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Abstract

Services rely on replication mechanisms to be available at all time. The service
demanding high availability is replicated on a set of machines called replicas. To
maintain the consistency of replicas, a consensus protocol such as Paxos [1] or
Raft [2] is used to synchronize the replicas’ state. As a result, failures of a mi-
nority of replicas will not affect the service as other non-faulty replicas continue
serving requests.

A consensus protocol is a procedure to achieve an agreement among pro-
cessors in a distributed system involving unreliable processors. Unfortunately,
achieving such an agreement involves extra processing on every request, impos-
ing a substantial performance degradation. Consequently, performance has long
been a concern for consensus protocols. Although many efforts have been made
to improve consensus performance, it continues to be an important problem for
researchers.

This dissertation presents a novel approach to improving consensus perfor-
mance. Essentially, it exploits the programmability of a new breed of network
devices to accelerate consensus protocols that traditionally run on commodity
servers. The benefits of using programmable network devices to run consensus
protocols are twofold: The network switches process packets faster than com-
modity servers and consensus messages travel fewer hops in the network. It
means that the system throughput is increased and the latency of requests is
reduced.

The evaluation of our network-accelerated consensus approach shows promis-
ing results. Individual components of our FPGA-based and switch-based consen-
sus implementations can process 10 million and 2.5 billion consensus messages
per second, respectively. Our FPGA-based system as a whole delivers 4.3 times
performance of a traditional software consensus implementation. The latency is
also better for our system and is only one third of the latency of the software
consensus implementation when both systems are under half of their maximum
throughputs. In order to drive even higher performance, we apply a partition
mechanism to our switch-based system, leading to 11 times better throughput
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and 5 times better latency. By dynamically switching between software-based
and network-based implementations, our consensus systems not only improve
performance but also use energy more efficiently. Encouraged by those benefits,
we developed a fault-tolerant non-volatile memory system. A prototype using
software memory controller demonstrated reasonable overhead over local mem-
ory access, showing great promise as scalable main memory.

Our network-based consensus approach would have a great impact in data
centers. It not only improves performance of replication mechanisms which re-
lied on consensus, but also enhances performance of services built on top of
those replication mechanisms. Our approach also motivates others to move new
functionalities into the network, such as, key-value store [3] and stream pro-
cessing [4]. We expect that in the near future, applications that typically run on
traditional servers will be folded into networks for performance.
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Chapter 1

Introduction

Nowadays, users expect their services to be available most of the time, and hence
services rely on replication mechanisms to be highly available. State machine
replication (SMR) [5] is a well-known mechanism to provide high availability
and consistency for services in distributed systems. Any service can be imple-
mented as a state machine which receives user requests and produces responses.
SMR replicates a service on a set of machines called replicas, and if the replicas
process the same input, they are guaranteed to produce the same output. As a
result, failures of a minority of replicas will not interrupt the service as there are
other replicas continuing to provide the service.

To be consistent, all state machines should execute the same commands in
the same order. The problem is how to provide the same sequence of commands
to the state machines spread across a network where failures can happen, such
as machine crashes and network partitioning. Fortunately, this problem can be
solved using consensus protocols.

A consensus protocol is a procedure to achieve an agreement among pro-
cessors in a distributed system involving unreliable processors. In the context of
state machines, the agreement is the order of requests fed into the state machines.
Existing protocols to solve the consensus problem [2, 1, 6, 7] are the foundation
for building fault-tolerant systems. For example, key services in data centers,
such as Microsoft Azure [8], Ceph [9], and Chubby [10] are implemented on
the basis of consensus protocols [11, 5]. Moreover, other important distributed
problems can be reduced to consensus, such as atomic broadcast [7] and atomic
commit [12].

However, resolving consensus issues involves further processing of each re-
quest, imposing significant performance degradation, so consensus is not typi-
cally used in systems that require high performance. Over the past two decades,

1



2 1.1 This Dissertation

there have been many suggestions for optimizing performance, spanning a range
of methods, including exploiting application semantics (e.g., EPaxos [13], Gen-
eralized Paxos [14], Generic Broadcast [15]), strengthening assumptions about
the network (e.g., FastPaxos [16], Speculative Paxos [17]), or restricting the
protocol (e.g., Zookeeper atomic broadcast [18]). Despite these efforts, con-
sensus performance remains an important issue that researchers are concerned
about [19, 20, 21, 22, 23, 24, 25, 26, 27, 28].

Recent advances in network programmability open a new direction for speed-
ing up consensus. We advocate moving consensus into network devices for bet-
ter performance. In fact, researchers have applied a similar approach exploiting
network programming capabilities to optimize data processing systems [17, 29,
28, 30]. However, these projects either provide specialized services [28, 30]
rather than a general service that can be used by any off-the-shelf application,
or strengthen network ordering assumptions [17, 29] that may not hold in prac-
tice. Our main objective is to provide general network-based consensus services
without strengthening network assumptions.

1.1 This Dissertation

This thesis addresses the issue of how to provide general-purpose, high-performance
consensus services without additional overhead in power consumption. We focus
specifically on the Paxos consensus protocol [1] for two reasons. First, it is one of
the most widely used protocols in distributed systems [10, 31, 32]. Consequently,
increasing consensus performance benefits many data center applications. Sec-
ond, there exists extensive prior research on optimizing Paxos [16, 33, 34, 35],
which suggests that increasing network support can significantly improve system
performance.

The hypothesis is that a network-based consensus service can serve as a common
substrate for distributed applications, tolerate failures, and have high performance
without additional power overhead.

There are five components in this thesis that support the hypothesis:
First, this thesis explores the programmability in the network control plane

to implement consensus logic. OpenFlow [36] is a standardized protocol to pro-
gram the control plane of switches. The OpenFlow API can be used to configure
a number of pre-defined matches and actions. A match is a tuple of the net-
work and transport layers, and an action is a decision to forward a packet out
of an egress port or a modification of some packet header field. We propose a
set of sufficient operations for a network-based consensus service which can be
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implemented with some extensions to the OpenFlow protocol. However, the op-
erations require some extensions to the OpenFlow API that may take years to
persuade hardware vendors to support. To overcome this limitation, we propose
an alternative optimistic protocol, called NetPaxos, which can be implemented
without changes to the OpenFlow API but relies on two network order assump-
tions.

Second, we design and develop a general-purpose consensus service that
exploits the network programmable data plane. A new generation of network
switches [37] becomes more programmable allowing new network protocols to
be deployed quickly. Furthermore, the introduction of high-level data plane pro-
gramming languages (e.g., P4 [38], PX [39], and POF [40]) makes network ser-
vices easier to implement. Among those languages, P4 is relatively more mature
than others and is widely adopted by vendors [37, 41, 42]. Therefore, we choose
P4 to develop consensus services that can run on a variety of network devices.
Our implementation artifact is interesting beyond presenting consensus proto-
cols in a new syntax. It helps expose practical concerns and design decisions
that have not, to the best of our knowledge, been previously addressed.

Third, this thesis discusses a technique for partitioning and parallelizing ex-
ecution of consensus services. The usefulness of in-network computing becomes
questionable if replicated applications cannot take advantage of the increased
performance (e.g., the maximum throughput of a transactional key-value store
is only 5% of the throughput provided by NoPaxos [29]). Worse, network accel-
eration comes at a cost, regarding money, power consumption, and design time.
Clearly, a better method is needed for replicated applications to exploit improved
performance provided by the network-based consensus services. A potential ap-
proach for performance improvement is to partition the application state and to
parallelize the state machine execution. We observe that there are two aspects
of the state machine approach: agreement and execution. While agreement en-
sures the same order of input to the state machine on each replica, execution
advances the state of a state machine. While these aspects are tightly coupled in
the current projects [28, 30], we decouple execution from agreement and opti-
mize them independently.

Fourth, this thesis justifies the use of networks to accelerate performance for
data center applications. While network acceleration improves performance, it
also consumes more power. The performance benefits can be disregarded by
operational costs from increased power consumption. Our experiments show
that offloading consensus service to the network can be extremely efficient in
terms of energy. The power consumption of a software system on a commodity
CPU can be improved by a factor of hundreds to thousands using FPGAs and
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ASICs, respectively.
Finally, as a practical use case for our approach, this thesis provides a proto-

type of a fault-tolerant non-volatile main memory system. Although new emerg-
ing memory technologies [43, 44, 45] offer some advantages (e.g., persistence,
byte-addressability, low response time and cost), they have unavoidable wear-out
mechanisms resulting in finite write (and sometimes read) endurance of devices.
In some scenarios, it is still feasible to replace several tiers of the traditional mem-
ory hierarchy with these non-volatile memory technologies. Our key insight is
to treat the memory as a distributed storage system and rely on a network-based
consensus service to keep the replicas consistent through failures.

1.2 Evaluation

To verify our approach, we first estimate performance that can be accelerated by
moving consensus into the network. Then, we implement the consensus protocol
using programmable network devices. Next, we partition the data of applications
and consensus protocols for higher performance. We provide a methodology to
improve the power consumption of in-network applications. Finally, we proto-
type a fault-tolerant memory system which is a use case of the network-based
consensus service. Details of our work are provided below.

To estimate potential gains in performance by moving consensus into the
network, we implemented and compared NetPaxos with a traditional software
consensus library, libpaxos [46]. The software library libpaxos has been used in
many real-world deployments [28, 26, 27, 25]. Although NetPaxos has not yet
implemented consensus in the network devices, but our experiments quantified
the performance improvement we could get from the network-based consensus.
The initial experiments showed that moving Paxos into switches would increase
throughput by 9x and reduce latency by 90% for a best case scenario.

To verify the feasibility of a network-based consensus library, we developed
a system called P4xos which uses network devices to implement the identified
set of data plane consensus operations. P4xos can be realized in several ways,
including reconfigurable ASICs [47, 48], FPGAs [49], smart NICs [42], or even
x86 CPUs [50]. We used P4xos to replicate an unmodified version of LevelDB
and provided a comparison with libpaxos. P4xos offers the same API as lib-
paxos does. The API is general-purpose and has been used by various applica-
tions, such as, Atomic Broadcast [33], Geo-Replicated Storage [25] or Key-Value
Stores [27]. In the experiments, we replaced some of libpaxos processes with
the P4xos counterparts, allowing us to incrementally replacing the software with
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hardware implementation. In terms of absolute throughput, our implementa-
tion on Barefoot Networks Tofino ASIC chip [37] can process over 2.5 billion
consensus messages per second, a four order of magnitude improvement. The
end-to-end result showed that P4xos achieved 4.3x throughput improvement and
3x latency improvement. In the event of failures, P4xos continues providing the
service in the present of an acceptor failure and can recover quickly from a leader
failure.

To verify that the partitioning technique can scale performance of replicated
applications, we upgraded P4xos to Partitioned Paxos that supports state parti-
tioning and parallelizing execution. We compared the performance of Partitioned
Paxos with the traditional software consensus libpaxos. We ran an unmodified
version of RocksDB on top of Partitioned Paxos and libpaxos and measured their
latency and throughput. The experiments showed that application throughput is
scaled linearly with the number of partitions; when running four partitions, Par-
titioned Paxos reached a throughput of 576K messages/second, almost 11 times
the maximum throughput for libpaxos. The latency for Partitioned Paxos has
little dependence on the number of partitions and it was only 18% of libpaxos’s.

To justify the use of consensus in the network, we provided a detailed power
analysis of network-accelerated applications and developed a methodology to
flexibly switch the applications to run on servers or in networks depending on the
workload. Specifically, we analyzed the energy consumption of a Key-Value Store
(KVS), a consensus protocol and a Domain Name System (DNS). Our energy
analysis showed that the energy consumption of servers in idle mode is lower
than that of network devices. However, as the workload increases, the hardware
becomes more energy efficient than the CPU. To cope with the dynamic workload,
the applications are flexibly shifted between software-based and network-based
implementations. Our evaluation demonstrated that in-network computing with
dynamic switching is both energy-efficient and performant.

Finally, to demonstrate the consensus protocol can be applied to other classes
of data center applications, we implemented a fault-tolerant persistent main
memory system to tolerate arbitrary failures of a minority of memory nodes.
The evaluation quantified the overhead for page fault handling via calls to re-
mote replicated memory versus local memory. Our prototype added minimal
latency overhead to conventional unreplicated memory systems.

1.3 Research Contributions

Overall, this thesis makes the following contributions:
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1. It identifies a sufficient set of features that protocol developers would need
to provide for a network-based consensus service. In addition, it describes
an alternative protocol which can be implemented without changes to the
OpenFlow API but relies on network order assumptions.

2. It designs and implements a general-purpose network-accelerated consen-
sus service which is a drop-in replacement for traditional software consen-
sus implementations.

3. It explores a technique for improving network-accelerated consensus by
separating agreement from execution and optimizing each of them inde-
pendently.

4. It analyzes power consumption of network-accelerated applications and
implements a methodology to dynamically shift applications between servers
the network for power efficiency.

5. It implements a fault-tolerant service for storage class memory and pro-
vides initial evidence of the feasibility and benefits of using in-network
consensus to keep SCM replicas consistent.

The rest of this dissertation is organized as follows. We present the back-
ground of this thesis (§2) and a proposition to move consensus logic into the
network(§3). Next, we describe the design and implementation of P4xos(§4)
and discuss the technique to partition application state and to parallelize state
machine execution (§5). Following that, we present a detailed power analysis of
in-network computing and an energy-efficient shifting methodology (§6). Then,
we show a new approach to tolerate main memory failures using network-based
consensus (§7). Finally, we cover related work (§8) and conclude the thesis by
outlining our main findings and presenting directions for future research (§9).



Chapter 2

Background

This chapter presents the background for this thesis. we start with a definition
of consensus and an important result in distributed systems (Section 2.1). Then,
we review the Paxos consensus protocol and its optimized derivatives, and follow
that up by discussing the performance bottlenecks in a traditional Paxos imple-
mentation (Section 2.2). We provide an overview of new programmable net-
work hardware (Section 2.3), and language support for network programming
(Section 2.4). Finally, we present an emerging technique to improve application
performance (Section 2.5) and methods for power consumption measurement
(Section 2.5.1). These technologies are the enablers to deploy new applications
in networks.

2.1 The Consensus Problem and The Fischer, Lynch
and Patterson (FLP) Result

In distributed systems, it is important to distinguish between synchronous and
asynchronous systems. In a synchronous system, processors have access to a
common clock and their processing time is bounded. Messages are also deliv-
ered within a bounded interval. Then, processors can safely tell that a processor
has failed if it does not respond within an interval. On the other hand, In an
asynchronous system, there are no assumptions about the speed of processors or
about the interval to deliver a message, so processors cannot detect if another
has failed.

Consensus is the problem of getting a set of processors in an asynchronous
system to agree on a common value. It is a fundamental problem in distributed
systems and is the core component of many fault-tolerant systems (e.g., Microsoft

7
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Azure [8], Ceph [9], and Google Chubby [10]). Examples of the consensus prob-
lem including atomic transaction commit, leader election and atomic broadcast.

An important result [51], published by Fischer, Lynch and Patterson in 1985,
proved that “no consensus protocol can tolerate even a single unannounced pro-
cess death” in asynchronous systems in which processors can fail even when the
message communication is reliable. Under the asynchronous system model, a
processor undetectably stops preventing any consensus protocol to reach agree-
ment. The consensus problem cannot be solved without further assumptions
about the system model.

2.2 The Paxos Consensus Protocol

Paxos [1] is a protocol for solving consensus problem in a partial synchronous [52]
system where the system is either synchronous or asynchronous for some peri-
ods which are not known in advance. Paxos guarantees safety at any time, and
liveness whenever the system becomes synchronous in which the processing time
of different processors and the time for messages to be delivered are bounded.

Safety means that no processor can choose a value which is different from
the value chosen by other processors. In other words, the Paxos protocol ensures
all processors choose the same value.

Liveness means that the system makes some progress by executing requests
and responding to clients. Paxos guarantees liveness as long as a majority of
processors are functional.

2.2.1 Asynchronous, Non-Byzantine Model

The original Paxos protocol assumes any processor can delay, crash or restart.
However, when a processor runs, it correctly handles the messages it received
from others. It does not alter the content of messages for malicious purposes.
If any processor tries to deceive the others, this act is categorized as Byzantine
Failure [53]. We will not cover this type of failure in this thesis.

A processor can unicast messages to a single receiver or multicast messages
to multiple receivers. The network is asynchronous in which messages can be
duplicated, reordered or even lost, but they are not corrupted by the network.
However, whenever the network becomes synchronous, messages are delivered
in a bounded period, and received messages are exactly the same messages as
the ones have been sent.
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2.2.2 Basic Paxos

Leslie Lamport described the original Paxos protocol [1] using an analogy of the
voting process in the island of Paxos where legislators are not always present
in the Chamber. Later, Lamport revised the protocol using terms that are well-
known for most system builders in the “Paxos Made Simple” paper [54], so-called
Basic Paxos. The Basic Paxos protocol defines the following roles depending on
the actions which a processor performs: proposers, acceptors and learners.

• Proposers propose values to be chosen and each of the proposers tries to
get a majority of acceptors to agree with it. Multiple proposers can exist
but the protocol guarantees that a single value is chosen in the end.

• Acceptors vote to accept a value and remember the value they have voted
for. Furthermore, the acceptors promise to reject other values if they al-
ready accepted one.

• Learners eventually find out the chosen value once it has been accepted
by a majority of acceptors. The learners either learn the chosen value by
receiving messages from acceptors or by contacting a majority of acceptors
in case they failed before learning what has been chosen.

Paxos is resilient in the sense that it tolerates failures of up to f acceptors
from a total of n = 2 f + 1 acceptors. To ensure the system making progress, a
majority, also known as quorum, of f + 1 acceptors must be non-faulty [19].

An instance of Paxos proceeds in two phases. In Phase 1, a proposer selects a
unique round number and sends a Prepare request (Phase 1A) to acceptors. Upon
receiving a Prepare request with a round number bigger than any previously re-
ceived round number, an acceptor responds to the proposer a Promise message
(Phase 1B) promising that it will reject future requests with smaller round num-
bers. If the acceptor already accepted a request for the current instance (ex-
plained next), it will return the accepted value to the proposer, together with
the round number received when the request was accepted. When the proposer
receives Promises from a quorum of acceptors, it proceeds to the second phase
of the protocol.

In Phase 2, the proposer can select a new value to propose if none of accep-
tors in the quorum has accepted a value. Otherwise, the proposer must choose
the highest round-value pair among those are returned in Phase 1. The pro-
poser then sends an Accept request (Phase 2A) with the round number it used
in the first phase and the selected value. Upon receiving an Accept request, an
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acceptor acknowledges it by sending an Accepted message (Phase 2B) to learn-
ers, unless the acceptor has already acknowledged another request with a higher
round number. When a quorum of acceptors accepts a value, consensus has been
reached.

2.2.3 Implementing Fault-Tolerant Applications with Paxos

A fault-tolerant application can be implemented as a system consisting of multi-
ple servers, each of which is a state machine built on top of a replicated log. Each
log entry in the replicated log is a client command. The state machine executes
the commands in the order they are placed in the replicated log. Because the
state machine is deterministic, all servers produce the same outputs and end up
in the same state, if they apply the same log.

