actors RCP , FFT and Demap are each implemented on

both the CPU and GPU processors. Following the profiling approach described in

Section 5.5.3, each actor A is profiled in every mode in its mode set MA for both the

CPU and GPU implementations. The results are then used to construct the profile

table profile.

In our experiments, an NVIDIA GTX680 GPU with 2GB memory and an

Intel Core I7 3.4GHz CPU with 8GB memory are used for GPU implementation

and CPU implementation, respectively. Figure 5.7 illustrates the profile table profile

for the actors. The maximum latency for all vectorization degrees considered is less

than 8 ms, which is tolerable in many software defined radio contexts. In the

case of RCP , which removes the cyclic prefix from the received signal, the CPU

implementation performs better in all settings. This is due to the small amount

of computation performed in this actor compared to the large CPU-GPU memory

transfer overhead. As a result, selection(RCP) contains only one non-empty PSM;

the PSM associated with the GPU has no modes.

For the FFT actor, the GPU implementation always performs better than the

CPU implementation in the same mode. Thus, for this actor, the PSM associated

with the CPU has no modes. For the Demap actor in the 16-QAM modes (M = 4),

the GPU implementation outperforms the CPU implementation for all values of the

vectorization degree β. In the QPSK modes (M = 2), there is less difference in per-

formance, and the CPU implementation generally performs better for lower β values,
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while the GPU implementation performs better for higher β values. The smaller

computational load in the QPSK modes makes the memory transfer overhead more

significant, which leads to a smaller performance gain from the GPU. In summary,

the Demap actor has two non-empty PSMs ν(Demap, p1) and ν(Demap, p2).
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Figure 5.7: Actor profiles for application of PAPPS to the OFDM demodulator: (a)
RCP actor; (b) FFT actor; (c) Demap actor in 16-QAM modes; (d) Demap actor
in QPSK modes.

Table 5.6 shows the grouping of actor modes into PSMs when applying the

140



Table 5.6: PSM grouping based on CPU and GPU performance profiles for processor
selection. PSM1 and PSM2 are the sets of modes that have shorter execution times
for CPU- and GPU-based execution, respectively.

Actor PSM1 PSM2

RCP N = 512, 1024; 1 ≤ β ≤ 100 ∅
FFT ∅ N = 512, 1024; 1 ≤ β ≤ 100

Demap

{N = 1024,M = 4, β = 1} {N = 1024,M = 4, 10 ≤ β ≤ 100}
{N = 512,M = 4, β = 1, 10} {N = 512,M = 4, 20 ≤ β ≤ 100}
{N = 1024,M = 2, β = 1, 10} {N = 1024,M = 2, 20 ≤ β ≤ 100}
{N = 512,M = 2, 1 ≤ β ≤ 40} {N = 512,M = 2, 50 ≤ β ≤ 100}

PAPPS method based on the achieved profiling results illustrated in Figure 5.7.

We have implemented the OFDM demodulator system on the targeted

CPU/GPU platform using a PAPPS-based processor selection scheme based on

the PSMs illustrated in Table 5.6. We streamlined the top-level scheduler (see Sec-

tion 5.5.3) by observing that even though the production and consumption rates

of actors can vary based on the active actor modes, the variations in this applica-

tion are interdependent such that the dataflow graph exhibits SDF behavior, and

furthermore, the repetitions vector remains constant. In particular, the repetitions

vector is specified by q(A) = 1 for each actor A regardless of what actor modes are

active. This allows us to implement the top-level scheduler without any run-time

checks for actor enabling conditions. Note, however, that even though SDF tech-

niques are employed, the derived scheduler should not be viewed as a form of static

scheduling because the processor assignment can change dynamically.

As in the case study of Section 5.4, we implemented the top-level scheduler by

hand. This scheduler implementation incorporates the PAPPS method for dynamic

processor selection based on the PSM decompositions illustrated in Table 5.6. Build-
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ing on the developments of this section to construct automated scheduler derivation

for PAPPS-based implementation is an interesting direction for future work.

5.5.6 Experimental Results

We compared the application throughput of alternative implementations in

terms of the execution time per (vectorized) application iteration, where an appli-

cation iteration in this context corresponds to the processing required for (β × N)

symbols of the enclosing OFDM system. Because we compare alternative processor

selection schemes with β fixed for each comparison point, this method of throughput

comparison does not favor any particular kind of scheme.

Figure 5.8 shows the execution time per application iteration for three types

of processor selection schemes: (1) all actors are assigned to the CPU (“CPU”), (2)

RCP , FFT and Demap, the most computationally-

intensive actors, are assigned to the GPU (“GPU”), and (3) processor selection is

performed dynamically using our implemented PAPPS-based scheduler (“PAPPS”).

