326,911 research outputs found

    The Design and Demonstration of the Ultralight Testbed

    Get PDF
    In this paper we present the motivation, the design, and a recent demonstration of the UltraLight testbed at SC|05. The goal of the Ultralight testbed is to help meet the data-intensive computing challenges of the next generation of particle physics experiments with a comprehensive, network- focused approach. UltraLight adopts a new approach to networking: instead of treating it traditionally, as a static, unchanging and unmanaged set of inter-computer links, we are developing and using it as a dynamic, configurable, and closely monitored resource that is managed from end-to-end. To achieve its goal we are constructing a next-generation global system that is able to meet the data processing, distribution, access and analysis needs of the particle physics community. In this paper we will first present early results in the various working areas of the project. We then describe our experiences of the network architecture, kernel setup, application tuning and configuration used during the bandwidth challenge event at SC|05. During this Challenge, we achieved a record-breaking aggregate data rate in excess of 150 Gbps while moving physics datasets between many Grid computing sites

    Leveraging Probabilistic Switching in Superparamagnets for Temporal Information Encoding in Neuromorphic Systems

    Full text link
    Brain-inspired computing - leveraging neuroscientific principles underpinning the unparalleled efficiency of the brain in solving cognitive tasks - is emerging to be a promising pathway to solve several algorithmic and computational challenges faced by deep learning today. Nonetheless, current research in neuromorphic computing is driven by our well-developed notions of running deep learning algorithms on computing platforms that perform deterministic operations. In this article, we argue that taking a different route of performing temporal information encoding in probabilistic neuromorphic systems may help solve some of the current challenges in the field. The article considers superparamagnetic tunnel junctions as a potential pathway to enable a new generation of brain-inspired computing that combines the facets and associated advantages of two complementary insights from computational neuroscience -- how information is encoded and how computing occurs in the brain. Hardware-algorithm co-design analysis demonstrates 97.41%97.41\% accuracy of a state-compressed 3-layer spintronics enabled stochastic spiking network on the MNIST dataset with high spiking sparsity due to temporal information encoding

    The Design and Implementation of the Transatlantic Mission-Oriented Production and Experimental Networks

    Get PDF
    In this paper we present the design and implementation of the mission-oriented USLHCNet for HEP research community and the UltraLight network testbed. The design philosophy for these networks is to help meet the data-intensive computing challenges of the next generation of particle physics experiments with a comprehensive, network-focused approach. Instead of treating the network as a static, unchanging and unmanaged set of intercomputer links, we are developing and using it as a dynamic, configurable, and closely monitored resource that is managed from end-to-end. In this paper we will present our work in the various areas of the project including infrastructure construction, protocol research and application development. Our goal is to construct a next-generation global system that is able to meet the data processing, distribution, access and analysis needs of the particle physics community

    A Fog Computing-Based Device-Driven Mobility Management Scheme for 5G Networks

    Get PDF
    The fog computing-based device-driven network is a promising solution for high data rates in modern cellular networks. It is a unique framework to reduce the generated-data, data management overheads, network scalability challenges, and help us to provide a pervasive computation environment for real-time network applications, where the mobile data is easily available and accessible to nearby fog servers. It explores a new dimension of the next generation network called fog networks. Fog networks is a complementary part of the cloud network environment. The proposed network architecture is a part of the newly emerged paradigm that extends the network computing infrastructure within the device-driven 5G communication system. This work explores a new design of the fog computing framework to support device-driven communication to achieve better Quality of Service (QoS) and Quality of Experience (QoE). In particular, we focus on, how potential is the fog computing orchestration framework? How it can be customized to the next generation of cellular communication systems? Next, we propose a mobility management procedure for fog networks, considering the static and dynamic mobile nodes. We compare our results with the legacy of cellular networks and observed that the proposed work has the least energy consumption, delay, latency, signaling cost as compared to LTE/LTE-A networks

    Wearable Communications in 5G: Challenges and Enabling Technologies

    Full text link
    As wearable devices become more ingrained in our daily lives, traditional communication networks primarily designed for human being-oriented applications are facing tremendous challenges. The upcoming 5G wireless system aims to support unprecedented high capacity, low latency, and massive connectivity. In this article, we evaluate key challenges in wearable communications. A cloud/edge communication architecture that integrates the cloud radio access network, software defined network, device to device communications, and cloud/edge technologies is presented. Computation offloading enabled by this multi-layer communications architecture can offload computation-excessive and latency-stringent applications to nearby devices through device to device communications or to nearby edge nodes through cellular or other wireless technologies. Critical issues faced by wearable communications such as short battery life, limited computing capability, and stringent latency can be greatly alleviated by this cloud/edge architecture. Together with the presented architecture, current transmission and networking technologies, including non-orthogonal multiple access, mobile edge computing, and energy harvesting, can greatly enhance the performance of wearable communication in terms of spectral efficiency, energy efficiency, latency, and connectivity.Comment: This work has been accepted by IEEE Vehicular Technology Magazin

    Pervasive computing at tableside : a wireless web-based ordering system

    Full text link
    Purpose &ndash; The purpose of this paper is to introduce a wireless web-based ordering system called iMenu in the restaurant industry. Design/methodology/approach &ndash; By using wireless devices such as personal digital assistants and WebPads, this system realizes the paradigm of pervasive computing at tableside. Detailed system requirements, design, implementation and evaluation of iMenu are presented.Findings &ndash; The evaluation of iMenu shows it explicitly increases productivity of restaurant staff. It also has other desirable features such as integration, interoperation and scalability. Compared to traditional restaurant ordering process, by using this system customers get faster and better services, restaurant staff cooperate more efficiently with less working mistakes, and enterprise owners thus receive more business profits. Originality/value &ndash; While many researchers have explored using wireless web-based information systems in different industries, this paper presents a system that employs wireless multi-tiered web-based architecture to build pervasive computing systems. Instead of discussing theoretical issues on pervasive computing, we focus on practical issues of developing a real system, such as choosing of web-based architecture, design of input methods in small screens, and response time in wireless web-based systems.<br /
    corecore