However, the approach above raises a question: How do we choose which log
entry for a command? The solution is that each server keeps an instance number
which is the smallest log entry with no chosen value and try to propose a value
for this slot. It then keeps submitting the same value on increasing entry number
until the value is selected for a particular entry. Servers can handle multiple
client commands simultaneously by assigning different commands to different
log entries. However, updating the state machine is sequential for consistency.

Throughout this dissertation, references to Paxos implicitly refer to multiple
instances of paxos (also known as Multi-Paxos).

2.2.4 Optimizations

If multiple proposers simultaneously propose values for the same instance, then
no proposer may be able to complete two phases of the protocol and reach con-
sensus. To avoid scenarios in which proposers compete indefinitely in the same
instance, a leader can be selected to arbitrate the proposals. In this setting, pro-
posers submit values to the leader, which executes two phases of the protocol on
their behalf. If the leader fails, another proposer will be elected to be the new
leader and takes over the jobs of the failed one. Paxos ensures safety despite
concurrent leaders and liveness in the presence of a single leader.

If the leader is stable across instances, the protocol can be optimized by pre-
initializing acceptor state with previously agreed upon instance and round num-
bers, avoiding the need to send phase 1 messages [54]. This is possible because
only the leader sends values in the second phase of the protocol. With this opti-
mization, consensus can be reached in three communication steps: the message
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from the proposer to the leader, the accept request from the leader to the accep-
tors, and the response to this request from the acceptors to the learners.

Fast Paxos [16] is a well known optimization of Paxos. Paxos requires three
message delays, including the client’s message. Fast Paxos allows learners to
learn the chosen value in two message delays. It save one communication step
in fast rounds by allowing clients to send the value directly to acceptors, bypass
proposers. In order to prevent the learners learning different values, fast rounds
require larger quorums than classic Paxos. In case of conflicting proposals, a
situation in which acceptors accept different values in the same round, Fast Paxos
reverts to classic Paxos to resolve the conflict.

2.2.5 Performance Bottlenecks of Traditional Paxos Systems
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Figure 2.1. The leader is the bottleneck in a software-based Paxos deployment.

To investigate performance bottlenecks of traditional Paxos implementations,
we measured the CPU usage for each of the Paxos roles when the system handles
requests at peak throughput. There are, of course, many other Paxos implemen-
tations, so it is difficult to make generalizations about their collective behavior.
We specifically focus on libpaxos [46], a faithful implementation of Paxos that
has been extensively tested and is often used as a reference Paxos implementa-
tion (e.g., [25, 26, 27, 28]). Moreover, libpaxos performs better than all the
other available Paxos libraries we are aware of under similar conditions [13].

In the initial configuration, there were seven processors spread across three
machines running on separate cores: one proposer that generated load, one



12 2.2 The Paxos Consensus Protocol

● ●

● ● ●

25.0%

50.0%

75.0%

100.0%

4 8 12 16 20

Number of Learners

C
P

U
 U

til
iz

at
io

n

● Leader Proposer Acceptor Learner

Figure 2.2. Besides the bottleneck at the leader, the acceptor becomes the next
bottleneck as the degree of replication increases.

leader, three acceptors, and two learners. The processors were distributed as
follows to achieve the best performance while tolerating an acceptor failure.

• Server 1: 1 proposer, 1 acceptor, 1 learner

• Server 2: 1 leader, 1 acceptor

• Server 3: 1 acceptor, 1 learner

The client application sent 64-byte messages to the proposer at the peak
throughput rate of 64,949 values/sec. The results, which show the average usage
per role, are plotted in Figure 2.1. They show that the leader is the bottleneck,
as it becomes CPU bound.

We then extended the experiment to measure the CPU usage for each Paxos
role as we increased the degree of replication by adding more learners. The
learners were assigned to one of three servers in round-robin fashion, such that
multiple learners ran on each machine.

The results, plotted in Figure 2.2, show that as we increase the degree of
replication, the CPU usage for acceptors increases. This is expected because as
the number of learners increases, the overhead of network I/O of acceptors in-
creases. In contrast, the utilization of the learners decreases as the consensus
throughput is reduced. Consequently, the learners have less messages to handle.

Overall, these experiments clearly show that the leader and acceptor are per-
formance bottlenecks for Paxos.
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2.3 Programmable Network Hardware

Recent advances in network programmability enable innovation in networks.
With increased network programmability, system developers can tailor the net-
work to benefit their applications. The increase in network programmability
comes from various solutions, including Smart Network Interface Cards [55],
FPGAs [49] and ASICs [37]. In this section, we give an overview on these pro-
grammable network devices.

2.3.1 Smart Network Interface Cards (Smart NICs)

There are many definitions of SmartNICs; personally, the one from Deierling [55]
is the most insightful and comprehensive. According to Deierling, “A SmartNIC
is a network adapter that accelerates functionality and offloads it from the server
(or storage) CPU”.

SmartNICs can be manufactured with different architectures, and each of ar-
chitecture exhibits different characteristics in terms of cost, programming efforts,
and performance. ASIC-based SmartNICs offer the highest performance with rea-
sonable price, but they have limited functionalities. FPGA-based SmartNICs are
expensive and difficult to program, but they offer the greatest flexibility. Last
but not least, (system-on-chip) SOC-based SmartNICs, which is flexible, easy to
program, and offer good price performance.

Due to the flexibility and high performance of SmartNICs, many applications
are offloaded to the NICs. One oblivious example is that virtual machines offload
the network stack of virtual interfaces to smartNICs [56]. The SmartNICs are also
used for accelerating NFV [57], Key-Value Store [58] and Consensus [59].

We also has a prototype our system using SOC-based SmartNICs [42]. This
demonstrates our system can be realized on a variety of hardware. Due to a
limitation of our license, we do not include the result for the SmartNICs.

2.3.2 Field Programmable Gate Arrays (FPGAs)

FPGAs (Field Programmable Gate Arrays) are programmable hardware devices.
The programmability of FPGAs is the ability to reconfigure logic blocks on a de-
vice after it is fabricated. Program targeting FPGAs are often written using hard-
ware programming languages, such as Verilog and VHDL. Instead of compiling
a program to the machine code like C compilers, FPGA compilers transform the
program into a circuit of semiconductors and flip-flops, which implements the
intended functionality.
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Some FPGAs can be considered as SmartNICs as they can be implemented
to offload particular system CPU tasks to configurable hardware. Unlike ASICs
that have limitations on functionalities defined in the chips, FPGAs can be re-
programmed to meet different user needs. Engineers use FPGAs in designing
specialized integrated circuits for faster time to market. For this advantage, ven-
dors and open-source community have introduced FPGA compilers [41, 60, 61]
for offloading applications that traditionally run on x86 CPUs [62, 63] to FPGAs.

We implement the Paxos leader and acceptors using NetFGPA SUME [49].
We use the P4FPGA compiler [60] to generate the bitstream for configuring the
NetFPGA SUMEs. NetFPGA SUMEs are used to evaluate performance individual
Paxos components, P4xos and our fault-tolerant memory.

2.3.3 Programmable ASICs

An ASIC (application-specific integrated circuit), as its name already stated, is an
electric circuit designed to perform specific tasks. The cost of design, producing
and testing an ASIC chip is pretty expensive, therefore, vendors usually do not
open their hardware and only provide a CLI (command-line interface) to inter-
act with their chip. Due to the high cost of chip manufacture, it takes years to
convince the hardware vendors to push new protocols onto their chips.

This is going to change with a new emerging generation of programmable
ASICs [37] that adds flexibility to conventional ASICs. With the advance of the
programmable ASICs, now users can develop new protocols and functionalities
without buying new devices. Programmable ASICs allow users to reprogram
the data plane in their switches, to remove unnecessary features or to add new
functionalities as they want.

We use Tofino switches [37] to run combinations of Paxos leader and accep-
tors. Tofino switches are used in the evaluation of performance of individual
Paxos components, Partitioned Paxos as well as our fault-tolerant memory sys-
tem.

2.4 Language Support for Network Programming

While network devices become more programmable, there is no way to write
a single program that can be cross compiled and run on variety of hardware.
Although, some vendors support restricted versions of C language [64, 42], this
is not an optimal solution and it still requires developers to modify the program
to fit new hardware.
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Therefore, several high-level data plane programming languages (e.g., P4 [38],
PX [39] has been introduced to POF [40]) make network programming easier.
Among those languages, P4 is relatively more mature than others and is widely
adopted by vendors [37, 41, 42].

2.4.1 P4: High Level Data Plane Programming Language

P4 [65] is designed with the following goals. First, network devices should be
able to be reconfigured by a controller. Instead of being tied to specific existing
protocols, a network device should be able to change its packet parser and its pro-
cessing pipeline to support new protocols. Second, P4 is independent from the
underlying targets. A P4 program can be compiled to run on any network devices
(e.g., software switches [66], Smart NICs [42], FPGAs [41] and ASICs [37]).

The language provides a common interface for programming or configuring
devices of various hardware vendors. P4 provides high-level abstractions that
can be tailored to the needs of packet forwarding devices: packets are parsed
and then processed by a sequence of tables; tables match on packet header fields,
and perform stateless actions such as forward, drop, and modify packets; actions
can include some stateful operations (e.g., read and write to memory).

A typical P4 program that forwarding and manipulating network packets con-
sists the following constructs:

• Header Types specify the definition of the headers which are expected within
a packet.

• Parsers specify an order of the headers within a packet and is responsible
for populating values of header fields.

• Actions specify how to process packets and metadata. Actions can contain
arguments which are supplied by the control plane at runtime.

• Tables associate user-defined keys with user-defined actions to transform
packets and states of the device. The keys can be the header fields and/or
metadata.

• Control Flow defines the flow of the data (packets and metadata). The flow
consists of a sequence of tables and possibly some conditional branches.

Figure 2.3 shows a workflow while developing a P4 program for a general
target. Programmers only need to care about their business logic instead of the
architecture of underlying hardware. Different vendors may provide hardware
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Figure 2.3. P4 Workflow

or software targets, or the combination of both. The target is bundled with a
compiler which generates the data plane runtime to program the target, and an
API to configure the program running on the target.

One feature that causes P4 to be quickly adopted is the ability to do stateful
computations. P4 specification included stateful registers which can be used in
traffic monitoring and general memory access. This feature attracts researchers
to offloading intensive computing tasks (e.g., network ordering [29], key-value
store [3] and stream processing [4]) which are normally executed by the system
CPUs, to network devices for performance.

Since P4 is a high-language and largely adopted by hardware vendors, we
chose P4 to develop our network-based consensus services. Our implementation
artifact is interesting beyond presenting consensus protocols in a new syntax. It
helps expose practical concerns and design choices for the language evolution.

2.5 Kernel-Bypass: Accelerating Performance of Servers

Moving consensus logic into network devices is the first half of the proposed
solution. The other half is to accelerate performance of applications running
on commodity servers. Bypassing the Linux kernel stack is an emerging way to
increase the application performance.

Kernel bypass is a technique to eliminate the overhead of the kernel network
stack in the processing pipeline of applications. A benefit of kernel bypass is
performance because it avoids copying packets to intermediate buffers in the
kernel space. For this benefit, many kernel bypass technologies, such as RDMA
(Remote Direct Memory Access) [67], TOE (TCP Offload Engine) [68], and more
recently, DPDK [69] (Data Plane Development Kit) have been used in real-world
applications [27, 50, 70] to boost performance of data processing systems.

In this thesis, we focus on DPDK as it does not require upgrading network
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hardware like RDMA and is more flexible than TOE which only supports TCP/IP
communication. Specifically, we implement all Paxos roles (leader, acceptor and
learner) using DPDK libraries for high packet processing performance. The DPDK
implementation is used to evaluate performance of individual Paxos components,
P4xos and Partitioned Paxos.

DPDK is an open-source project that aims at achieving high network I/O per-
formance and reaching high packet processing rates on traditional CPUs. DPDK
eliminates the overhead of the kernel networking stack by allowing user space
applications to directly access network interface cards (NICs). In the user space,
DPDK provides APIs to configure parameters of NICs, such as, the size of RX
and TX queues, affinities between NICs and memory buses, whether to enable
receiving and transmitting in batch mode, and so on. Besides, the Poll Module
Driver (PMD) of DPDK accesses the NICs’ RX and TX queues directly without any
interrupts to quickly send and receive packets.

DPDK employs a few low-level techniques to further improve performance.
We briefly mention two notable optimizations: First, by using huge pages (of
2MB or 1GB in size), DPDK needs a smaller number of memory pages and avoids
dynamic memory allocation. The use of huge pages also reduces the memory
access overhead as the number of Translation Lookaside Buffers (TLBs) misses
is reduced. Second, all data structures in DPDK are aligned to cache lines for
optimal cache use.

2.5.1 Methods for Power Consumption Measurement

Aside from performance constraint, data center applications also need to deal
with the power consumption issues which can rapidly exceed performance ben-
efit. Therefore, data center operators often have to monitor performance and
power consumption of their applications to enhance the efficiency of their in-
frastructure.

Different hardware architectures exhibit different power characteristics. While
ASIC design offers better performance than general-purpose CPUs, it is deemed
to consume more power. Novel computing systems are often complex and com-
posed of hardware and software components. The power consumption is valu-
able information to help developers to improve energy efficiency for their sys-
tems.

There are two main methods to measure power consumptions: the hardware-
based method uses physical devices (e.g., power meters) to measure the power
at various test points and the software-based method estimates the power con-
sumption from a variety of information (e.g., CPU usage) [71]. A hybrid solution
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could be used to measure power consumption of more complex systems. In chap-
ter 6, these three methods are used to measure power consumption for our use
cases.

2.6 Chapter Summary

This chapter covers the necessary background for this thesis. We reviewed the
Paxos protocol and some of its optimizations. We presented experiments that
show performance bottlenecks of traditional Paxos implementations. We also in-
troduced a few programmable network devices and the language support for net-
work programming. Finally, we present the kernel bypass approach to improve
performance of applications and three methods for measuring power consump-
tion.



Chapter 3

NetPaxos

Network bandwidth is increased rapidly in recent years, shifting the bottleneck
of applications from the network to the CPU. At the same time, network devices
become more programmable, creating a possibility to offloading applications to
the network. As a result, more and more services (e.g., caching [3], key-value
store [72], stream processing [4], etc.) are folded into networks to address the
performance issue.

This chapter presents a proposition to move consensus into the network. We
first elaborate on the benefits of our approach to run consensus logic directly
on the network devices (Section 3.1). Second, We identify a sufficient set of
data plane operations (Section 3.2) a switch would need to support for Paxos
implementation. Finally, we discuss an evaluation of an optimistic protocol that
can be implemented without any changes to the OpenFlow API, but it relies on
network ordering assumptions (Section 3.3).

3.1 The Benefits of Network-based Consensus

In contrast to traditional networking, in which network devices have proprietary
control interfaces, SDN (Software-Defined Networking) generalizes network de-
vices using a set of protocols defined by open standards, including most promi-
nently the OpenFlow [36] protocol. The standardization has led to increased
“network programmability”, allowing software to manage the network using the
standardized APIs.

Several projects have used SDN to demonstrate that applications can benefit
from improved network programmability. While these projects are important first
steps, they have largely focused on one class of applications (i.e., Big Data [73,
74, 75, 76]), and on improving performance via traffic engineering (e.g., route

19



20 3.2 OpenFlow Extensions for In-Network Consensus

selection [74, 76], traffic prioritization [73, 76], or traffic aggregation [75]).
None of these projects has considered whether application logic could be moved
into the network. In other words: how can distributed applications and protocols
utilize network programmability to improve performance?

We argue that performance of distributed applications could benefit from
moving consensus logic into the network devices. Specifically, we focus on the
Paxos consensus protocol [1] which is an attractive use-case for several reasons.
First, it is one of the most widely deployed protocols in highly-available dis-
tributed systems, and is a fundamental building block to a number of distributed
applications [10, 32, 31]. Second, there exists extensive prior research on opti-
mizing Paxos [16, 33, 77, 78], which suggests that the protocol could benefit from
increased network support. Third, moving consensus logic into network devices
would require extending the SDN switches with functionality that is amenable
to an efficient hardware implementation [79, 47].

Network switches could play the role of leader and acceptors and the advan-
tages would be twofold. First, messages would travel fewer hops in the network,
therefore reducing the latency for replicated systems to reach consensus. Sec-
ond, throughput would be increased as the network switches processes network
messages much faster than traditional servers, thus eliminating performance bot-
tlenecks at the leader and acceptors.

3.2 OpenFlow Extensions for In-Network Consensus

In normal network conditions, Paxos protocol could be optimized to simplify
its implementation. An optimization, inspired by Fast Paxos [16], is applied to
reduce the complexity of a network-based implementation of Paxos which needs
only implement Phase 2 of the Paxos protocol. Since Phase 1 does not depend on
any particular value, it could be run ahead of time for a large bounded number
of values. The pre-computation would need to be re-run under two scenarios:
either (i) the Paxos instance approaches the bounded number of values, or (ii)
the device acting as leader changes (possibly due to failure).

Unfortunately, implementing only Phase 2 of the protocol goes far beyond
what is expressible in the current OpenFlow API. The API is limited to basic
match-action rules, simple statistics gathering, and modest packet modification
(e.g., replacing MAC addresses or decrementing IP’s TTL). Because the API is
not expressible enough to implement Paxos, we identify a set of operations that
would be sufficient for a network-based implementation of Paxos:

Generate round and sequence number. Each switch leader must be able to gen-
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erate a unique round number (i.e., the c-rnd variable), and a monotonically
increasing, gap-free sequence number.

Persistent storage. Each switch acceptor must store the latest round it has seen
(c-rnd), the latest accepted round (v-rnd), and the latest value accepted.

Stateful comparisons. Each switch acceptor must be able to compare a c-rnd
value in a packet header with its stored c-rnd value. If the packet’s c-rnd
is higher, then the switch must update the local state with the new c-rnd
and value, and then broadcast the message to all learners. Otherwise, the
packet could be ignored (i.e., dropped).

Storage cleanup. Stored state must be trimmed periodically.

We do not claim this set of operations is necessary. As we will see in the next
section, the protocol can be modified to avoid some of these requirements.

Recent work on extending OpenFlow suggests that the functionality described
above could be efficiently implemented in switch hardware [79, 47]. Moreover,
several existing switches already have support of some combinations of these
features. For example, the NoviSwitch 1132 has 16 GB of SSD storage [80],
while the Arista 7124FX [81] has 50 GB of SSD storage directly usable by em-
bedded applications. Note that current SSDs typically achieve throughputs of
several 100s MB/s [82], which is within the requirements of a high-performance,
network-based Paxos implementation. The Netronome SmartNICs [42] can flex-
ibly perform stateful comparisons.

Also, rather than modifying network switches, a recent hardware trend to-
wards programmable NICs [83, 84] could allow the proposer and acceptor logic
to run at the network edge, on programmable NICs that provide high-speed pro-
cessing at minimal latencies (tens of µs). Via the PICe bus, the programmable
NIC could communicate to the host OS and obtain access to permanent storage.