Solid lines represent execution times while dashed lines represent the speedup ob-

tained by using the PAPPS approach. The brown dashed line with an “up-triangle”

represents the speedup of PAPPS over CPU (scheme (1)); the black dashed line

represents the speedup of PAPPS over GPU (scheme (2)). The speedups achieved

by using PAPPS, compared to methods (1) and (2), are also shown in the figure.

The average speedup achieved by PAPPS in this application over a CPU implemen-

tation is more than 1.5X. In the setting where the largest amount of data is present
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(1024-FFT and 16-QAM), the average speedup is more than 2X over all vectoriza-

tion degrees. The achieved speedup is limited by the cost of data transfer between

CPU and GPU memory for each actor. This data transfer overhead has been taken

into account in the reported speedup values.
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Figure 5.8: Execution time and speedup under three types of processor selection
schemes for the OFDM demodulator system. (a) 1024-pt FFT, 16-QAM; (b) 512-pt
FFT, 16-QAM; (c) 1024-pt FFT, QPSK; (d) 512-pt FFT, QPSK.

Compared to the GPU implementation scheme (scheme (1)), the PAPPS
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scheme achieves an average of 20% improvement in throughput over the GPU

scheme. However, the vectorization step applied in our implementation generally

results in increased latency for the system. In wireless communication applications,

latency is a critical design constraint (e.g. see [67]), and thus, vectorization should

be applied carefully to ensure that excessive latency does not result.

In our experiments, the vectorization degree is set to be no more than 100.

As shown in Figure 5.8, this results in a maximum latency of 8ms, which is reached

when N = 1024 and β = 100. This is at a tolerable level of latency for many

kinds of software radio systems. For example, 8ms is only a small fraction of the

typical 250ms end-to-end delay for data packets, which is described for the com-

munication systems discussed in [68]. In cases where there are more stringent la-

tency constraints, the vectorization degree can be bounded more tightly to trade off

throughput performance for decreased latency.

The experiments presented in this section along with the other examples dis-

cussed in this chapter are provided to give a concrete idea of the kind of approaches

that are supported by the PSM framework. These can be viewed as representative

examples that help to give a sense of the diverse possibilities for applying the pro-

posed methods. Further study into applying these methods and developing design

optimizations that build on them is a useful direction for future investigation.
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5.6 Summary

In this chapter, we have introduced a new dataflow modeling technique called

parameterized set of modes (PSM) and demonstrated its relevance and application

to design and implementation of signal processing systems for cognitive radio ap-

plications. PSMs enable novel ways for representing, manipulating and applying

related groups of actor modes that lead to more concise formulations of actor be-

havior, and a unified modeling methodology for applying a variety of techniques for

efficient implementation. To demonstrate the utility and versatility of PSMs in sig-

nal processing system design processes, we have developed two case studies involving

mapping of important kinds of reconfigurable wireless communication subsystems

into efficient implementations. The PSM methods introduced in this chapter allow

implementation techniques like those introduced in the case studies to be devel-

oped according to a common modeling framework, which allows such techniques

to be better understood, integrated, and optimized. Several useful directions for

future work have also emerged from the developments of this chapter, including the

investigation of automated techniques for applying PSMs to efficient static region

derivation and to processor selection on heterogeneous platforms.
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Chapter 6

Conclusions and Future Work

In this chapter, we first summarize the contributions presented in the previous

chapters of this thesis. Then, we list useful directions for future research.

6.1 Conclusions

In this thesis, we have developed novel dataflow modeling, scheduling and vec-

torization techniques that are geared towards high-performance software synthesis

for hybrid CPU-GPU computing platforms. Our contributions are summarized into

three major parts listed as follows.

Firstly, we have developed a new model-based software synthesis framework,

called DIF-GPU, that integrates high level dataflow graph specification, vectoriza-

tion, scheduling, and code generation for heterogeneous CPU-GPU platforms. We

have demonstrated the ability of DIF-GPU to synthesize, through its highly in-

tegrated design flow, implementations that significantly outperform conventional

CPU-GPU mappings (i.e., where all actors for which GPU implementations are

available are unconditionally mapped to the GPU). Furthermore, we have demon-

strated the utility of DIF-GPU in (a) enhancing application performance through

optimized management of interprocessor communication for given scheduling and

vectorization configurations, and (b) exploring complex design spaces in the map-
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ping of applications onto CPU-GPU platforms.

Secondly, we have investigated memory-constrained, throughput optimization

for synchronous dataflow (SDF) graphs on heterogeneous CPU-GPU platforms. We

have developed novel methods for Integrated Vectorization and Scheduling (IVS)

that provide throughput- and memory-efficient implementations on the targeted

class of platforms. We have integrated these IVS methods into the DIF-GPU Frame-

work, which provides capabilities for automated synthesis of GPU software from

high-level dataflow graphs specified using the dataflow interchange format (DIF).

