89 research outputs found

    Herbrand Consistency of Some Arithmetical Theories

    Full text link
    G\"odel's second incompleteness theorem is proved for Herbrand consistency of some arithmetical theories with bounded induction, by using a technique of logarithmic shrinking the witnesses of bounded formulas, due to Z. Adamowicz [Herbrand consistency and bounded arithmetic, \textit{Fundamenta Mathematicae} 171 (2002) 279--292]. In that paper, it was shown that one cannot always shrink the witness of a bounded formula logarithmically, but in the presence of Herbrand consistency, for theories IΔ0+Ωm{\rm I\Delta_0+\Omega_m} with m2m\geqslant 2, any witness for any bounded formula can be shortened logarithmically. This immediately implies the unprovability of Herbrand consistency of a theory TIΔ0+Ω2T\supseteq {\rm I\Delta_0+\Omega_2} in TT itself. In this paper, the above results are generalized for IΔ0+Ω1{\rm I\Delta_0+\Omega_1}. Also after tailoring the definition of Herbrand consistency for IΔ0{\rm I\Delta_0} we prove the corresponding theorems for IΔ0{\rm I\Delta_0}. Thus the Herbrand version of G\"odel's second incompleteness theorem follows for the theories IΔ0+Ω1{\rm I\Delta_0+\Omega_1} and IΔ0{\rm I\Delta_0}

    Separating Bounded Arithmetics by Herbrand Consistency

    Full text link
    The problem of Π1\Pi_1-separating the hierarchy of bounded arithmetic has been studied in the paper. It is shown that the notion of Herbrand Consistency, in its full generality, cannot Π1\Pi_1-separate the theory IΔ0+jΩj{\rm I\Delta_0+\bigwedge_j\Omega_j} from IΔ0{\rm I\Delta_0}; though it can Π1\Pi_1-separate IΔ0+Exp{\rm I\Delta_0+Exp} from IΔ0{\rm I\Delta_0}. This extends a result of L. A. Ko{\l}odziejczyk (2006), by showing the unprovability of the Herbrand Consistency of IΔ0{\rm I\Delta_0} in the theory IΔ0+jΩj{\rm I\Delta_0+\bigwedge_j\Omega_j}.Comment: Published by Oxford University Press. arXiv admin note: text overlap with arXiv:1005.265

    Polynomial time ultrapowers and the consistency of circuit lower bounds

    Get PDF
    A polynomial time ultrapower is a structure given by the set of polynomial time computable functions modulo some ultrafilter. They model the universal theory ∀PV of all polynomial time functions. Generalizing a theorem of Hirschfeld (Israel J Math 20(2):111–126, 1975), we show that every countable model of ∀PV is isomorphic to an existentially closed substructure of a polynomial time ultrapower. Moreover, one can take a substructure of a special form, namely a limit polynomial time ultrapower in the classical sense of Keisler (in: Bergelson, V., Blass, A., Di Nasso, M., Jin, R. (eds.) Ultrafilters across mathematics, contemporary mathematics vol 530, pp 163–179. AMS, New York, 1963). Using a polynomial time ultrapower over a nonstandard Herbrand saturated model of ∀PV we show that ∀PV is consistent with a formal statement of a polynomial size circuit lower bound for a polynomial time computable function. This improves upon a recent result of Krajíček and Oliveira (Logical methods in computer science 13 (1:4), 2017).Peer ReviewedPostprint (author's final draft

    Hilbert's Program Then and Now

    Get PDF
    Hilbert's program was an ambitious and wide-ranging project in the philosophy and foundations of mathematics. In order to "dispose of the foundational questions in mathematics once and for all, "Hilbert proposed a two-pronged approach in 1921: first, classical mathematics should be formalized in axiomatic systems; second, using only restricted, "finitary" means, one should give proofs of the consistency of these axiomatic systems. Although Godel's incompleteness theorems show that the program as originally conceived cannot be carried out, it had many partial successes, and generated important advances in logical theory and meta-theory, both at the time and since. The article discusses the historical background and development of Hilbert's program, its philosophical underpinnings and consequences, and its subsequent development and influences since the 1930s.Comment: 43 page

    Perspectives for proof unwinding by programming languages techniques

    Get PDF
    In this chapter, we propose some future directions of work, potentially beneficial to Mathematics and its foundations, based on the recent import of methodology from the theory of programming languages into proof theory. This scientific essay, written for the audience of proof theorists as well as the working mathematician, is not a survey of the field, but rather a personal view of the author who hopes that it may inspire future and fellow researchers

    Mathematical Logic: Proof theory, Constructive Mathematics

    Get PDF
    The workshop “Mathematical Logic: Proof Theory, Constructive Mathematics” was centered around proof-theoretic aspects of current mathematics, constructive mathematics and logical aspects of computational complexit

    A functional interpretation for nonstandard arithmetic

    Get PDF
    We introduce constructive and classical systems for nonstandard arithmetic and show how variants of the functional interpretations due to Goedel and Shoenfield can be used to rewrite proofs performed in these systems into standard ones. These functional interpretations show in particular that our nonstandard systems are conservative extensions of extensional Heyting and Peano arithmetic in all finite types, strengthening earlier results by Moerdijk, Palmgren, Avigad and Helzner. We will also indicate how our rewriting algorithm can be used for term extraction purposes. To conclude the paper, we will point out some open problems and directions for future research and mention some initial results on saturation principles

    Computational reverse mathematics and foundational analysis

    Get PDF
    Reverse mathematics studies which subsystems of second order arithmetic are equivalent to key theorems of ordinary, non-set-theoretic mathematics. The main philosophical application of reverse mathematics proposed thus far is foundational analysis, which explores the limits of different foundations for mathematics in a formally precise manner. This paper gives a detailed account of the motivations and methodology of foundational analysis, which have heretofore been largely left implicit in the practice. It then shows how this account can be fruitfully applied in the evaluation of major foundational approaches by a careful examination of two case studies: a partial realization of Hilbert's program due to Simpson [1988], and predicativism in the extended form due to Feferman and Sch\"{u}tte. Shore [2010, 2013] proposes that equivalences in reverse mathematics be proved in the same way as inequivalences, namely by considering only ω\omega-models of the systems in question. Shore refers to this approach as computational reverse mathematics. This paper shows that despite some attractive features, computational reverse mathematics is inappropriate for foundational analysis, for two major reasons. Firstly, the computable entailment relation employed in computational reverse mathematics does not preserve justification for the foundational programs above. Secondly, computable entailment is a Π11\Pi^1_1 complete relation, and hence employing it commits one to theoretical resources which outstrip those available within any foundational approach that is proof-theoretically weaker than Π11-CA0\Pi^1_1\text{-}\mathsf{CA}_0.Comment: Submitted. 41 page
    corecore