3.3 Fast Network Consensus

Section 3.2 described a sufficient set of functionality that protocol designers
would need to provide to completely implement Paxos logic in forwarding de-
vices. In this section, we introduce NetPaxos, an alternative algorithm inspired
by Fast Paxos. The key idea behind NetPaxos is to distinguish between two exe-
cution modes, a “fast mode" (analogous to Fast Paxos’s fast rounds), which can be
implemented in network forwarding devices with no changes to existing Open-
Flow APIs, and a “recovery mode", which is executed by commodity servers.
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Figure 3.1. NetPaxos architecture. Switch hardware is shaded grey. Other
devices are commodity servers. The learners each have four network interface
cards.

Both Fast Paxos’s fast rounds and NetPaxos’s fast mode avoid the use of a
Paxos leader, but for different motivations. Fast Paxos is designed to reduce the
total number of message hops by optimistically assuming a spontaneous mes-
sage ordering. NetPaxos is designed to avoid implementing leader logic inside a
switch. In contrast to Fast Paxos, the role of acceptors in NetPaxos is simplified. In
fact, acceptors do not perform any standard acceptor logic in NetPaxos. Instead,
they simply forward all messages they receive, without doing any comparisons.
Because they always accept, we refer to them as minions in NetPaxos.

3.3.1 Protocol Design

Figure 3.1 illustrates the design of NetPaxos. In the figure, all switches are shaded
in gray. Proposers send messages to a single switch called the serializer. The
serializer is used to establish an ordering of messages from the proposers. The
serializer then broadcasts the messages to the minions. Each minion forwards
the messages to the learners and to a server that acts as the minion’s persistent
storage to record the history of “accepted” messages. Note that if switches could
maintain persistent state, there would be no need for the minion storage servers.
Each learner has multiple network interfaces, one for each minion.

The protocol, as described, does not require any additional functionality be-
yond what is currently available in the OpenFlow protocol. However, it does
make two important assumptions:
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1. Packets broadcast from the serializer to the minions arrive in the same
order. This assumption is important for performance, not correctness. In
other words, if packets are received out-of-order, the learners would rec-
ognize the problem, fail to reach consensus, and revert to the “recovery
mode” (i.e., classic Paxos).

2. Packets broadcast from a minion arrive all in the same order at its
storage and the learners. This assumption is important for correctness.
If this assumption is violated, then learners may decide different values in
an instance of consensus and not be able to recover a consistent state from
examining the logs at the minion storage.

Recent work on Speculative Paxos [59] shows that packet reordering happens
infrequently in data centers, and can be eliminated by using IP multicast, fixed
length network topologies, and a single top-of-rack switch acting as a serializer.
Our own initial experiments (§ 3.3.2) also suggest that these assumptions hold
with unmodified network switches when traffic is non-bursty, and below about
675 Mbps on a 1 Gbps link.

Fast Paxos optimistically assumes a spontaneous message ordering with no
conflicting proposals, allowing proposers to send messages directly to acceptors.
Rather than relying on spontaneous ordering, NetPaxos uses the serializer to
establish an ordering of messages from the proposers. It is important to note
that the serializer does not need to establish a FIFO ordering of messages. It
simply maximizes the chances that acceptors see the same ordering.

Learners maintain a queue of messages for each interface. Because there
are no sequence or round numbers, learners can only reason about messages by
using their ordering in the queue, or by message value. At each iteration of the
protocol (i.e., consensus instance), learners compare the values of the messages
at the top of their queues. If the head of a quorum of message queues, three out of
four in this setting, contain the same value, then consensus has been established
through the fast mode, and the protocol moves to the next iteration. The absence
of a quorum with the same message (e.g., because two of the minions reordered
two packets), leads to a conflict.

Like Fast Paxos [16], NetPaxos requires a two-thirds majority to establish con-
sensus, instead of a simple majority. A two-thirds majority allows the protocol
to recover from cases in which messages cannot be decided in the fast mode. If
a learner detects conflicting proposals in a consensus instance, then the learner
reverts to recovery mode and runs a classic round of Paxos to reach consensus on
the value to be learned. In this case, the learner must access the storage of the
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minions to determine the message to be decided. The protocol ensures progress
as long as a majority of the minions are non-faulty. Since the non-conflicting
scenario is the usual case, NetPaxos typically is able to reduce both latency and
the overall number of messages sent to the network.

Switches and servers may fail independently, and their failures are not corre-
lated. Thus, there are several possible failure cases that we need to consider to
ensure availability:

• Serializer failure. Since the order imposed by the serializer is not needed for
correctness, the serializer could easily be made redundant, in which case
the protocol would continue to operate despite the failure of one serializer.
Figure 3.1 shows two backup switches for the serializer.

• Minion failure. If any minion fails, the system could continue to process
messages and remain consistent. The configuration in Figure 3.1, with
four minions, could tolerate the failure of one minion, and still guarantee
progress.

• Learner failure. If the learner fails, it can consult the minion state to see
what values have been accepted, and therefore return to a consistent state.

A natural question would be to ask: if minions always accept messages, why
do we need them at all? For example, the serializer could simply forward mes-
sages to the learners directly. In fact, the algorithm needs minions to provide
fault tolerance. Because each minion forwards messages to their external stor-
age mechanism, the system has a log of all accepted messages, which it can use
for recovery in the event of device failure, message re-ordering, or message loss.
If, alternatively, the serializer were responsible for maintaining the log, then it
would become a single point of failure.

A final consideration is whether network hardware could be modified to en-
sure the NetPaxos ordering assumptions. We discussed this matter with sev-
eral industrial contacts at different SDN vendors, and found that there are vari-
ous platforms that could enforce the desired packet ordering. For example, the
Netronome Agilio CX [42] has a packet sequence number generator. A NetPaxos
implementation would assign the sequence numbers based on when the pack-
ets arrive at ingress. The NetFPGA platform [85] implements a single pipeline
where all packet processing happens sequentially. As such, the NetPaxos ordering
assumption is trivially satisfied. Furthermore, discussions with Corsa Technol-
ogy [86] and recent work on Blueswitch [87] indicate that FPGA-based hardware
would also be capable of preserving the ordering assumption.
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3.3.2 Evaluation

Our evaluation focuses on two questions: (i) how frequently are our assumptions
violated in practice, and (ii) what are the expected performance benefits that
would result from moving Paxos consensus logic into forwarding devices.

Experimental setup. All experiments were run on a cluster with two types of
servers. Proposers were Dell PowerEdge SC1435 2-CPU servers with 4 x 2 GHz
AMD cores, 4 GB RAM, and a 1 Gbps NIC. Learners were Dell PowerEdge R815
8-CPU servers with 64 x 2 GHz AMD hyperthreaded cores, 128 GB RAM, and 4 x
1 Gbps NICs. The machines were connected in the topology shown in Figure 3.1.
We used three Pica8 Pronto 3290 switches. One switch played the role of the
serializer. The other two were divided into two virtual switches, for a total of
four virtual switches acting as minions.

Ordering assumptions. The design of NetPaxos depends on the assumption that
switches will forward packets in a deterministic order. Section 3.3 argues that
such an ordering could be enforced by changes to the switch firmware. However,
in order to quantify the expected performance benefits of moving consensus logic
into forwarding devices, we measured how often the assumptions are violated in
practice with unmodified devices.

There are two possible cases to consider if the ordering assumptions do not
hold. First, learners could deliver different values. Second, one learner might
deliver, when the other does not. It is important to distinguish these two cases be-
cause delivering two different values for the same instance violates correctness,
while the other case impacts performance (i.e., the protocol would be forced to
execute in recovery mode, rather than fast mode).

The experiment measures the percentage of values that result in a learner
disagreement or a learner indecision for increasing message throughput sent by
the proposers. For each iteration of the experiment, the proposers repeatedly
sleep for 1 ms, and then send n messages, until 500,000 messages have been
sent. To increase the target rate, the value of n is increased. The small sleep
time interval ensures that traffic is non-bursty. Each message is 1,470 bytes long,
and contains a sequence number, a proposer id, a timestamp, and some payload
data.

Two learners receive messages on four NICs, which they processes in FIFO or-
der. The learners dump the contents of each packet to a separate log file for each
NIC. We then compare the contents of the log files, by examining the messages in
the order that they were received. If the learner sees the same sequence number
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Figure 3.2. The percentage of messages in which learners either disagree, or
cannot make a decision.

on at least 3 of its NICs, then the learner can deliver the value. Otherwise, the
learner cannot deliver. We also compare the values delivered on both learners,
to see if they disagree.

Figure 3.2 shows the results, which are encouraging. We saw no disagree-
ment or indecision for throughputs below 57,457 messages/second. When we
increased the throughput to 65,328 messages/second, we measured no learner
disagreement, and only 0.3% of messages resulted in learner indecision. Note
that given a message size of 1,470 bytes, 65,328 messages/second corresponds
to about 768 Mbps, or 75% of the link capacity on our test configuration.

Although the results are not shown, we also experimented with sending bursty
traffic. We modified the experiment by increasing the sleep time to 1 second.
Consequently, most packets were sent at the beginning of the 1 second time win-
dow, while the average throughput over the 1 second reached the target rate.
Under these conditions, we measured larger amounts of indecision, 2.01%, and
larger disagreement, 1.12%.

Overall, these results suggest that the NetPaxos ordering assumptions are
likely to hold for non-bursty traffic for throughput less than 75% of the link ca-
pacity. As we will show, this throughput is orders of magnitude greater than a
basic Paxos implementation.
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Figure 3.3. The throughput vs. latency for basic Paxos and NetPaxos.

NetPaxos expected performance. Without enforcing the assumptions about
packet ordering, it is impossible to implement a complete, working version of
the NetPaxos protocol. However, given that the prior experiment shows that the
ordering assumption is rarely violated, it is still possible to compare the expected
performance with a basic Paxos implementation. This experiment quantifies the
performance improvements we could expect to get from a network-based Paxos
implementation for a best case scenario.

We measured message throughput and latency for NetPaxos and an open
source implementation of basic Paxos1 that has been used previously in repli-
cation literature [25, 26]. As with the prior experiment, two proposers send
messages at increasing throughput rates by varying the number of messages sent
for 1 ms time windows. Message latency is measured one way, using the time
stamp value in the packet, so the accuracy depends on how well the server clocks
are synchronized. To synchronize the clocks, we re-ran NTP before each iteration
of the experiment.

The results, shown in Figure 3.3, suggest that moving consensus logic into
network devices can have a dramatic impact on application performance. Net-
Paxos is able to achieve a maximum throughput of 57,457 messages/second. In
contrast, with basic Paxos the leader becomes CPU bound, and is only able to
send 6,369 messages/second.

1https://bitbucket.org/sciascid/libpaxos
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Latency is also improved for NetPaxos. The lowest latency that basic Paxos
is able to provide is 1.39 ms, when sending at a throughput of only 1,531 mes-
sages/second. As throughput increases, latency also increases sharply. At 6,369
messages/second, the latency is 3.67 ms. In contrast, the latency of NetPaxos is
both lower, and relatively unaffected by increasing throughput. For low through-
puts, the latency is 0.15 ms, and at 57,457 messages/second, the latency is
0.37 ms. In other words, NetPaxos reduces latency by 90%.

We should stress that these numbers indicate a best case scenario for Net-
Paxos. One would expect that modifying the switch behavior to enforce the de-
sired ordering constraints might add overhead. However, the initial experiments
are extremely promising, and suggest that moving consensus logic into network
devices could dramatically improve the performance of replicated systems.

3.4 Summary

SDN provides network programming capabilities that not only simplify network
management, but also enable tighter integration with distributed applications.
This integration means that networks can be tailored to the needs of deployed
applications, thereby improving application performance.

This chapter proposes two protocol designs which move Paxos consensus logic
into network forwarding devices. Although neither of these protocols can be fully
implemented without changes to the underlying switch firmware, all of these
changes are feasible in existing hardware. Moreover, our initial experiments
show that moving Paxos into switches would significantly increase throughput
and reduce latency.

Paxos is a fundamental protocol used by fault-tolerant systems and is widely
used by data center applications. Consequently, performance improvements in
the protocol implementation will have a major impact not only on services built
with Paxos, but also on applications that use those services.



Chapter 4

P4xos: Consensus As A Network
Service

In the previous chapter, we advocated moving consensus into the network. Of-
floading consensus protocols to the network is a logical decision since consensus
is essential to a broad range of distributed systems and services (e.g., [8, 10, 9]),
and widely recognized as a performance bottleneck [88, 89]. In reality, re-
cent projects have followed the same direction folding functionalities into net-
works. These projects optimize consensus protocols by strengthening assump-
tions about network conditions [59] or customizing the network for specific ap-
plications [28, 30].

This chapter proposes an alternative approach to speeding up consensus pro-
tocols. Recognizing that strong network assumptions may be unrealistic and
building systems around a specific application is inflexible, we demonstrate how
programmable network devices can naturally accelerate a consensus protocol
without reinforcing assumptions about network behavior. Our approach, namely
P4xos, provides a complete Paxos implementation that can be used as a substitute
for software-based equivalent services.

4.1 P4xos Design

P4xos is designed with the following objectives. First, P4xos improves latency by
processing consensus messages in the data plane when messages travel through
the network. In this way, P4xos reduces the number of hops a message must
transit, resulting in reduced tail latency, which is quite difficult to achieve in
software [13, 90, 14, 15, 17, 33, 18]. Figure 4.1 contrasts the propagation delay
for P4xos with software-based consensus services.

29
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Figure 4.1. Contrasting propagation delay for P4xos with server-based deploy-
ment.

Second, P4xos uses network hardware to process consensus messages for per-
formance. The network hardware is optimized for processing network traffic, re-
sulting in high throughput. In contrast, software-based systems use CPUs which
are inefficient in terms of processing network packets. In addition, the overhead
of memory management and the kernel networking stack extends the processing
delay for the software consensus systems.

In a network implementation of Paxos, protocol messages are encoded in
a custom packet header. The data plane executes the logic of leader, acceptor,
and learner; Multiple roles can be aggregated on the same device and roles are
assigned to devices statically. A shim library provides the interface between the
application and the network.

We expect P4xos to be deployed in data center in Top-of-Rack (ToR), Aggre-
gate and Spine switches, as shown in Figure 4.1. Each role in the protocol is de-
ployed on a separate device. We note that the roles in P4xos are interchangeable
with the software equivalents. For example, a backup leader could be deployed
on a standard server (with lower performance). It is worth emphasizing that, as
with standard Paxos implementations, this design does not limit the deployment
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topology. However, P4xos would not guarantee the same performance when de-
ployed outside the data center, such as wide-area or geo-distributed settings.

Paxos is a notoriously sophisticated and subtle protocol [54, 91, 92, 20]. The
typical descriptions of Paxos [1, 54, 91, 92, 20] describe the sequence of actions
in two phases of the protocol. In this section, we provide another view of the
algorithm in which the protocol is described as a set of match-action units that
are typical used in the network. In other words, we reinterpret the algorithm as
a set of forwarding decisions. This presentation of the algorithm can introduce
a different perspective on the protocol and support its understanding.

4.1.1 Paxos header

P4xos encodes Paxos messages in the Paxos packet header (Listing 4.1). The
header is prefixed by TCP or UDP headers, allowing P4xos packets to co-exist
with standard (non-programmable) network hardware. Moreover, we use the
network and transport checksums to ensure data integrity.

Since current network hardware lacks or supports little the ability to gener-
ate packets, P4xos processors respond to input messages by rewriting fields in
the packet headers (e.g., the message from proposer to leader is transformed
into a message from leader to each acceptor). However, this is a benefit against
crafting new packets as there is no overhead for few modifications to the packets
comparing to the overhead of packet header removal or addition [66].

header_type paxos_t {

fields {

msgtype : 8; /* Paxos message type */

inst : INST_SIZE; /* consensus instance number i.e. log entry */

rnd : 16; /* Paxos round (ballot) number */

vrnd : 16; /* The round that acceptors voted */

swid : 16; /* The identity of the message sender */

value : VALUE_SIZE; /* The value to replicate */

}

}

Listing 4.1. Paxos packet header

The Paxos packet header includes six fields (Listing 4.1). To keep the header
small, the semantics of some of the fields change depending on the type of the
message. The fields are as follows: (i) msgtype distinguishes the various Paxos
messages (e.g., REQUEST, PHASE1A, PHASE2A, etc.) (ii) inst is the consensus
instance number; (iii) rnd is either the round number generated by the proposer
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or the round number for which the acceptor has cast a vote; vrnd is the round
number in which an acceptor has accepted a value; (iv) swid identifies the sender
of the message; and (v) value contains the request from the proposer or the value
for which an acceptor has accepted. Our prototype requires that the entire Paxos
header, including the value, be less than the maximum transmission unit.

/* Proposer API */

void submit(char* value, int size);

/* Learner API */

void (*deliver)(struct app_ctx* ctx, int instance, char* value, int size);

void recover(int instance, char* value, int size);

Listing 4.2. P4xos API.

4.1.2 Proposer

A P4xos proposer mediates client requests, and encapsulates the requests in
Paxos headers. Ideally, this logic could be implemented by a kernel module,
allowing the Paxos header to be added in the same way that transport proto-
col headers are added today. As a proof-of-concept, we have implemented the
proposer as a user-space library that exposes a small API to client applications.

The P4xos proposer library is a drop-in replacement for existing software
libraries. The API consists of a single submit function, shown in Listing 4.2. The
submit function is called when the application wants to send a value using P4xos.
The application simply passes a character buffer containing the value, and the
size of the value. The rest is handled by P4xos (e.g., setting appropriate values
for headers’ fields, computing checksums, and pushing packets to the output
interface).

4.1.3 Notation

Our pseudocode roughly corresponds to P4 statements. As you will see in the
following algorithms, the Initialize blocks identify state stored in registers.
The register regname[N] statement declares a register whose name is regname
and it has N entries. regname[i] indicates an access to a register named regname

at index i. The notation “:= {0}” indicates that every entry in the register should
be initialized to 0. A (match: cases) block corresponds to a Match-Action
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Algorithm 1 Leader logic.
1: Initialize State:
2: register instance[1] := {0}
3: upon receiving pkt(msgtype, inst, rnd, vrnd, swid, value)
4: match pkt.msgtype:
5: case REQUEST:
6: pkt.msgtype← PHASE2A
7: pkt.rnd← 0
8: pkt.inst← instance[0]
9: instance[0] := instance[0] + 1

10: multicast pkt
11: default :
12: drop pkt

table. We distinguish updates to the local state (“:=”), from writes to a packet
header (“←”). We also distinguish between one-to-one (unicast) and one-to-
many (multicast) communication.

4.1.4 Leader

A leader brokers requests on behalf of proposers. The leader ensures that only
one proposer submits a message to the protocol for a particular instance (thus
ensuring that the protocol terminates), and imposes an ordering of messages.
When there is a single leader, a monotonically increasing sequence number can
be used to order the messages. This sequence number is written to the inst field
of the Paxos header.

Algorithm 1 shows the pseudocode for the primary leader implementation.
The leader receives REQUEST messages from proposers. Each REQUEST message
only contains a value. Once receiving a REQUEST message, the leader must per-
form the following tasks: change the message type of the Paxos header to PHASE2A,
write the current instance number and an initial round number into the header;
increment the instance number for the next invocation; store the value of the
new instance number; and multicast the message to acceptors.