Our development of novel IVS methods and their integration into DIF-GPU provide

a streamlined workflow for automated exploitation of pipeline, data and task level

parallelism from SDF graphs. We have demonstrated our IVS methods through

extensive experiments involving a large collection of diverse, synthetic SDF graphs,

as well as on a practical embedded signal processing case study involving a wireless

communications receiver that is based on orthogonal frequency division multiplex-

ing. The results of our experiments demonstrate that our proposed new methods

for IVS provide significant improvements in system throughput when mapping SDF

graphs onto CPU-GPU platforms.

Finally, we have introduced a new dataflow modeling technique called param-

eterized set of modes (PSM) and demonstrated its relevance and application to

design and implementation of signal processing systems for cognitive radio applica-

tions. PSMs enable novel ways for representing, manipulating and applying related

groups of actor modes that lead to more concise formulations of actor behavior,

and a unified modeling methodology for applying a variety of techniques for effi-
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cient implementation. To demonstrate the utility and versatility of PSMs in signal

processing system design processes, we have developed two case studies involving

mapping of important kinds of reconfigurable wireless communication subsystems

into efficient implementations. The PSM methods introduced in this thesis allow

implementation techniques like those introduced in the case studies to be developed

according to a common modeling framework, which allows such techniques to be

better understood, integrated, and optimized.

6.2 Future Work

Our PSM- and DIF-GPU-based methods target design and optimization for

next-generation wireless communication systems from two different aspects: mod-

eling flexibility and exploitation of parallelism. The modeling and optimization

techniques developed in this research currently support the core functional dataflow

(CFDF) and synchronous dataflow (SDF) models of computation.

In the scope of this thesis, the concept of parameterized sets of modes (PSMs)

is applied to achieve performance improvement for restricted classes of multiproces-

sor platforms. Our approach to PSM-level static scheduling is targeted to efficient

scheduling on single-processor architectures, while our approach to PSM-level pro-

cessor selection is targeted to architectures that are composed of one multi-core

CPU and one GPU.

Compared to our development of PSM-based design methods, DIF-GPU nat-

urally supports a broader range of heterogeneous computing platforms, while it
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Figure 6.1: Architecture for integration of PSM modeling and optimized software
synthesis using DIF-GPU.

assumes a more restricted model of computation — SDF – for application design.

A useful direction for future work therefore centers on integration of the flex-

ible and compact modeling provided by PSMs and the extensive capabilities for

software synthesis and design optimization that are provided by DIF-GPU. Fig-

ure 6.1 represents a possible architecture for an extended framework that integrates

both dynamic dataflow modeling and multiprocessor signal processing performance

optimizations in this manner. Here, ALV and GLV stand for actor-level vectoriza-

tion and graph-level vectorization, respectively.

Two key problems involved in developing this envisioned new framework are

the following:

• PSM-level buffering. Developing effective, automated methods for PSM-level

151



buffer analysis is important for providing efficient memory management when

integrating PSM models into the DIF-GPU design flow.

• PSM-level vectorization. PSMs for dataflow graph actors represent a lower

level of abstraction compared to actors — a single actor can encapsulate any

number of PSMs. Extending concepts and methods of actor-level vectorization

to the level of PSMs may be a promising direction to derive vectorization

methods for dynamic dataflow models that are represented using PSM- and

CFDF-based techniques.

The design methods and tools centering on PSMs and DIF-GPU developed

in this thesis have laid a foundation for investigation into such new directions for

synthesis and optimization from dynamic dataflow representations. For example,

as described in Chapter 5.4.2, PSM-level static scheduling groups hierarchical actor

modes into PSMs that have the same repetition vectors associated with their encap-

sulated subgraphs. This property allows the hierarchical actors to be vectorized in

the same way for each mode in the corresponding PSMs, which can in turn be trans-

lated into performing graph-level vectorization on the encapsulated subgraphs. As

another example, consider the PSM-level processor selection scheme (PAPPS) that

was introduced in Chapter 5. This scheme can provide designers with important

information about algorithm-to-architecture mapping decisions. A possible applica-

tion of this information is to generate efficient initial mappings, which can then be

further refined by more specialized dynamic schedulers. For example, such “back-

end schedulers” may incrementally adapt schedules as run-time data is collected and
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analyzed about their performance and bottlenecks.

We envision that the development of PSM-related methods for efficient vector-

ization and scheduling on CPU-GPU platforms can significantly improve paralleliza-

tion of dynamic dataflow models for this important class of platforms. For example,

advances in this area can contribute to multidimensional design optimization of

dynamic, data driven application systems (DDDAS) — e.g., see [69, 70].
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