P4xos uses a well-known Paxos optimization [12], where each instance is re-
served for the first (primary) leader at initialization (i.e., round number zero).
Thus, the first leader does not need to execute Phase 1 before submitting a value
to the acceptors. Note that, this optimization only works for the first leader.
When the first leader fails, subsequent backup leaders must reserve an instance
before submitting a value to the acceptors. To reserve an instance, a backup
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Algorithm 2 Acceptor logic.
1: Initialize State:
2: register round[MAXINSTANCES] := {0}
3: register value[MAXINSTANCES] := {0}
4: register vround[MAXINSTANCES] := {0}
5: upon receiving pkt(msgtype, inst, rnd, vrnd, swid, value)
6: if pkt.rnd ≥ round[pkt.inst] then
7: match pkt.msgtype:
8: case PHASE1A:
9: round[pkt.inst] := pkt.rnd

10: pkt.msgtype← PHASE1B
11: pkt.vrnd← vround[pkt.inst]
12: pkt.value← value[pkt.inst]
13: pkt.swid← swid
14: unicast pkt
15: case PHASE2A:
16: round[pkt.inst] := pkt.rnd
17: vround[pkt.inst] := pkt.rnd
18: value[pkt.inst] := pkt.value
19: pkt.msgtype← PHASE2B
20: pkt.swid← swid
21: multicast pkt
22: default :
23: drop pkt
24: else
25: drop pkt

leader must send a unique and bigger round number (contained in a PHASE1A

message) to the acceptors. We omit the backup leader algorithm since it essen-
tially follows the Paxos protocol.

4.1.5 Acceptor

Acceptors are responsible for choosing a single value for each instance. In a
particular instance, each individual acceptor must “vote” for a value. Acceptors
must maintain the history of proposals for which they have voted. This history
ensures that the acceptors never vote for different values for the same instance,
and allows the protocol to tolerate lost, duplicated or out-of-order messages.

Algorithm 2 shows the logic for acceptors. Acceptors receive either PHASE1A
or PHASE2A messages. Phase 1A messages are used to find out if any value may
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Algorithm 3 Learner logic.
1: Initialize State:
2: register history2B[MAXINSTANCES][NUMACCEPTOR]:= {0}
3: register value[MAXINSTANCES] := {0}
4: register vround[MAXINSTANCES] := {−1}
5: register count[MAXINSTANCES] := {0}
6: upon receiving pkt(msgtype, inst, rnd, vrnd, swid, value)
7: match pkt.msgtype:
8: case PHASE2B:
9: if (pkt.rnd > vround[pkt.inst] or vround[pkt.inst] = −1) then

10: history2B[pkt.inst][0] := 0
11:

...
12: history2B[pkt.inst][NUMACCEPTOR-1] := 0
13: history2B[pkt.inst][pkt.swid] := 1
14: vround[pkt.inst] := pkt.rnd
15: value[pkt.inst] := pkt.value
16: count[pkt.inst] := 1
17: else if (pkt.rnd = vround[pkt.inst]) then
18: if (history2B[pkt.inst][pkt.swid] = 0) then
19: count[pkt.inst] := count[pkt.inst] + 1
20: history2B[pkt.inst][pkt.swid] := 1
21: else
22: drop pkt
23: if (count[pkt.inst] = MAJORITY) then
24: multicast pkt.value
25: default :
26: drop pkt

have been selected, and Phase 2A messages trigger a vote. The logic for han-
dling both messages, when expressed as stateful routing decisions, involves: (i)
reading persistent state, (ii) modifying packet header fields, (iii) updating the
persistent state, and (iv) forwarding the modified packets. The logic essentially
follows the Paxos protocol.

4.1.6 Learner

Learners are responsible for replicating a value for a given consensus instance.
Learners receive votes from the acceptors, and “deliver” a value if a quorum of
votes exists.

Algorithm 3 shows the pseudocode for the learner logic. Learners should
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only receive PHASE2B messages. When a message arrives, each learner extracts
the instance number, switch id, and value. The learner maintains a mapping
from a pair of instance number and switch id to a value. Each time a new value
arrives, the learner checks for a quorum of acceptor votes. A quorum is equal to
f +1 in a cluster of 2 f +1 nodes where f is the number of faulty acceptors that
can be tolerated.

The learner provides an interface between the network consensus service and
applications. Tasks are split between the consensus service which checks for a
quorum of votes, and the state machine which executes the replicated command
(the chosen value). To check if a quorum of votes exists, the learner counts the
number of PHASE2B messages it receives from different acceptors in the same
round. After a bounded period, if there is no quorum of PHASE2B messages in
an instance (e.g., because the first leader fails or some messages have lost), the
learner needs to recount PHASE2B messages in a quorum (i.e., after the backup
leader re-executes the instance). Once a quorum is received, it delivers the value
to the application.

To receive the chosen values, the application registers a callback function
with the type signature of deliver as shown in Listing 4.2. When a learner
learns a value, it transfers the control to the application’s deliver function. The
deliver function signature consists of a buffer containing the learned value, the
size of the value, the instance number for the learned value and a pointer to the
application’s context.

The recover function (Listing 4.2) is used by the application to discover a
previously agreed upon value for a particular instance of consensus. The recover
function results in the same exchange of messages as the submit function. The
difference in the API, though, is that the application must pass the consensus
instance number as a parameter, as well as an application-specific no-op value.
The resulting deliver callback will either return the chosen value, or the no-op
value if no value had been previously chosen for that particular instance number.

4.2 Implementation

We have programmed P4xos in P4 [93], so components of P4xos can be realized
on hardware, FPGAs or on microprocessors in traditional servers. We note that
P4xos deployment is interchangeable, for example, the primary leader deployed
on a hardware switch while the backup leader runs on an x86 commodity server.

P4xos is portable across devices. We have used several compilers [37, 94,
41, 95, 41, 96] to run P4xos on a variety of hardware devices, including a re-
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configurable ASIC, numerous FPGAs, a SmartNIC, and CPUs with and without
kernel-bypass. A total of 6 different implementations were tested. All source
code, other than the version that targets Barefoot Network’s Tofino chip, is pub-
licly available with an open-source license (https://github.com/P4xos).

The next sections show the performance for P4xos in two different setups.
The first set of experiments shows the absolute performance an individual P4xos
processor can deliver, and the second set of experiments presents end-to-end
performance of replicated applications using P4xos.

4.3 Absolute Performance

The first set of experiments exhibited the absolute performance of P4xos indi-
viduals, and demonstrated that P4xos can be deployed on a variety of hardware
devices. In these experiments, we evaluated performance of individual P4xos
components on a programmable ASIC (Tofino), an FPGA (NetFPGA SUME) and
a CPU (using DPDK).

4.3.1 ASIC Tofino

Our implementation combined the P4xos pipeline and the switching pipeline.
This combination demonstrated the co-existence of Paxos and forwarding opera-
tions at the same time. While the coexistence of both functions added additional
match-action units to the latency, it allowed us to concurrently implement on
Tofino forwarding rules and verify P4xos operations. Furthermore, using pro-
grammable network devices like Tofino to add new protocols in the network re-
quires software updates rather than hardware upgrades, therefore diminishing
the cost of investment.

Experiment Testbed

We compiled P4xos to run on a 64-port, 40G ToR switch, with Barefoot Network’s
Tofino ASIC [47]. To generate traffic, we used a 2 × 40Gb Ixia XGS12-H as
packet source and sink. We used a technique known as “snake test” that connects
the output of one port to the input of the adjacent port. The packet source is
connected to the first port and the packet sink is connected to the last port of
the switch using two 40Gb SFP+ direct-attached cables. The use of all ports as
part of the experiments was validated, e.g., using per-port counters. We similarly
checked equal load across ports and potential packet loss (which did not occur).

https://github.com/P4xos
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Latency and throughput

We measured the throughput for all Paxos roles to be 41 million consensus ms-
gs/sec per port. The packet size was 102 bytes including Ethernet, IP and UDP
headers. In the Tofino architecture, implementing pipelines of 16 ports each [97],
a single instance of P4xos reached 656 million consensus messages/second. We
deployed 4 instances in parallel on a 64 port x 40GE switch, processing over
2.5 billion consensus msgs/sec (Table 4.2). Moreover, our measurements indi-
cate that P4xos should be able to sustains a throughput of 6.5 Tbs of consensus
messages using a single 100GE switch.

We used the Barefoot’s compiler to report precise theoretical latency for the
packet processing pipeline. The latency is less that 0.1 µs (Table 4.1). To be clear,
this number does not include the SerDes, MAC, or packet parsing components.
Hence, the wire-to-wire latency would be slightly higher. These experiments
show that moving Paxos into the forwarding plane can substantially improve
performance.

Resources and coexisting with other traffic

The P4xos pipeline uses less than 5% of the available SRAM on Tofino, and no
TCAM. Thus, adding P4xos to an existing switch pipeline on a re-configurable
ASIC would use few of the available resources, and have a minimal effect on
other switch functionality (e.g., the number of fine-grain rules in tables).

Moreover, the P4xos on Tofino experiment demonstrates that consensus oper-
ation can coexist with standard network switching operation, as the peak through-
put is measured while the device runs traffic at full line rate of 6.5Tbps. This is
a clear indication that network devices can be used more efficiently, implement-
ing consensus services parallel to network operations. Using network devices for
more than just network operations reduces the load on end-hosts while remain-
ing the same level of network performance.

4.3.2 NetFPGA SUME and DPDK

The FPGA and DPDK experiments measure latency and throughput for individual
P4xos components. In addition, resource utilization is also quantified for the
FPGA. Overall, our evaluation shows that P4xos can saturate a 10Gbps link, and
that the latency overhead for Paxos logic is little more than forwarding delay.
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Role DPDK P4xos (NetFPGA) P4xos (Tofino)

Forwarding n/a 0.370 µs n/a
Leader 2.3 µs 0.520 µs less than 0.1 µs

Acceptor 2.6 µs 0.550 µs less than 0.1 µs
Learner 2.8 µs 0.540 µs less than 0.1 µs

Table 4.1. P4xos latency. The latency accounts only for the packet processing
within each implementation.

Single-packet latency

To quantify the processing overhead added by executing Paxos logic, we mea-
sured latency of the forwarding pipeline with and without Paxos. In particular,
we computed the difference between two timestamps, one when the first word
of a consensus message entered the pipeline and the other when the first word
of the message left the pipeline. For DPDK, the CPU timestamp counter (TSC)
was used.

Table 4.1 shows the latency for P4xos running on DPDK and NetFPGA SUME.
The numbers for Tofino is added for reference. The first row shows the results for
forwarding without Paxos logic. The latency was measured from the beginning
of the packet parser until the end of the packet deparser. The remaining rows
show the pipeline latency for various Paxos components. Note that the latency
of the FPGA and ASIC based targets is constant as their pipelines use a constant
number of stages. Overall, the experiments show that P4xos adds little latency
beyond simply forwarding packets, around 0.15 µs (38 clock cycles) on FPGA
and less than 0.1 µs on ASIC.

We wanted to compare a compiled P4 code to a native implementation in
Verilog or VHDL. The closest related work in this area is by Istvan et al. [28],
which implemented Zookeeper Atomic Broadcast on Virtex-7 VC709 FPGA. It
is difficult to make a direct comparison, because (i) they implement a different
protocol, and (ii) they timestamp the packet at different places in their hardware.
But, as best we can tell, the latency numbers are similar.

Measured maximum achievable throughput

We first measured the maximum rate at which P4xos components can process
consensus messages. As a baseline comparison, we also include the measure-
ments for libpaxos and DPDK implementations. To generate traffic, we used a
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Role libpaxos DPDK P4xos(NetFPGA) P4xos(Tofino)

Leader 241K 5.5M 10M 656M×4 = 2.5B
Acceptor 178K 950K 10M 656M×4 = 2.5B
Learner 189K 650K 10M 656M×4 = 2.5B

Table 4.2. Throughput in messages/second. NetFPGA uses a single 10Gb link.
Tofino uses 40Gb links. On Tofino, we ran 4 deployments in parallel, each using
16 ports.

P4FPGA-based [94] hardware packet generator and capturer to send 102-byte1

consensus messages to each component, then captured and timestamped each
message measuring at the maximum receiving rate.

The results in Table 4.2 show that on the FPGA, the acceptor, leader, and
learner can all process close to 10 million consensus messages/second, an order
of magnitude improvement over libpaxos, and almost double the best DPDK
throughput. The ASIC deployment allows two additional order of magnitude
improvement.

Resource utilization

To evaluate the cost of implementing Paxos logic on FPGAs, we report resource
utilization on a NetFPGA SUME using P4FPGA compiler [94]. An FPGA contains
a large number of programmable logic blocks: look-up tables (LUTs), registers
and Block RAMs (BRAMs). On NetFPGA SUME, we implemented P4 stateful
registers with on-chip BRAMs to store consensus state. As shown in Table 4.3,
current implementation uses 54% of available BRAMs, out of which 35% are
used for stateful registers2. We could scale up the current implementation in
NetFPGA SUME by using large, off-chip DRAM at a cost of higher memory access
latency. Prior work suggests that increased DRAM latency should not impact
throughput [28]. We note that the resource utilization may differ with other
compilers and targets.

1Ethernet header (14B), IP header (20B), UDP header (8B), Paxos header (44B), and Paxos
payload (16B)

2On newer FPGA [98] the resource utilization will be an order of magnitude lower
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Resource Utilization

LUTs 84674 / 433200 (19.5%)
Registers 103921 / 866400 (11.9%)
BRAMs 801 / 1470 (54.4%)

Table 4.3. Resource utilization of P4xos on a NetFPGA SUME compiled with
P4FPGA.

Figure 4.2. FPGA test bed for the evaluation.

4.4 End-to-End Performance

To explore P4xos beyond a single device, we run a set of experiments demon-
strating a proof-of-concept of P4xos within a distributed system using different
hardware. The leader and acceptors running on NetFPGA SUMEs [49], and the
learners using DPDK implementation running on general purpose CPUs. The
reason for not running the learners on FPGAs is as we did not have access to ad-
ditional boards. The experiments also show the interchangeability of the P4xos
design.

To evaluate end-to-end performance, we compare P4xos with the open-source
libpaxos library [46]. Overall, the evaluation shows that P4xos dramatically in-
creases throughput and reduces latency for end-to-end performance, when com-
pared to traditional software implementations.
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4.4.1 Experiment Testbed

Our testbed includes four Supermicro 6018U-TRTP+ servers and a Pica8 P-3922
10 Gbps Ethernet switch, connected in the topology shown in Figure 4.2. The
servers have dual-socket Intel Xeon E5-2603 CPUs, with a total of 12 cores run-
ning at 1.6GHz, 16GB of 1600MHz DDR4 memory and two Intel 82599 10 Gbps
NICs. NetFPGA SUME boards operated at 250MHz. We installed one NetFPGA
SUME board in each server using a PCIe x8 slot, though NetFGPAs function as
stand-alone systems in our testbed. SFP+ interfaces on the NetFPGA SUME and
on the servers are connected to Pica8 switch using 10 Gbps SFP+ copper cables.
The servers were running Ubuntu 14.04 with Linux kernel version 3.19.0.

For DPDK learners, we dedicated one CPU socket and two NICs to the ap-
plication. All memory on the server were moved to the slots managed by the
socket. Virtualization, frequency scaling, and power management were disabled
in the BIOS. The memory frequency was set to the maximum value. Additionally,
two CPU cores in the selected socket were isolated and the NICs coupled to the
socket was bound to the DPDK drivers. Finally, 1024 huge pages (2MB each)
were reserved for the DPDK application.

4.4.2 Baseline Performance of P4xos

Our first end-to-end evaluation uses the simple echo server as the application
on the testbed illustrated in Figure 4.2. Server 1 runs a multi-threaded client
process and a single proposer process. Servers 2, 3, and 4 run single-threaded
learner processes and the echo server atop. The deployment for libpaxos is
similar, except that the leader and acceptor processes run in software on their
servers, instead of running on the FPGA boards.

Each client thread submits a message with the current timestamp written in
the value. When the value is delivered by the learner, the server program re-
trieves the message via a deliver callback, and then returns the message back
to the client. When the client gets a response, it immediately submits another
message. The latency is measured at the client as the round-trip time for each
message. Throughput is measured at the learner as the number of deliver invo-
cations over time.

To push the system towards a higher message throughput, we increased the
number of threads running in parallel at the client. The number of threads, N ,
ranged from 1 to 24 by increments of 1. We stopped measuring at 24 threads
because the CPU utilization on the application reached 100%. For each value of
N , the client sent a total of 2 million messages. We repeat this for three runs,
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and report the 99th-ile latency and mean throughput.
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Figure 4.3. The end-to-end throughput vs. latency for Echo.

Throughput and 99th-ile latency. Figure 4.3 shows that P4xos results in sig-
nificant improvements in latency and throughput. While libpaxos is only able
to achieve a maximum throughput of 63,099 messages per second, P4xos reach
275,341 messages/second, at which point the application becomes CPU-bound.
This is a 4.3× improvement. Given that using P4xos on Tofino can support four
orders of magnitude more messages, and that the application is CPU-bound,
cross-traffic will have a small effect on overall P4xos performance. The lowest
99th-ile latency for libpaxos occurs at the lowest throughput rate, and is 183µs.
However, the latency increases significantly as the throughput increases, reach-
ing 774µs. In contrast, the latency for P4xos starts at only 51µs, and is 117µs at
the maximum throughput, mostly due to the server.

Latency and predictability. We measure the latency and predictability for P4xos
as a system, and show the latency distribution in Figure 4.4. Since applications
typically do not run at maximum throughput, we report the results for when the
application is sending traffic at a rate of 24k messages/second, which favors the
libpaxos implementation. This rate is far below what P4xos can achieve. We see
that P4xos shows lower latency and exhibits better predictability than libpaxos:
it’s median latency is 57 µs, compared with 146 µs, and the difference between
25% and 75% quantiles is less than 3 µs, compared with 30 µs in libpaxos. Note
that higher tail latencies are attributed to the Proposers and Learners, running
on the host.
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Figure 4.4. The end-to-end latency CDF for Echo.

4.4.3 Case Study: Replicating LevelDB
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Figure 4.5. The end-to-end throughput vs. latency for LevelDB.

As the baseline end-to-end experiment, we measured the latency and through-
put for consensus messages for our replicated LevelDB example application. The
LevelDB instances were deployed on the three servers running the learners. We
followed the same methodology as described above, but rather than sending
dummy values, we sent an equal mix of get and put requests. The 99th-ile la-
tency and throughput when replicating LevelDB are shown in Figure 4.5. The
limiting factor for performance is the application itself, as the CPU of the servers
are fully utilized. P4xos removes consensus bottleneck. The maximum through-
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put achieved here by P4xos is 157,589 messages/second. In contrast, for the
libpaxos deployment, we measured a maximum throughput of only 54,433 mes-
sages/second.
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Figure 4.6. The end-to-end latency CDF of LevelDB.

The latency distribution is shown in Figure 4.6. We report the results for a
light workload rate of 24k messages/second for both systems. For P4xos, the
RTT (round trip time) of 99% of the requests is 50µs, including the client’s la-
tency. In contrast, for libpaxos, the RTT ranges from 100µs to 200µs. This
demonstrates that P4xos latency is both lower and more predictable, even when
used for replicating a relatively more complex application.

Note that LevelDB was unmodified, i.e., there were no changes to the appli-
cation. We expect that given a high-performance consensus service, applications
could be modified to take advantage of the increased message throughput, for
example, by using multi-core architectures to process requests in parallel [26].

4.4.4 Performance Under Failure

To evaluate the performance of P4xos under failures, we repeated the latency and
throughput measurements from Section 4.4.1 under two different scenarios. In
the first scenario, one of the three P4xos acceptors fails. In the second scenario,
the P4xos leader fails, and the leader FPGA is replaced with a DPDK leader. In
both the graphs of Figure 4.7, the vertical line indicates the failure point.

Figure 4.7a shows an increment of throughput after the loss of one accep-
tor; learners are the bottleneck, and when an acceptor fails, they process fewer
messages. To handle the failure of a leader, we re-route traffic to the backup.
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(b) Leader failure

Figure 4.7. P4xos performance when (a) an FPGA acceptor fails, and (b) when
FPGA leader is replaced by DPDK backup.

Figure 4.7b shows that P4xos is resilient to a leader failure. After a very short
recovery period, it continues to provide a high throughput as the backup is in
charge. Note that P4xos could fail over to a backup libpaxos leader, as they
provide the same API.

4.5 Discussion

The design outlined in Section 4.1 begs several questions, which we expand on
below.

Isn’t this just Paxos? Yes! In fact, that is the central premise of this thesis: you
do not need to change a fundamental building block of distributed systems in
order to gain performance. This is quite different from the prevailing wisdom.
There have been many optimizations proposed for consensus protocols. These
optimizations typically rely on changes in the underlying assumptions about the
network, e.g., the network provides ordered [16, 17, 29] or reliable [18] deliv-
ery. Consensus protocols, in general, are easy to get wrong. Strong assumptions
about network behavior may not hold in practice. Incorrect implementations of
consensus cause adversary behavior of applications that is hard to debug.

In contrast, Paxos is widely considered to be the “gold standard”. It has been
proven safe under asynchronous assumptions, live under weak synchronous as-
sumptions, and resilience-optimum [1].
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Isn’t this just faster hardware? The latency saving across a data center is not
hardware dependent: If you change the switches used in your network, or the
CPU used in your servers, the relative latency improvement will be maintained.
In the experiments described in section 3.3.2 (Table 4.2), the P4xos implemen-
tation on FPGA operates at 250MHz, while libpaxos runs on a host operating at
1.6GHz, yet the performance of P4xos on FPGA is forty times higher. It is there-
fore clear that fast hardware is not the sole reason for throughput improvement.

Doesn’t the storage need to be durable? Paxos usually requires persistent stor-
age for acceptors. In other words, if the acceptor fails and restarts, it should
be able to recover its durable state. Our prototype uses non-persistent SRAM,
which means that there must always be a majority of processes that never fail.
As we move the functionality into the network, this is equivalent to expecting a
majority of aggregate switches not to fail.

Providing persistent storage for network deployments of P4xos can be ad-
dressed in a number of ways. Prior work on implementing consensus in FPGAs
used on chip RAM, and suggested that the memory could be made persistent with
a battery [28]. Alternatively, a switch could access non-volatile memory (i.e., an
SSD drive) directly via PCI-express [99] or indirectly via RDMA [100].

Is there enough storage available? The Paxos algorithm does not specify how
to handle the ever-growing, replicated acceptor log. On any system, including
P4xos, this can cause problems, as the log would require unbounded storage
space, and recovering replicas might need unbounded recovery time to replay
the log. We note that, in a P4xos deployment, the number of instances that can
be stored is bounded by the size of the inst field of the Paxos header. Users
of P4xos will have to set the value to an appropriate size for a particular de-
ployment. To cope with the ever-growing log size, an application using P4xos
must implement a checkpoint mechanism [20]. Since the decisions of when and
how to checkpoint are application-specific, we do not include these as a part of
the P4xos implementation. The amount of memory available on a Tofino chip is
confidential, but a top-of-the-line FPGA has 64Gb RAM [98].

What are the limitations on the value size? Our prototype requires that the
entire Paxos header, including the value, be less than the maximum transmission
unit. This means that P4xos is most appropriate for systems that replicate values
that have a small size (e.g., locks for distributed coordination). In this respect,
P4xos is similar to other in-network computing systems, such as NetCache [3]
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and NetChain [30]. One could imagine fragmenting larger values across several
packets. However, this would require that the switch keep some additional state.
Recent work by Kim et al. demonstrates that a Tofino switch can serve as an
RDMA end-point [100]. One possible approach to keeping additional state would
be to leverage off-device DRAM via RDMA requests.

4.6 Chapter Summary

This chapter provided the design of the network-based consensus protocol, named
P4xos. It explained in detail the P4-based algorithms of the Paxos roles (leader,
acceptor, and learner) and the format of the Paxos packet header. The evalu-
ation demonstrated the absolute performance of P4xos individual components
and the end-to-end performance of P4xos in a distributed system. Performance
under failures of P4xos was also presented. Finally, it discussed several concerns
about the design choices of P4xos.



Chapter 5

Partitioned Paxos

In the previous chapter, we showed moving consensus into the network has in-
deed improved application performance. However, as soon as the consensus bot-
tleneck is resolved, another bottleneck becomes visible at replicated applications.
Existing systems suffer from a significant limitation: they do not fully utilize the
increased performance of consensus services. For instance, the aforementioned
NoPaxos [29] can only achieve a throughput of 13K transactions per second while
using it to replicate a transactional key-value store. The usefulness of a network-
based consensus system becomes questionable when applications cannot take its
performance advantages, especially as network acceleration comes at a cost (e.g.,
the cost of hardware investments, power consumption, and engineering effort).

Prior works such as Consensus in a Box [28] and NetChain [30] sidestep this
issue to some extent, by implementing replicated applications in network hard-
ware (i.e., both systems implement a key-value store in their target hardware
devices). This approach severely limits the applicability of a network-based con-
sensus system, as it really provides a specialized replicated rather than a general-
purpose replicated service that can be used by any off-the-shelf application.

In this chapter, we propose Partitioned Paxos, a novel approach that not only
accelerates performance of consensus services but also scales performance of
replicated applications. There are two aspects of the state machine approach:
agreement and execution; agreement ensures the same order of input to the
state machine on each replica and execution advances the state of a state ma-
chine. We decouple execution from agreement and optimize them independently.
Our evaluation shows that performance of an unmodified version of RocksDB, a
production quality key-value store used at Facebook, Yahoo!, and LinkedIn, is
scaled proportionally to the number of shards when using Partitioned Paxos for
replication.

49
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5.1 Separating Agreement from Execution for State Ma-
chine Replication

There are two concerns for state machine replication: execution and agreement.
Execution governs how replicas execute requests in a state machine, while agree-
ment ensures the order of requests to the state machine’s input. Consensus in a
Box [28] and NetChain [30] perform both execution and agreement inside the
hardware. In contrast, the key insight behind Partitioned Paxos is to isolate and
to optimize these two concerns independently. This separation allows an appli-
cation to take advantages of optimized consensus without the need to implement
the application itself in the hardware which is a time-consuming and relatively
complex task, even for experienced developers.

Partitioned Paxos uses programmable network hardware to accelerate agree-
ment, following Lamport’s Paxos algorithm [1]. Thus, it accelerates a consen-
sus protocol without strengthening network assumptions. Next, to leverage in-
creased throughput of consensus and to optimize state machine execution, Parti-
tioned Paxos shards application state and runs parallel Paxos instances for each
shard. By sharding the state of the application, we can multiply its performance
by the number of partitions/shards. As a result, the replicated application can
leverage increased performance provided by an in-network, strongly consistent
replication service which has the same assumptions as the original Paxos proto-
col.

P4xos implemented an optimization of Paxos leader and acceptors that only
handle the second phase of the protocol. Partitioned Paxos extends P4xos in
two dimensions. First, Partitioned Paxos implements both Phase 1 and Phase 2
of Paxos to handle non-Byzantine node failures (e.g., a leader failure). Second,
Partitioned Paxos supports multi-partitions on an ASIC target, which imposes
new constraints on the design and implementation of the protocol, including
recycling the leader and acceptor log.

Beyond the presentation, Partitioned Paxos differs from a standard Paxos im-
plementation in which each command must include a partition identifier pid be-
side the existed fields of a typical Paxos message, as shown in Listing 5.1. A
partition identifier corresponds to a shard of Paxos and the application state.
Many distributed systems, such as key-value stores or databases, are naturally
partitioned, e.g., by key-space. We refer to these partitions as application state
shards. A corresponding partition of Paxos is responsible for processing messages
belonging to that shard.
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header_type paxos_t {

fields {

pid : 8; /* Paxos partition identifier */

msgtype : 8; /* Paxos message type */

inst : INST_SIZE; /* consensus instance number i.e. log entry */

rnd : 16; /* Paxos round (ballot) number */

vrnd : 16; /* The round that acceptors voted */

swid : 16; /* The identity of the message sender */

value : VALUE_SIZE; /* The value to replicate */

}

}

Listing 5.1. Partitioned Paxos packet header

5.1.1 Accelerating Agreement

Similar to P4xos, Partitioned Paxos accelerates consensus by moving some of the
logic into the network data plane. This addresses two of the major obstacles to
achieving high-performance. First, it avoids network I/O bottlenecks in software
implementations. Second, it reduces end-to-end latency by executing consensus
logic as messages pass through the network.

However, while P4xos is considered as a proof of concept of an in-network
consensus library, Partitioned Paxos is an upgrade for P4xos, which tackles the
advanced issues of consensus libraries, such as, trimming log, partitioning and
leader fail-over. Several challenges arise when designing such a full-featured
consensus service: (i) What is the expected deployment? (ii) How do you map
the protocol into the match-action abstractions exposed by network devices? (iii)
How is the failure model of Paxos impacted? And (iv) How do the limited re-
sources in hardware impact the protocol? Below, we discuss these issues in detail.

Deployment

Figure 5.1 illustrates a minimal deployment for Partitioned Paxos. With Parti-
tioned Paxos, network switches execute the logic for the leader and acceptor
roles in Paxos. The hosts serve as proposers and replicated applications. It is
worth mentioning that this deployment does not require additional hardware to
be deployed in the network, such as middle-boxes or FPGAs. Partitioned Paxos
leverages hardware resources that are already available.

For availability, Paxos intrinsically assumes that if a node fails, the other nodes
can still communicate with each other. By moving this logic into network devices,
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Figure 5.1. Example deployment for Partitioned Paxos.

Partitioned Paxos necessarily mandates that there are redundant communication
paths between devices. In Figure 5.1, a redundant path between proposers, ac-
ceptors and a backup leader is illustrated with dashed lines. In a more realistic,
data center deployment, this redundancy is already present between top-of-rack
(ToR), aggregate, and spine switches.

Paxos Logic in Match-Action

Proposer. When a Partitioned Paxos proposer submits a command, it must in-
clude the partition identifier. The proposer adds the partition id to each Paxos
command. The id is not exposed to the client application. We note that an opti-
mal sharding of application state is dependent on the workload. Our prototype
uses an even distribution of the key-space. Determining an optimal sharding of
application state is an orthogonal problem and an interesting direction for future
work.

Leader and Acceptor. Partitioned Paxos differs from traditional implementa-
tions of Paxos in that it maintains multiple logs, as illustrated in Figure 5.2. Each
log corresponds to a separate partition, and each partition corresponds to a sep-
arate shard of application state. The log is implemented as a ring-buffer. The
leader and acceptor logics are similar to Algorithm 1 and Algorithm 2 respec-
tively, except the state attributes are indexed in the matrix using the partition
and the instance number.
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Figure 5.2. Partitioned Acceptor log, indexed by partition id and instance
number.

Resource Constraints

Lamport’s Paxos algorithm does not specify how to handle the ever-growing,
replicated log that is stored at acceptors. On any system, the ever-growing log can
cause a problem, as the log would require unbounded disk space, and recovering
replicas might need unbounded recovery time to replay the log. To cope with
log files, an application using Paxos must implement a mechanism to trim the
log [20].

In Partitioned Paxos, each acceptor maintains P acceptor logs, where P is the
number of partitions. Each log is implemented as a ring buffer that can hold I
instances. Thus, the memory usage of Partitioned Paxos is O (P ∗ I). And, that
the memory usage is inversely proportional to the frequency of log trimming.

Each partition of a replica must track how many instances have been agreed
upon, and the largest agreed upon instance number, i. When the number of
chosen instances approaches I , the partition must send a TRIM message to the
acceptor. Upon receipt of the TRIM message, the acceptor recycles all state for
instance numbers less than that i. Note that the TRIM message is processed by
the data plane instead of by the control plane.

Failure Assumptions and Correctness

Partitioned Paxos assumes that the failure of a leader or acceptor does not prevent
connectivity between the consensus participants. As a result, it requires that the
network topology allows for redundant routes between components, which is a
common practice in data centers. In other respects, the failure assumptions of
Partitioned Paxos are the same as in Lamport’s Paxos. Below, we discuss how
Partitioned Paxos copes with the failure of a leader or acceptor.
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Leader failure. Paxos relies on a single operational leader to progress. Upon the
failure of the leader, proposers must submit proposals to a newly elected leader.
We simplify this election by pre-assigning a backup leader which is implemented
in software. If a proposer does not receive the response for a request after a
configurable delay, it re-submits the request, to account for lost messages. After
three unsuccessful retries, the proposer requests the leader to be changed.

Routing to a leader or backup is handled in a similar fashion as the way that
load balancers, such as Maglev [101] or Silk Road [102], route to an elastic set
of endpoints. Partitioned Paxos uses a reserved IP address to indicate a packet
is intended for a leader. Network switches maintain forwarding rules that route
the reserved IP address to the current leader. Upon suspecting the failure of
the hardware leader, a proposer submits a request to the network controller to
update the forwarding rules directing traffic to the backup. This mechanism
handles hardware leader failure and recovery.

Acceptor failure. Acceptor failures do not represent a threat in Paxos, as long
as a majority of acceptors are operational. Moreover, upon recovering from a
failure, an acceptor can promptly execute the protocol without catching up with
operational acceptors. Paxos, however, requires acceptors not to forget about
instances in which they participated before the failure.

There are two possible approaches to satisfy this requirement. First, we could
rely on always having a majority of operational acceptors available. This is a
slightly stronger assumption than the traditional Paxos protocol. Alternatively,
we could require that acceptors have access to persistent memory to record ac-
cepted instances.

Our prototype implementation uses the first approach, since the hardware in
use only provides non-persistent SRAM. However, providing persistent storage
for network devices of Partitioned Paxos can be addressed in a number of ways
which are already discussed in Section 4.5.

5.1.2 Accelerating Execution

To accelerate the execution, Partitioned Paxos shards the application state at
replicas and assigns a worker thread to execute requests at each shard. We limit
our prototype to only support commands that access a single shard since shard-
ing is most effective when requests are single-shard, and the load among shards
is balanced. However, the approach can be generalized to support commands
that access multiple shards (i.e., multi-shard requests).
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When a proposer receives a client’s request, it computes the shard (or shards)
involved in the request (i.e., the partition id, pid). pid is a bit vector in which
each bit represents a partition of Partitioned Paxos. The client request is passed
to partitions that correspond to the set bits in the bit vector. Satisfying this con-
straint requires proposers to tell the read and write sets (i.e., the shards where
data is read from or written to) of a request before the request is executed, as in,
e.g., Eris [103] and Calvin [104]. If this information is not available, a proposer
can assume a superset of the actual shards involved, in the worst case all shards.

Partitioned Paxos can be extended to order requests consistently across shards.
Intuitively, this means that if a multi-shard request req1 is ordered before an-
other multi-shard request req2 in a shard, then req1 is ordered before req2 in
every shard that involves both requests. Capturing Partitioned Paxos ordering
property precisely is slightly more complicated: Let < be a relation on the set of
requests such that req1 < req2 iff req1 is ordered before req2 in some shard.

Every worker executes requests in the order assigned by Paxos. Multi-shard
requests require the involved workers to synchronize so that a single worker com-
pletes the request. Therefore, multi-shard requests are received by workers in all
involved shards. Once a multi-shard request is received, the affected workers
synchronize using a barrier, and the worker with the lowest id executes the re-
quests and then signals the other workers to continue their execution. Supporting
multi-shard commands requires a careful design to minimize the overhead at the
replica. Furthermore, the current version of the kernel bypass library does not
support the barrier synchronization across cores. We decide to leave supporting
multi-shard commands for future work.

Note that each worker must track how many instance numbers have been
agreed upon, and the largest agreed upon instance number. When the num-
ber of agreed-upon instances exceeds a threshold, the worker must send a TRIM

message to all acceptors. This message includes the largest agreed upon instance
number and the partition identifier. Upon receipt of this message, acceptors will
trim their logs for that partition up to the given instance number.

For a replica to realize the above design, there are two challenges that must
be solved. First, the replicas must be able to process the high-volume of consen-
sus messages received from the acceptors. Second, as the application involves
writing to disk, file-system I/O becomes a bottleneck. Below, we describe how
the Partitioned Paxos architecture, illustrated in Figure 5.3, addresses these two
issues.
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Figure 5.3. Partitioned Paxos replica architecture.

Packet I/O

To optimize the interface between the network-accelerated agreement and the
application, Partitioned Paxos uses a kernel-bypass library (i.e., DPDK [69]), al-
lowing the replica to receive packets in the user space directly from the NIC
without buffering packets in the kernel space.

Partitioned Paxos de-couples packet I/O from the application-specific logic,
dedicating a separate set of logical cores to each task. The I/O Cores are re-
sponsible for interacting with the NIC ports, while the Worker Cores perform the
application-specific processing. The I/O Cores communicate with the Worker
Cores via single-producer/single-consumer lock-free queues (i.e., ring buffers).
This design has two key benefits. First, the worker cores are oblivious to the de-
tails of packet I/O activity. Second, the number of cores dedicated to each task
can be scaled independently, depending on the workload and the characteristics
of the replicated application.

Figure 5.3 illustrates a deployment with one core dedicated to receiving pack-
ets (I/O RX), one core dedicated to transmitting packets (I/O TX), and four cores
dedicated as workers. Both I/O cores are connected to two NIC ports.

The I/O RX core continually polls its assigned RX NICs for arriving packets. To
further improve throughput, the I/O cores can poll packets in batches, which may
experience a slightly higher latency. The I/O RX core then distributes the received
packets to the worker cores. Our current implementation assigns requests using
a static partitioning. Although, more complex schemes are possible by taking
into account the workload. The only restriction is that the same worker must
process all packets belonging to the same partition.

Each Worker core implements the Paxos replica logic—i.e., it receives the cho-
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sen values from the leader, and delivers the values to the replicated application
via a registered callback. It is important to stress that this callback is application-
agnostic. The application-facing interface would be the same to all applications,
and similar for any Paxos partition.

Disk and File-System I/O

The architecture described above allows Partitioned Paxos to process incoming
packets at a very high throughput. However, most replicated applications must
also write their data to some form of durable storage (e.g., HDD, SSD, Flash, etc.).
While different storage media will exhibit different performance characteristics,
our experience has shown that the file system is the dominant bottleneck.

Unfortunately, many existing file system including ext4, XFS, btrfs, F2FS, and
tmpfs, have scalability bottlenecks for I/O-intensive workloads, even when there
is no application-level contention [105, 106]. Therefore, to leverage the benefits
of sharding state across multiple cores, Partitioned Paxos uses a separate file-
system partition for each shard. In this way, each file system partition has an
independent I/O scheduler.

Implementation

We have implemented a prototype of Partitioned Paxos using a combination of
P4 and C. The switch code is written in P4 [93], and compiled to run on switches
with Barefoot Network’s Tofino ASIC [47]. The replica code is written in C using
the DPDK libraries. the P4 switch code could be also compiled for other targets
(e.g., FPGAs or SmartNICs). In the evaluation below, we focus on a deployment
with ASICs and commodity servers in a cluster.

5.2 Evaluation

Our evaluation of Partitioned Paxos answers the following questions:

1. What is the resource overhead of in-network consensus?

2. What is the end-to-end performance of Partitioned Paxos as a whole con-
sensus system?

3. What is its performance under failure?
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Figure 5.4. Topology used in experimental evaluation of Partitioned Paxos.

Experimental setup. In our evaluation, we used two 32-port ToR switches with
Barefoot Network’s Tofino ASIC [47]. The switches can be configured to run at
10/25/40 or 100G. The testbed was shown in Figure 5.4. Two Tofino switches
were configured to run at 10G per port and logically partitioned to run 4 Paxos
roles. One switch was a leader and an acceptor. The second switch acted as two
independent acceptors.

The setup also included four Supermicro 6018U-TRTP+ servers. One was
used as a client, and the other three were used as replicas. The servers have
dual-socket Intel Xeon E5-2603 CPUs, with a total of 12 cores running at 1.6GHz,
16GB of 1600MHz DDR4 memory and two Intel 82599 10G NICs. All connections
used 10G SFP+ DACs (direct attach cables). The servers were running Ubuntu
16.04 with Linux kernel version 4.10.0. The client and replicas are implemented
in C and used DPDK v18.05.

5.2.1 Resource Usage.

We note that our implementation combines Partitioned Paxos logic with L2 for-
warding. The Partitioned Paxos pipeline uses 45% of the available SRAM on
Tofino, 22% of Hash Unit and no TCAM. Thus, adding Partitioned Paxos to an
existing switch pipeline on a re-configurable ASIC would have a minimal effect
on other switch functionality (e.g., storing forwarding rules in tables).
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5.2.2 End-to-end Experiments

Partitioned Paxos provides not only superior performance within the network,
but also performance improvement on the application level, as we exemplify us-
ing two experiments. In the first experiment, the replicated application simply
replies without doing any computation or saving state. This experiment evalu-
ates the theoretical upper limit for end-to-end performance taking into account
the network stack, but not other I/O (memory, storage) or the file system. In the
second experiment, we use Partition Paxos to replicate RocksDB [107], a pop-
ular key-value store. RocksDB was configured with write-ahead logging (WAL)
enabled.

As a baseline, both experiments compare Partitioned Paxos to libpaxos. For
the libpaxos deployment, the three replica servers in Figure 5.4 also ran acceptor
processes. One of the servers ran a leader process. The switches simply forward
packets. Overall, the evaluation shows that Partitioned Paxos dramatically in-
creases throughput and reduces latency for end-to-end performance, when com-
pared to traditional software implementations.

No-op application
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Figure 5.5. Noop Throughput vs. 99th-ile latency for libpaxos and Partitioned
Paxos

In the first experiment, Server 1 runs a multi-threaded client process written
using the DPDK libraries. Each client thread submits a message tagged with a
timestamp to measure the latency when it receives the response. Once the value
is delivered by the learner, a server program retrieves the message via a deliver
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Figure 5.6. Latency CDF at 50% peak throughput for libpaxos and Partitioned
Paxos

callback function, and then returns the message back to the client. When the
client gets a response, it immediately submits another message.

To increase load, the client increases the number of outstanding requests until
the throughput peaks. For each partition, the client sent a total of 10 million
messages. We repeat this for three runs, and report the 99th-ile latency and
mean throughput.

Figure 5.5 shows the throughput vs. 99th-ile latency for libpaxos and Par-
titioned Paxos (Partitioned Paxos run with a single partition). The maximum
throughputs are 63K and 447K for libpaxos and Partitioned Paxos respectively.
The throughput is a ×7 improvement for Partitioned Paxos comparing to Lib-
paxos. As we will see later, the throughput of Partitioned Paxos increases even
further as we add more partitions. Moreover, the latency reduction is also no-
table. The average latency at 50% of maximum throughput is 217µs for Libapxos
and only 27µs for Partitioned Paxos. We note that performance of P4xos run-
ning on programmable ASIC switches is essentially equal to performance of Par-
titioned Paxos with one partition.

We measure the latency and predictability for Partitioned Paxos, and show
the latency distribution in Figure 5.6. Since applications typically do not run at
maximum throughput, we report the results for when the application is send-
ing traffic at a rate of 50% of the maximum. Note that this rate is different for
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Figure 5.7. RocksDB Throughput vs. 99th-ile latency for libpaxos and Parti-
tion Paxos

libpaxos and Partitioned Paxos: 32K and 230K respectively. Partitioned Paxos ex-
hibits lower latency and better predictability than libpaxos: The 99th percentile
latency is 173 µs for libpaxos, and only 27µs for Partitioned Paxos. To add ad-
ditional context, we performed the same experiment with an increasing number
of partitions, from 1 to 4. We see that the latency for Partitioned Paxos has very
little dependence on the number of partitions.

Partitioned Paxos achieves better throughput and latency than libpaxos since
the leader and acceptors are deployed directly on programmable ASIC switches
while they are CPU-based for libpaxos. The switch deployment of Partitioned
Paxos also has a benefit for latency as messages travel fewer hops in the network.

RocksDB

To evaluate how Partitioned Paxos can accelerate a real-world database, we re-
peated the end-to-end experiment above, but using RocksDB instead of the no-op
as the application. The RocksDB instances were deployed on the three servers
running the replicas. We followed the same methodology as described above, but
rather than sending dummy values, we sent put requests to insert data into the
database. We enabled write-ahead logging for RocksDB, so that the write oper-
ations could be recovered in the event of a server failure. It is important to note
that RocksDB was unmodified, i.e., any application can readily use Partitioned
Paxos for fault tolerance.

Figure 5.7 shows the results. The maximum achievable throughput was 53K
messages/second for libpaxos, and was 112K For Partitioned Paxos using a single
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Figure 5.8. RocksDB Latency CDF at 50% peak throughput for libpaxos and
Partition Paxos

partition. The latencies were also significantly reduced. For libpaxos, the latency
at minimum throughput was 200µs and at maximum throughput was 645µs.
The latency of Partitioned Paxos was only 26µs at at minimum and 143µs at
maximum throughput.

We measure the latency and predictability for Partitioned Paxos with repli-
cated RocksDB, and show the latency distribution in Figure 5.8. As with the
no-op server, we sent traffic at a rate of 50% of the maximum for each system.
The rates were 23K for libpaxos and 65K for Partitioned Paxos. Again, we see
that Partitioned Paxos shows lower latency and exhibits better predictability than
libpaxos: it’s median latency is 30 µs, compared with 126 µs, and the differ-
ence between 25% and 75% quantiles is less than 1 µs, compared with 23 µs in
libpaxos. As before, we repeated the experiment with 2, 3, and 4 partitions.
The latency has very little dependence on the number of partitions.

In section 4.4.3 P4xos was used to replicate LevelDB which is the root of
RocksDB. P4xos exhibited a slightly better throughput than Partitioned Paxos
with one partition. This can be explained as the overhead of RocksDB features
which do not exist in LevelDB, such as backup and checkpoint. Nevertheless,
Partitioned Paxos achieved better latency while replicating the key value store
due to the switch deployment.
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Figure 5.9. Impact of Storage Medium on Performance of Partitioned Paxos
with RocksDB

5.2.3 Increase Number of Partitions

Figures 5.5 and 5.7 show the throughput for Partitioned Paxos on a single par-
tition. However, a key aspect of the design of Partitioned Paxos is that one can
scale the replica throughput by increasing the number of partitions.

Figure 5.9 shows the throughput of RocksDB with an increasing number of
partitions, ranging from 1 to 4. The figure also shows results for different types
of storage medium. For now, we focus on the results for SSD and Ramdisk. As
we increase the number of partitions, the throughput increases linearly. When
running on 4 partitions, Partitioned Paxos reaches a throughput of 576K msgs/s,
almost × 11 the maximum throughput for libpaxos.

5.2.4 Storage Medium

To evaluate how the choice of storage medium impacts performance, we re-
peated the above experiment using Ramdisk instead of an SSD. Ramdisk uses
system memory as a disk drive, i.e., it uses DRAM instead of SSD. As can be seen
in Figure 5.9, the throughput increases linearly with the number of partitions.
But, the maximum throughput is much higher, reaching 747K messages/second.
This experiment eliminates the disk I/O bottleneck, and shows that improving
storage I/O can provide a 30% performance improvement. It also shows that
solving the storage bottleneck alone will not solve all performance issues, i.e.,
replicas cannot achieve a billion packets per second due to other bottlenecks,
such as CPU frequency, peripheral component interconnect (PCI) and memory
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Figure 5.10. Impact of Kernel-Bypass on Performance of Partitioned Paxos
with RocksDB

To evaluate how much of the performance gains for Partitioned Paxos can be
attributed simply to the use of the kernel-bypass library, DPDK, we performed
the following experiment. We ran Partitioned Paxos on a single partition, and
replaced the DPDK library with a normal UDP socket. In both cases, the replicas
delivered requests to RocksDB for execution. The workload consisted entirely of
put requests.

Figure 5.10 shows the results. We can see that DPDK doubles the throughput
and halves the latency. For UDP, the latency at minimum throughput (19K mes-
sages/second) is 66µs and at maximum throughput (64K messages/second) is
261µs. The latency of DPDK is only 26µs at 44K messages/second and 143µs at
maximum throughput (112K messages/second).

5.2.6 Tolerance Node Failures

To evaluate the performance of Partitioned Paxos after failures, we repeated the
end-to-end experiments under two different scenarios. In the first scenario, one
of the three Partitioned Paxos acceptors fails. In the second scenario, the leader
fails, and it is replaced with a backup leader. In Figure 5.11a and Figure 5.11b,
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the vertical lines indicate the failure points. In both experiments, measurements
were taken every 50ms.
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(b) Leader failure.

Figure 5.11. Partitioned Paxos throughput when (a) a switch acceptor fails,
and (b) when the switch leader is replaced by DPDK backup.

To simulate the failure of an acceptor, we disabled the port between the leader
and one acceptor. As the Paxos protocol, by design, handles the failure of a mi-
nority of acceptors, Partitioned Paxos continued to deliver messages since there
exists a majority of acceptors allowing the system to progress. The throughput is
the same before and after the acceptor failure, as shown in Figure 5.11a. In this
deployment, the bottleneck is the application.

Leader failure

To simulate the failure of a leader, we disabled the leader logic on the Tofino
switch. After 3 consecutive retries, the proposer sends traffic to a backup leader.
In this experiment, the backup leader was implemented in software using DPDK,
and ran on one of the replicas. The backup leader eventually learns the highest
chosen Paxos instance from the acceptors. Figure 5.11b shows that the through-
put drops to 0 during the retry period. Again, because the application is the
bottleneck in the single-partition configuration. the system returns to the peak
throughput when the traffic is routed to the backup leader.
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5.3 Chapter Summary

This chapter presented extensions for the network-based consensus approach. It
described a partition mechanism which is widely used in distributed systems to
scale performance of replicated applications. It also explained the methods to
optimize two concerns, agreement and execution, of the state machine replica-
tion. The evaluation showed the benefits of Partitioned Paxos, which leverages
the enhanced performance of the network-accelerated consensus to improve the
performance of a production-quality database. Finally, it demonstrates the re-
silience of Partitioned Paxos under different failure scenarios.



Chapter 6

Energy-Efficient In-Network Computing

In-network computing is a promising approach to increase application perfor-
mance [3, 28, 4, 109]. Programmable network devices can run services which
are traditionally deployed on servers, resulting in orders of magnitude improve-
ments in performance. Despite these performance improvements, network op-
erators remain skeptical of in-network computing. The conventional wisdom is
that the operational costs from increased power consumption outweigh any per-
formance benefits. Unless in-network computing can justify its costs, it will be
disregarded as yet another academic exercise.

In this chapter, we challenge that assumption, by providing a detailed power
analysis of several in-network computing use cases. Our experiments show that
in-network computing can be extremely power-efficient. In fact, for a single
watt, a software system on commodity CPU can be improved by a factor of ×100
using an FPGA, and a factor of ×1000 utilizing ASIC implementations. How-
ever, this efficiency depends on the system load. To address changing work-
loads, we propose in-network computing on demand, where services can be dy-
namically moved between servers and the network. By shifting the placement of
services on-demand, data centers can optimize for both performance and power
efficiency.

6.1 The Power Consumption Concern for In-Network
Computing

Data center operators face a challenging task. On the one hand, they must satisfy
the ever-increasing demand for greater data volumes and better performance.
On the other hand, they must decrease operational costs and their environmental
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footprint by reducing power consumption.
One promising approach to increasing application performance is in-network

computing [3, 28, 109, 4]. In-network computing refers to a particular type of
hardware acceleration where network traffic is intercepted by the accelerating
network device before it reaches the host, and where computations tradition-
ally performed in software are executed by a network device, such as a net-
worked FPGA [56], smart network interface card (smartNIC), or programmable
ASIC [37].

Researchers have used in-network computing to achieve eye-popping perfor-
mance results. For example, Jin et al. [3] demonstrated that a key-value cache
implemented in a programmable ASIC can process more than 2B queries/sec-
ond, and Chung et al. [110] demonstrated support of neural networks at tens of
tera-operations per second. And, Jepsen et al. [4] describe a stream processing
benchmark that achieves 4B events/second.

But, while such orders of magnitude performance improvements certainly
sound attractive, to date, there has been very little attention paid to the other
side of the ledger. Power consumption is a tremendous concern for cloud service
providers [111] and data center operators have expressed qualms over the impact
of hardware acceleration [112]. The conventional wisdom is that FPGAs and
programmable network devices are power hungry, and so it is natural to ask if
the benefits are worth the cost. In this chapter, we explore the question: Can
in-network computing justify its power consumption?

Answering this question is not easy, as there are many challenges for char-
acterizing the power-vs-performance tradeoffs for in-network computing. First,
there are a wide variety of potential hardware targets (e.g., FPGAs, ASICs, etc.)
and many different vendors for a particular target. One of the known problems
in power benchmarking is that platforms from different vendors have different
power properties. Second, application-characteristics utilize different in-network
computing approaches, with the variety of in-network computing applications
ranging from caching [3] to stream processing [4] to neural networks [110].
Third, implementations of similar applications often make different design choices,
such as using on-chip or off-chip memory. Fourth, different applications are writ-
ten using different tools and frameworks (e.g., hand-written Verilog vs. high-level
synthesis), which can impact their resource usage, performance and power con-
sumption.

To mitigate these challenges, we used the following methodology. (i) We se-
lected three diverse applications, allowing us to sample from distinct use cases
within the data center: a key value store, a consensus protocol, and a domain
name system. (ii) Each of the applications was developed using a different lan-
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guage and tool chain: Verilog, Kiwi/Emu [113], and P4 [93]. (iii) We built upon
the modularity of one of the designs (KVS), to benchmark the power contribu-
tion of different components. And (iv), we used a common acceleration platform
(NetFPGA-SUME [49]), and a single server environment, allowing for an apples-
to-apples comparison. But, in order to generalize our findings, we also studied
the behavior of one application, consensus, on a switch ASIC, and extended the
discussion to SmartNICs and systems on chip (SoC).

6.2 Scope

Sections 6.4-6.7 describe a set of experiments that evaluate the trade-off between
performance and power-consumption for in-network computing applications, as
well as observations from different hardware targets. Before delving into the
details, we first define the scope of this work.

Choice of Applications. We study three applications: a key value store, a con-
sensus protocol, and a domain name system (DNS) server. We chose these partic-
ular applications for several important reasons: (i) they represent three distinct
use cases within a data center, (ii) they are implemented using very different ar-
chitectures, (iii) different design flows were used in their development, (iv) they
are available under an open-source license, allowing to reproduce this work, and
(v) they can all be run on a common hardware platform (NetFPGA SUME).

However, there has been significant work on accelerating applications in the
network, and there are many different possible design choices. We did not nec-
essarily choose applications that yielded the best performance characteristics.
Indeed, other applications have achieved better performance through special-
ization (e.g., [114, 27]), running on different hardware targets (e.g., [3]), or
through design choices such as protocol or memory type (e.g., [72, 28]). On a
similar note, we did not choose the applications based on particular feature sets
(e.g., Caribou [115] provides a wide range of functionality that would be impos-
sible to provide with an ASIC). It was more important to our study to explore
different architectures and workflows on a common hardware target.

In-Network Computing vs. Hardware Acceleration. This study focuses specif-
ically on in-network computing, and not on the more general topic of hardware
acceleration. By in-network computing, we mean that we study designs that
serve as both network devices and accelerators. For example, we do not study
GPUs, as they are terminating devices. Prior work has focused on hardware
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acceleration [116] and alternative deployments. For example, Catapult [117]
places an FPGA in front of a NIC to accelerate applications such as neural net-
works [110]. These deployments are out of scope for this paper.

Performance Metrics. We study power consumption for both the low-end and
high-end of utilization, not just at peak performance. We chose throughput as the
main performance metric, as most in-network computing deployments will have
lower latency simply by virtue of their deployment. We briefly discuss latency in
Section 6.10.

Deployment. For our study, we assume that a single in-network computing ap-
plication is deployed on a network device. Recent work has proposed virtualiza-
tion techniques for deploying multiple data-plane programs concurrently [118].
It would be interesting in future work to study the impact of such a deployment.

6.3 Case Studies of In-Network Computing

Below, we provide an overview of the three applications used in our case study: a
key value store, a consensus protocol, and a domain name system (DNS) server.
These applications are all good candidates for network acceleration, as opposed
to hardware acceleration, because they are I/O bound rather than CPU bound
on the host. KVS and DNS were also shown to be latency-sensitive on the mi-
crosecond level [119].

We describe their designs here in order to provide the necessary background
for the later sections. For more details, we refer the readers to the original pa-
pers [120, 113, 121, 122]. All architectures either support, or are modified to
support, both application-specific and standard network functionality.

6.3.1 LaKe: Key-Value Store

LaKe [121, 122], a Layered Key-value store, can be considered a hardware-based
implementation of memcached [123]. It accelerates storage accesses by provid-
ing two layers of caching: an on-chip memory (BRAM) on an FPGA and DRAM
memory located on the FPGA card, as shown in Figure 6.1. A query is only for-
warded to software if there are misses at both layers.

LaKe was implemented in Verilog. This allows for fine-grain control of low-
level resources and avoids potential overheads due to compiling from high-level
languages.
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Figure 6.1. High level architecture of LaKe.

LaKe uses multiple processing elements (PE) to conceal latency contributed
by accesses to external memory. The number of PEs is scalable and configurable.
Each PE takes less than 3% of the FPGA resources. 5 PEs are sufficient to achieve
10GE line rate (roughly 13M queries/sec). LaKe supports standard memcached
functionality, unlike other solutions [72], and provides×10 latency and through-
put improvement and ×24 power efficiency improvement compared to software-
based memcached.

LaKe has several important traits that make it ideal for this study. First, LaKe
runs on a platform that also acts, at the same time, as a NIC or a switch, allowing
us to enable or disable its KVS functionality. Second, it is a modular and scal-
able design. By controlling the number of PEs power efficiency can be balanced
against throughput. Third, LaKe enables studying power efficiency trade-offs in
the use of different types of memories.



72 6.3 Case Studies of In-Network Computing

6.3.2 P4xos: Consensus

Several recent projects have used programmable network hardware to accelerate
consensus protocols, including Speculative Paxos [17], NoPaxos [29], Consensus
in a Box [28], and NetChain [30]. We focus on the P4xos implementation de-
scribed in Chapter 4.

One aspect of P4xos relevant to this study is that the components are inter-
changeable with multiple software implementations, including the open-source
libpaxos library [46], and a variation of libpaxos ported to use the kernel-bypass
DPDK [69]. Moreover, because P4xos is written in P4, one can use P4-to-FPGA
compilers [41, 94] and P4-to-ASIC compilers [124] to target both hardware de-
vices. Thus, overall, we can make direct comparisons between four different vari-
ations: traditional software library, software library using DPDK, FPGA-based,
and ASIC-based.

We evaluated P4xos on several hardware targets, including a CPU, an FPGA,
and a programmable ASIC. The libpaxos software implementation of an accep-
tor could achieve a throughput of 178K messages/second. A deployment on
NetFPGA SUME could achieve 10M messages/second. And, the ASIC-based de-
ployment could process over 2.5B consensus messages per second. Latency in
the FPGA was less than on the CPU. Latency on the ASIC was less than the FPGA.

6.3.3 EMU DNS: Network Service

Several projects have explored data-plane acceleration for DNS servers, using
FPGAs [113] or kernel-bypass [125, 126]. In this chapter, we focus on Emu
DNS [113].

Emu DNS implements a subset of DNS functionality, supporting non-recursive
queries. The design supports resolution queries from names to IPv4 addresses.
If the queried name is absent from the resolution table, Emu DNS informs the
client that it cannot resolve the name.

Emu DNS was developed using Emu [113], a framework for developing net-
work functions on FPGAs using C#. Emu builds on the Kiwi compiler [127],
which allows developers to program FPGAs with .NET code. Emu provides Kiwi
with a library for network functionality.

Both P4xos and Emu DNS share a similar high-level device architecture, as
shown in Figure 6.2. In both cases, interfaces, queueing, and arbitration are done
in shell modules provided by NetFPGA. Both the P4xos and Emu DNS programs
are compiled to a main logical block that uses only on-chip memory. The micro-
architecture of each project’s logical block is, obviously, different.
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Figure 6.2. High level architecture of P4xos and Emu DNS, as implemented
on NetFPGA. The main logical core (shaded grey) is the output of a program
compiled from P4/C#.

Prior work [113] performed a benchmark comparison between Emu DNS and
NSD [128], an open source, authoritative only, name server running on a host.
The experiments showed that Emu DNS provides ×5 throughput improvement
and approximately ×70 average and 99thpercentile latency improvement.

The original Emu DNS acts only as a DNS, and not as a NIC or a switch.
To support dynamic shifting between hardware and software, we amended the
original design with a packet classifier, similar to the one used in LaKe, allowing
Emu DNS to serve both as a NIC (for non-DNS traffic) and as a DNS server.

6.3.4 Applications: Similarities and Differences

All three applications share a common property: they were implemented on the
NetFPGA SUME platform [49]. This property is essential for our study, as it
allows us to benchmark the application performance and power consumption
given the same underlying hardware capabilities. One of the known problems
in power benchmarking is that platforms from different vendors have different
power characteristics; this is not the case in our study.

Beyond sharing the same platform, all three implementations are UDP based,
a common case for DNS and Paxos. While offloading TCP to hardware is possi-
ble [129, 42], existing solutions did not match the needs set in §6.2. All three
chosen applications use the same 10GE interfaces presented on the NetFPGA
SUME front panel.

The three applications differ in several important aspects: their role, their
development flow, and the way they are used. In term of usage, Emu DNS rep-
resents a common network function provided in data centers. P4xos is used to
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achieve consensus in distributed systems. LaKe represents a common data cen-
ter application. As we will discuss in § 6.9, the usage of the applications reflects
on the ability to dynamically shift them in a working data center and on the
limitations to doing so.

The applications also differ in the way they are implemented, using differ-
ent pipeline architectures. Moreover, LaKe uses external memories (SRAM and
DRAM), whereas P4xos and Emu DNS use only on-chip memory.

Finally, three different design flows were used in the development of the ap-
plications: Verilog for LaKe, P4 (using P4-NetFPGA) for P4xos, and C# (using
Emu) for Emu DNS. This leads to differences in performance, resource usage,
and potentially power consumption. We show in § 6.4 and § 6.5 that the effect
of those is minimal, while other design decisions (e.g., external memory) have
a significant effect on power consumption. The complexity of the designs is not
comparable: Emu DNS is by far the simplest design. The scalability and modu-
larity of LaKe makes it hard to compare to P4xos, yet both designs tend to many
intricacies.

6.4 Power/Performance Evaluation

One of the main criticisms of in-network computing is that it is power hun-
gry [112]. In this section we examine this claim, by evaluating the power con-
sumption of the described applications under different loads. The power con-
sumption of each application is evaluated for both software- and hardware-based
implementations, including overheads, e.g., power supply unit. Our evaluation
focuses on the following questions:

• What is the trade-off between power consumption and throughput of dif-
ferent applications?

• Is in-network computing less power efficient than host-based solutions?

• Does an in-network computing solution require high network utilization to
justify its power consumption?

The results reported in this section do not report an absolute truth for in-
network computing. Different applications will have different power consump-
tion profiles. Different servers will implement different power efficiency op-
timizations, have a different number of cores and will achieve different peak
throughput. Similarly, different smart NICs, FPGA cards, and programmable net-
work devices will result in different performance and power consumption results.
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Yet, we are not trying to unravel the performance and power efficiency of specific
designs. Rather, we try to gain understanding for different applications running
on similar platforms.

6.4.1 Experiment Setup

The goal of our experiments was to measure the power consumption under dif-
ferent loads. We did not evaluate functionality or performance, which were part
of the contributions of previous works.

Note that the setup for this evaluation differs from those in §6.9. An Intel Core
i7-6700K 4-cores server, running at 4GHz, equipped with 64GB RAM, Intel X520
NIC, and Ubuntu 16.04 LTS (Linux kernel 4.13.0) was used for software-based
evaluation. For hardware-based evaluation, the NIC was replaced by NetFPGA-
SUME [49] card. For KVS evaluation, the Intel NIC turned out to be a perfor-
mance bottleneck, and was therefore replaced by 10GE Mellanox NIC (MCX311A-
XCCT).

We used OSNT [130] to send traffic, which enabled us to control data rates at
very fine granularities and reproduce results. Average throughput was measured
at the granularity of a second. We used an Endace DAG card 10X2-S to measure
latency, measuring the isolated latency of the application under test, traffic source
excluded. Power measurements were taken using a SHW 3A power meter [131].

6.4.2 Key-Value Store

With LaKe, in contrast to other in-network computing use cases, the role of the
server software is not eliminated by shifting functionality to hardware. LaKe
serves as a first and second level cache. In the event of cache misses at both
levels, the software services the request. We used Memcached (v1.5.1) as both
the host-side software replying to queries missed in LaKe’s cache, and as the
software implementation we benchmark against. The power consumption eval-
uation of LaKe, therefore, includes the combined power consumption of the NetF-
PGA board and the server. Note that the NIC is taken out of the server for LaKe’s
evaluation, as LaKe replaces it.

We measure the power consumption of the KVS, starting with an idle system,
and then gradually increasing the query rate until reaching peak performance.
Peak performance is full line rate for LaKe and approximately 1Mpps for mem-
cached. We verify that the CPU reaches full utilization on all 4-cores.

Figure 6.3(a) presents the power-to-throughput trade-off for the KVS. The
x-axis shows the number of queries sent to the server every second, while the y-
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Figure 6.3. Power vs throughput comparison of KVS (a), Paxos (b), and DNS
(c). in-network computing becomes power efficient once query rate exceeds
80Kppsm 150Kpps and 150Kpps, respectively

axis presents the power consumption of the server under such load. We show the
power consumption for memcached (software only), LaKe within a server, and
LaKe as a standalone platform, i.e., working outside a server and without the
power consumption contributed by the hosting server. As the figure shows, the
power consumption of the server while idle or under low utilization is just 39W,
while LaKe draws 59W even when idle. However, the picture changes quickly as
query rate increases. At less than 100Kpps, LaKe is already more power efficient
than the software-based KVS, with the crossing point occurring around 80Kpps.
Interestingly, we found that after replacing the Mellanox NIC with an Intel X520
NIC, the host became more power efficient; the crossing point moved to over
300Kpps. However, the maximum throughput the server achieves using the Intel
NIC is lower.

LaKe has a high base power consumption, but the consumption does not
increase significantly under load. Figure 6.3(a) shows the throughput up to
2Mpps. But, we note that LaKe reached full line rate performance, supporting
over 13Mpps for the same power consumption.
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6.4.3 Paxos

We evaluated the power consumption of the Paxos leader and acceptor roles for
three different use cases: the basic software implementation of libpaxos, the
software implementation using DPDK, and P4xos on NetFPGA.

We start with an idle system, and gradually increase the message rate. The
libpaxos software uses one core, and we verify that the core reached 100% uti-
lization.

Figure 6.3(b) presents the power-to-throughput trade-off for Paxos. As with
the KVS, the idle power consumption of the server is lower than the card, but
as the query rate increases, P4xos (hardware) becomes more power efficient. As
P4xos doesn’t use the external memories on NetFPGA, its base power consump-
tion is 10W lower than LaKe. The crossing point between software and hardware
power efficiency is at 150K messages/sec.

Note that the power consumption for the DPDK implementation is high even
under low load, and remains almost constant under an increasing load. This is
as expected, since DPDK constantly polls. This illustrates that software design
choices have a strong impact on power consumption, independent of the hard-
ware platform.

The power consumption results of P4xos in hardware include the power con-
sumption of the server hosting the board. The power consumption of P4xos
outside the server is 18.2W when idle, with the additional dynamic power con-
sumption (under maximum load) being no more than 1.2W. Yet, it is not expected
to have stand alone FPGA boards in a data center environment: the platforms
require power supply, management and programming interfaces (e.g., for up-
dates). Encasing such boards within a standard server enclosure is therefore an
expected practice. Typically, multiple acceleration boards will share a single en-
closure [132], reducing the per-board power consumption contribution to the
system.

6.4.4 DNS

The peak performance of Emu DNS is roughly 1M requests served every second.
This is comparable to the 956K requests we measure served by the software, and
a result of Emu’s non-pipelined nature. This case demonstrates aspects of power
efficiency where in-network computing does not provide significant performance
benefits.

We measure the power consumption of Emu DNS, starting with an idle sys-
tem, and gradually increasing the query rate until peak performance is reached.
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verify that the CPU reaches full utilization using all 4-cores.
The power consumption as a function of performance, shown in Figure 6.3(c),

is almost identical to P4xos. The power consumption of Emu DNS is about 48W,
starting at 47.5W and reaching less than 48W under full load. The idle server
takes less than 40W, but less than 200Kpps are enough for the power consump-
tion to exceed the hardware implementation. At peak throughput, the server
draws twice the power of Emu DNS.

6.5 Lessons from an FPGA

In-network computing designs often offer significant performance improvements,
but at the cost of bespoke functionality [72], small memory [113], or of a limited
feature set [30]. In this section we build upon the modularity of LaKe (KVS) to
explore the performance and power efficiency effects of such design decisions.

Beyond illustrating the effects of such design decisions, this section also high-
lights the challenge in comparing state-of-the-art in-network computing solu-
tions. For example, the difference between a design that uses just a small on-chip
memory, and one that mitigates a miss in the cache, can be an order of magnitude
in performance and 66% in power consumption. We assert that future research
should take greater care when catering for in-network computing design.

6.5.1 Clock Gating, Power Gating and Deactivating Modules

The power consumption of a hardware device depends on many aspects, from
properties of the manufacturing process (static power, leakage) to aspects de-
pending on activity (such as the effect of clock frequency).

For the purpose of our discussion, we focus on the case where the in-network
computing platform is given (in our case, NetFPGA). The ASIC/FPGA device on
the platform is set as well (in our case, Xilinx Virtex-7 690T FPGA). The operator
can only change performance and power efficiency within these limitations.

We focus on three types of power-saving techniques: clock gating, power
gating, and deactivating modules. Clock gating refers to the case where the clock
to certain parts of a design is active only when activity is required. Power gating
refers to a similar case where the power to specific parts of the design is disabled.
As Virtex-7 does not support power gating, we compare to the case where the
modules in question are eliminated from the design, but note that many more
recent ASICs and FPGAs do support power gating. The last case, deactivating
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Figure 6.4. The effects of LaKe’s design trade-offs on power consumption. Blue
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modules, refers to the case where modules are only used when needed (e.g.,
using one processing core instead of five), and are either idle or held in reset.

Figure 6.4 summarizes the effect of the different power-saving techniques
for LaKe. As shown, the power consumption of an idle server (without a NetF-
PGA card) was roughly equivalent to the power consumption of a stand alone
(host-less) NetFPGA card programmed with LaKe but also idle. This means that
the basic power consumption of a stand-alone accelerator (including its power
supply) can be roughly the same as a server. In §6.4 we refer to the power con-
sumption of LaKe as the combined power of the NetFPGA platform and the server,
as both build the complete multi-layered cache platform.

Clock gating to the LaKe module and the PEs earns less than 1W of power
saving. The power contribution of each PE is also small, about 0.25W (power gat-
ing). The biggest contributor to power consumption is the external memories—
no less than 10W. Reset to the external memory interfaces can save 40% of their
power. Clock and power gating to the same interfaces is not supported.

6.5.2 Processing Cores

On FPGAs, and in particular for the case of LaKe (and Emu DNS), the cost of more
logic is low. The power overhead of Lake’s logic over the NetFPGA reference NIC
is 2.2W, including five processing cores, interconnects and a packet classification
module. In terms of FPGA resources, this translates to less than 3% of logical
elements and on-chip memory resources. In return, each processing core can
support up to 3.3Mqps. There is a limit on the number of cores used, which is
not the FPGA resources or power consumption, rather the interconnect between
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them and the memories, as well as the interconnect between them and the NIC
data path.

6.5.3 Memories

Using off-chip memory is expensive: 4GB of DRAM memory costs 4.8W and
18MB of SRAM costs 6W1. There is obviously a gain here as well. 4GB of DRAM
is enough to hold 33M entries of 64B value chunks and 268M entries of hash
table entries. This is ×65k the number of entries using only on chip memory.
The SRAM holds a list of up to 4.7M free memory chunks, ×32k the number
of entries using on chip memory. Using external memories also affects the hit
ratio in the LaKe L2 cache, and consequently on the latency. A hit in the on-chip
cache takes no more than 1.4µs, while a miss in the hardware will be ×10 longer
(13.5µs median, 14.3µs 99thpercentile). Off chip memory adds a bit of latency
compared to the on-chip cache, but saves significantly in comparison to software
(1.67µs median, 1.9µs 99thpercentile at 100Kqps, and up to 99thpercentile of
3µs at 10Mqps).

The trade-off here is clear, and depends on the number of expected keys: if
low latency is a top priority, one should opt for the LaKe option using external
memories, whereas if power is the concern, on-chip memory is a more suitable
choice. Given that past work [133] had shown that in KVS the number of unique
keys requested every hour is in the order of 109 − 1011, with the percentage of
unique keys requested ranging from 3% to 35%, KVS applications would ben-
efit from the use of external memories. On the other hand, use cases such as
NetChain [30] will do better with on-chip memory.

6.5.4 Infrastructure

The cost of using a programmable card is absolute, yet the relative power within a
host strongly depends on the system in which the card is installed. So far, we have
focused on a light-weight platform using an i7 Intel CPU. In this system, the initial
power-cost of an unused FPGA is higher than that of the server. For comparison,
we consider a single 3.5GHz Intel Xeon E5-2637 v4 on a SuperMicro X10-DRG-Q
motherboard. In this setup, the idle power consumption of the server, without a
NIC, is 83W, meaning 20W more than the power consumption of LaKe running at
full load in our base setup described in §6.5. The power difference of installing a
NetFPGA card on this machine and running LaKe, P4xos, or Emu DNS is the same

1These results are indicative of the NetFPGA SUME platform.
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as with the base setup, because the power consumption of the board is constant.
The peak power consumption of LaKe running on the Xeon server is, obviously,
higher, as it combines the power consumption of LaKe, and the (higher) power
consumption of the Xeon server replying to queries that are a miss in LaKe. Data
centers, however, also deploy low-power instances, e.g. ARM based, and on such
low-power platforms the relative power cost of the FPGA is higher.

The fact that power consumption is platform dependent applies also to the
FPGA devices: FPGA from different vendors or from different generations will
lead to a different power consumption. For example, Xilinx UltraScale+ achieves
×2.4 performance/Watt compared with Xilinx Virtex 7 [134].

6.6 Lessons from an ASIC

FPGA devices are very different from ASICs, both in terms of technology and
the availability of power saving mechanisms. As a point of comparison, we also
report experimental results on the power efficiency of in-network computing on
an ASIC using Barefoot’s Tofino chip [37].

The power consumption of programmable switches is the same or better than
fixed-function devices. In other words, if a programmable switch is used strictly
for networking, it does not incur additional power costs. However, the question
remains: if we use a programmable switch to also support in-network computing
applications, will there be additional power consumption costs? We explore this
question below. Due to the large variance in power between different ASICs and
ASIC vendors [135], we only report normalized power consumption.

For the evaluation, we ran the P4xos leader and acceptor roles on a Tofino,
which required some architecture-specific changes to the code for memory ac-
cesses. We used the Tofino in a 1.28Tbps configuration of 32 × 40Gbps, using
a “snake” connectivity2, which exercises all ports and enables testing Tofino at
full capacity. The Paxos program is combined with a layer 2 forwarding program.
Hence, the switch executes both standard switching and the consensus algorithm
at the same time. We compare the power consumption of Tofino running only
layer 2 forwarding to Tofino running the combined forwarding and P4xos. The
power consumption of transceivers is excluded.

The power consumption when idle is the same for both the ASIC with for-
warding alone, and the ASIC with forwarding plus P4xos. As the packet rate in-
creases, there is only a minor difference in power consumption between the two
cases; running P4xos adds no more than 2% to the overall power consumption.

2Each output port is connected to the next input port
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While 2% may sound like a significant number in a data center, the diagnostic
program supplied with Tofino (diag.p4) takes 4.8% more power than the layer 2
forwarding program under full load, more than twice that of P4xos.

While the power consumption of Tofino increases under load, the relative
increase in power using P4xos is almost constant with the rate. Furthermore, in
contrast to a server, where momentary power consumption can more than double
itself (§6.4), the difference between the minimum and maximum consumption
is less than 20%.

It is true that the power consumption of a server is less than that of the
switch. Yet, as our experiment shows, adding in-network computing to net-
working equipment already installed in a data center has a negligible effect on
the power consumption, while providing orders of magnitude improvement in
throughput. Even at a relatively low utilization rate (10%), our implementation
of P4xos on Tofino achieves ×1000 higher Paxos throughput than a server, while
its absolute dynamic power consumption3 is 1/3 of the absolute dynamic power
consumption of the server (at 180Kpps).

A common measure of power efficiency is operations per watt. While soft-
ware base consensus achieves 10K’s of message per watt, and FPGA based designs
achieve 100K’s of messages per watt, the ASIC implementation easily achieves
10M’s of messages per watt. The results when measuring dynamic power are
similar—the power efficiency of the software remains 10K’s of messages per watt,
the FPGA based design will support 1M’s of messages per watt, and the ASIC will
provide many 10M’s of messages per watt.

6.7 Lessons from a Server

The evaluation in sections 6.4 and 6.5 was using an Intel Core i7-6700K 4-cores
machine. We perform a limited evaluation to study the power consumption of
a Xeon class server, more suitable to data center environments. The server that
we use in the evaluation is ASUS ESC4000-G3S using two sockets of Intel Xeon
E5-2660 v4, each CPU with 14 cores and base frequency of 2GHz.

We evaluate the power consumption of the CPU cores on the server under
different loads, using a synthetic workload, without I/O, and monitor using run-
ning average power limit (RAPL). The power consumption of the server is 56W in
idle, evenly divided between the sockets, and 134W under full load of all cores.
The power consumption of the server jumps when even a single core is used,
up to 91W. Not only the power consumption of the socket with the running core

3The difference between idle power consumption and power consumption under a given load.
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increases, but also of the second socket, almost equally. However, once the core
is running, the overhead of an additional core running is small, in the order of
1W-2W. We provide further breakdown in our released dataset.

Interestingly, even at a low CPU core load, e.g., 10%, the power consumption
of the server reaches 86W. Given the smaller overhead of running an applica-
tion in the network, it becomes desirable even when workloads under-utilize a
server’s computer resources.

6.8 When To Use In-Network Computing

Niccolini et al. [116] define the energy consumption as:

E = Pd( f )× Td(W, f ) + Ps × Ts + Pi × Ti (6.1)

Where E is the energy consumption, P is power consumption, f is device
frequency, W the number of processed packets, and T is the time at given state.
Pd( f )× Td(W, f ) accounts for the energy used when actively processing packets.
Ps × Ts is the energy required to transition from sleep state. Finally, Pi × Ti is the
energy consumption at idle. Packet rate R is defined as R=W/Td .

In-network computing should be used when ES, the energy of a system run-
ning an application in software, exceeds EN , the energy of a system running the
same application within the network.

Below, we try to answer two questions:

• If one currently uses standard network devices, should he or she start using
programmable ones?

• If one already used programmable network devices, when should he or she
offload computing tasks to the network?

For the first question, the dominant components will be PS
i and PN

i . Assuming
the programmable network device is not used for in-network computing, the
energy penalty of including it as part of normal network operation is the one to
worry about.

For the second question, PN
i = PS

i , as the programmable device is the same.
As in-network computing devices are part of the network, forwarding packets
and providing networking functionality, their idle and sleep mode power is not
changing regardless of the location of a workload. Here PS

d and PN
d become

dominant components. At low data rates PN
d (R) > PS

d (R) due to the additional
power consumed by now active in-network computing logic in the device, but
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as R grows, PN
d (R) < PS

d (R), as in-network computing is more power efficient at
high utilization (§6.4,§6.5). The tipping point from the software to the network
occurs when R reaches PN

d (R) = PS
d (R).

6.9 In-Network Computing On Demand

We argue that programmable network devices should be treated as one would
treat other scheduled computing resources. Workloads can be assigned to net-
work devices, and one should be able to reallocate the workloads to other com-
puting resources.

As there is no doubt that in-network computing offers significant performance
benefits (§6.4), the question becomes how can we benefit from the performance of
in-network computing, without losing power efficiency?

We propose in-network computing on demand, a scheme to dynamically shift
computing between servers and the network, according to load and power con-
sumption. This scheme is useful where identical applications run on the server
and in the network, as in our examples. It can be applied to a wide range of ap-
plications, though possibly not all. It is also not applicable to bespoke in-network
computing applications, which have no server-side equivalent.

The power consumption using in-network computing on demand is illustrated
in Figure 6.5. As the figure shows, at low utilization power consumption is de-
rived from the properties of the software-based system. As utilization increases,
processing is shifted to the network, and the power consumption changes little
with utilization.

We consider the communication cost associated with in-network computing
on demand. Stateless applications will require no additional communication
cost to run, whereas stateful application will have a communication cost that is
bounded by the communication cost of shifting the application from one server
to another. The networking device providing in-network computing services is
expected to be en-route to a server running the application (otherwise it is not
in-network computing, but standard offloading), meaning that no additional la-
tency is introduced.

Two components are required to support in-network computing on demand.
The first is a controller, deciding where the processing should be done and when
the processing should be shifted between a server and the network. The second is
an application-specific task, which may be null, in charge of the actual transition
of an application.
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Figure 6.5. Power consumption of KVS, Paxos and DNS using in-network
computing on demand. Solid lines indicate in-network computing on demand,
and dashed lines indicate software-based solutions.

6.9.1 In-Network Computing On Demand Controller

We propose two types of in-network computing on demand controllers: host-
controlled and network-controlled. We present proofs-of-concept for both ap-
proaches, evaluate them and discuss trade-offs between the approaches. The
network-controlled approach typically reacts faster, but must make its choices
based on fewer parameters.

Network-controlled In-Network Computing

The first controller design makes offloading decisions in the network hardware,
based on the traffic load. The goal is to reduce load on the host as early as
possible, to mitigate bottlenecks, and provide another layer of offloading (rather
than encumbering the host with an additional controller). The control is not
entirely automatic: all of its parameters are configurable.

The controller uses a pair of parameters to shift a workload from the host to
the network. The first parameter is the average message rate that would trigger
the transition, and the second is the averaging period (implemented as a slid-
ing window). If the average message rate of the accelerated application exceeds
the message rate threshold over the averaging period, the device transitions the
workload to the network. A mirror pair of parameters is used to shift work-
loads from the network back to the host. Using two sets of parameters provides
hysteresis, and attends to concerns of rapidly shifting workloads back-and-forth
between the host and the network.
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A disadvantage of this approach is that it does not take into account the actual
power consumption of the host. It only has access to the packet rate. Different
applications have very different power profiles [136], and there is no suitable
heuristic that can be applied to the shifting thresholds.

Host-controlled In-Network Computing

The second controller design makes offloading decisions at the host, using in-
formation such as the CPU usage and power consumption. A shift occurs when
there is a clear power consumption benefit, and the offloading leads to a perfor-
mance gain. A shift may also happen when computing demands exceed available
resources, and the network provides extra compute capacity.

Like the network-based controller, the host-based controller maintains two
sets of parameters: one for shifting the workload to the network, and one for
shifting the workload back. As long as the application is running, the controller
monitors its CPU usage. We also monitor the end-host’s power consumption
using running average power limit (RAPL). If the application exceeds a (pro-
grammable) power threshold set for offloading, and CPU usage is high, the con-
troller shifts the workload to the network. Monitoring the power consumption
alone is not sufficient, as a high power consumption can be triggered by multiple
applications running on the same host. As before, the information is inspected
over time, avoiding harsh decisions based on spikes and outliers. In order to
shift back to the host from the network, the controller needs information from
the network (e.g., packet rate processed using in-network computing). Other-
wise, the shift may be inefficient, or cause a workload to bounce back and forth.
Our controller is implemented in 204 lines of code, and consumes only 0.3% CPU
usage, mainly for performing RAPL reads.

The host-controlled approach provides better control and flexibility to the
user. Yet, care needs to be taken when benchmarking a workload [137]. The
algorithms used in this chapter are naive, providing a proof of concept. They can
be enhanced by more sophisticated algorithms. In energy proportional servers,
energy efficiency is not linear, though power consumption still grows linearly
with utilization [138], and algorithms such as those based on PEAS [139] may
improve the energy consumption. These algorithms are beyond the scope of this
thesis.
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Figure 6.6. Transitioning KVS from the software to the network and back.
The transitions are indicated by a red dashed line.

6.9.2 On Demand Applications

Key Value Store

LaKe shifts from the software to the network, as query rate demands. An ap-
plication using LaKe remains oblivious to the shift. As LaKe natively acts as a
NIC to all non-KVS traffic, at the start of the day all traffic can be sent and pro-
cessed by the software. Both network-based and host-based controllers support
the transitioning of KVS.

To support in-network computing on demand, and provide optimal power ef-
ficiency, LaKe’s memories need to be held in reset and clock-gating to the logical
modules should be enabled. Here, the triggering of a shift means that at first
all memory accesses will be a miss, and queries will continue to be forwarded
to the software, until the cache, both on and off chip, warms. Consequently,
latency would start to drop, but query rate will be maintained. Enabling LaKe
will not necessarily increase the throughput. As shown in Section 6.5, LaKe be-
comes power efficient at a low query rate that is also sustained by the software.
Therefore, unless the query rate is externally increased, the throughput will not
change.

Figure 6.6 demonstrates the transition from running in software to running
on hardware, using host controlled in-network computing. The red line on each
graph indicates the moment of transition. Clock gating and memories reset are
not enabled in this experiment.

We maintain the same server as described in Section 6.4, however we replace
OSNT with a similar server running a mutilate based [140] memcached client,
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using the Facebook “ETC” [133] arrival distribution. ChainerMN [141] (Chainer
v4.4.0), a deep learning framework, is running as a second workload on the
host, passing traffic through the same LaKe card. CPU power consumption is read
from RAPL, and is increased due to ChainerMN. Transition is triggered after three
seconds of sustained high load, and then again as ChainerMN stops. Throughput
is reported by the hardware counter on the LaKe card. As Figure 6.6 shows,
the transition from software to hardware had no effect on KVS throughput, not
even momentarily. The latency of query-hit improves ten-fold within tens of
microseconds.

The approach described above has a minimal cost; there is about 5W gap
between the power consumption of a NIC and that of LaKe with memories in reset
and LaKe module’s clock gated. We expect that on production designs and ASICs,
this power consumption can be further minimized. Other approaches, such as
partial reconfiguration of FPGA or keeping LaKe’s cache warm all the time, are
possible, but may result in a momentary traffic halt or reduced power saving,
correspondingly. We therefore choose the approach that keeps LaKe programmed
but inactive, in order to get the best of both performance and power efficiency
worlds.

The eventual outcome of the on demand swap of KVS is shown in Figure 6.5.
At low query rate, power consumption is low. When the traffic rate grows, in-
network computing is enabled and the power consumption of LaKe becomes the
dominant figure. We note that this graph is indicative of a case where all queries
are (after warm up) hit in LaKe. In a case where many queries are a miss in the
hardware, more power would be consumed by server attending to these queries.
The worst case power consumption strongly depends on the workload [133].

Consensus Service

Modifying the deployment of Paxos is significantly challenging. In fact, changing
the members of Paxos—regardless of whether the roles are implemented in soft-
ware or hardware—requires addressing two well-studied problems in distributed
systems: leader election (i.e., shifting the role of the leader from one member to
another) and reconfiguration (i.e., replacing one or more acceptors) [1]. We fo-
cus on leader election because even at low message rates, a leader can become
a bottleneck for end-to-end system performance. For reconfiguration, we point
readers to protocols from prior work [21, 142] which could be adapted for this
setting.

In the Paxos protocol, the leader assigns monotonically increasing sequence
numbers to client requests. Thus, there are two challenges that must be ad-
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dressed for leader election. First, there must be a mechanism to identify a non-
faulty leader from a set of candidates [1]. Second, the newly elected leader must
learn the most recent sequence number.

For the purposes of shifting on demand, the mechanism for identifying the
new leader is somewhat simplified when compared to the general case of coping
with failures. We use a centralized controller to initiate the shift, depending on
the workload. To actually implement the shift, the controller modifies switch
forwarding rules to send messages to the new leader.

The new leader starts with an initial sequence number of 1 and must learn
the next sequence number that it can use (i.e., a consensus instance that has not
been used by the previous leader). We extended the acceptor logic to include the
last-voted-upon sequence number whenever the acceptor responds to a message.
Using this information, the new leader can determine the most recent not-yet-
used sequence number.

However, there are a few subtleties that must be addressed. In the process
of switching leaders, some consensus instances may have no decision (e.g., if
not enough acceptors have voted in the consensus instance). Therefore, there
may be gaps in the sequence numbers, which would prevent the protocol from
making progress. To cope with that possibility, we use two mechanisms: a time
out at the client and a time out at the learner.

The clients resend requests after a time-out period if the learner has not ac-
knowledged. When a client re-tries, the newly elected leader will increment the
sequence number. After a sufficient number of re-tries, the leader will eventually
learn the new sequence number.

The learner will look for gaps in instance numbers after a time-out period. If
it discovers a gap, then it will send a message to the newly elected leader, asking
it to re-initiate that instance of Paxos. If that instance has previously been voted
on, then the learners will receive a new value. Otherwise, they learn a no-op
value.

Figure 6.7 shows the throughput and latency for consensus messages over
time as we shift the leader from software to hardware and back. The red vertical
lines indicate when a shift occurs. We see that the throughput increases and
the latency is halved when the leader is implemented in hardware. The shift is
triggered as the in-network computing controller replaces a forwarding rule to
send client requests to the new leader. After both shifts, the new leader fails to
propose until it learns the latest Paxos instance from the acceptors. Note that
the throughput drops to zero for about 100 msec. This corresponds to the value
of the client timeout. This timeout value was chosen arbitrarily, and could be
reduced by tuning to the particular deployment.
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Figure 6.7. Transitioning Paxos leader from the software to the network and
back. The transitions are indicated by a red dashed line.

DNS Server

Dynamically shifting DNS operation from software to the network is much the
same as shifting KVS. The network-based controller is similar for both cases, due
to the similarity between the DNS and KVS packet classifiers in the hardware.
The host-based controller for DNS is simpler than that of the KVS, if the host is
a dedicated DNS server that does not run other tasks in parallel.

Shifting a DNS server to a programmable ASIC, like Barefoot’s Tofino, should
also be possible. Prior work, such as NetChain [3] and NetCache[30], have al-
ready demonstrated the possibility of implementing a cache on Tofino, and DNS
responses fit comfortably within the storage limits for values identified in their
evaluation. The biggest challenge would be supporting DNS queries that require
parsing deeper than the maximum supported depth. However, in the worst case
scenario, those queries could be treated as iterative requests.

Real Workloads

We investigate the applicability of in-network computing on demand by exam-
ining two real-world workloads, from Facebook’s Dynamo [143] and the Google
cluster data [144, 145]. The two workloads present two different use cases. In
Dynamo, every cluster runs a unique workload. In Google, the workloads are
heterogeneous.

Dynamo provides several important insights to this work. First, the power
consumption of the webservers used by Facebook was significantly higher than
that of the i7-based servers we used in Section 6.4, and doubled between gen-
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erations of CPUs. Even at low loads of 10%, the dynamic power exceeded 30W
(Westmere L5639) and 75W (Haswell E5-2678v3), more than the power con-
sumption of a fully utilized smartNIC, let alone the power contributed by in-
network computing. Furthermore, the power as a capping function for the work-
load was a driving force of Dynamo.

Second, Dynamo had shown that on a rack level, the power variation over
three seconds was 12.8% at the 99th percentile, and 26.6% over thirty seconds,
with the median power variation being less than 5%. Caching—one of our case
study applications—had a median power variation of 9.2% over sixty seconds,
with a 99th percentile of 26.2%. Other applications, such as a web server, had
a median power variation of 37.2% and a 99th percentile of 62.2%. The appro-
priateness of in-network computing depends on the power variance. If there is
low power variance over the scheduling period, it will be safe to use in-network
computing. If there is large variance, in-network computing on demand may be
incorrect or inefficient, due to the variability of the power consumption over time.
Dynamo does not provide CPU utilization information. Therefore, we cannot say
if in-network computing would be beneficial at all times or only on demand.

We explore the Google trace to understand transient effects. The lack of
power consumption information and the normalization of CPU core utilization
limit our insights. In the Google trace, 90% of resource utilization is by jobs
longer than two hours, though these jobs represent only 5% of the total number
of jobs [145]. The long run times make these resource-hungry jobs candidates
for offloading to the network. Moreover, the time scale for scheduling is long,
fitting in-network computing on demand. Based on our observation that even a
low utilization of a CPU core may draw more power than in-network computing
(§6.7), we identify more than 1.39 million unique tasks in the trace that utilize
for at least five minutes 10% or more of a CPU core, making them candidates
for offloading. However, on average, every node within the cluster has 7.7 (nor-
malized) CPU cores running such tasks within every five minutes sample period,
diminishing the power saving benefit of in-network computing (assuming a lim-
ited number of workloads can be offloaded at a time).

The Google trace leads us to consider a different usage model: in-network
computing on demand as load diminishes, rather than when load increases.
When a multitude of jobs run on the same server, offloading to the network
saves little power. However, as jobs end or are migrated from the server, moving
the last (or first) job to the network will save power. The benefit of in-network
computing remains applicable when latency or throughput, rather than power
efficiency, are the targets, regardless of the load on the CPU.
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6.10 Discussion

Latency. In-network computing reduces latency by design. By terminating a
transaction within the network, instead of reaching the host, time can be saved.
P4xos, Emu DNS and LaKe have all demonstrated significant latency improve-
ment at the 99th percentile. The tail latency of an in-network computing ap-
plication depends on its implementation: a fully pipelined design that does not
access external memories will have an almost-constant latency (±100ns on NetF-
PGA SUME) and additional pipeline stages required to implement an application
will often have nano-second scale overhead. In these architectures, power con-
sumption and latency will be independent. Latency variance due to congestion
will be the result of switch-forwarding, and thus be experienced in a software-
based environment as well. Access to external memories can lead to latency in-
crease of hundreds of nanoseconds ( [121], depending on hit and miss ratio) and
additional power consumption. Still, it will be faster than going through PCIe to
the host [146], processing there and accessing similar (power consuming) mem-
ories on the host. To conclude, where latency is the target, there is no need for
in-network computing on demand, as in-network computing will provide lower
latency.

Generality of In-Network Computing on Demand. In-net-work computing is
not the magic cure-all for data centers’ problems. Not all applications are suitable
to be shifted to the network, and the gain won’t be the same for all. In-network
computing is best suited for applications that are network-intensive, i.e., , where
the communication between hosts has a high toll on the CPU. Latency sensitive
applications are also well suited for in-network computing. It is no coincidence
that the most popular in-network computing applications to date are caching re-
lated [3, 30, 72]. Caching provides a large benefit in the common case, and a
way to handle tail events. Other applications may find in-network computing on
demand to be hard. For example, using Paxos in the network is hard, implement-
ing an in-network computing solution may just be too high for some applications.
Furthermore, each application may have a different power consumption gain, as
shown in Figure 6.5.

In-Network Computing Alternatives. Readers may wonder if there are no sim-
pler solutions to increasing application performance, rather than in-network com-
puting. One solution, for example, is using multiple standard NICs in a server to
achieve higher bandwidth [147, 148]. However, this approach comes at the cost
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of more NICs, increasing power and price. Alternatively, one may use multiple
servers, or opt for a multi-socket or multi-node architecture [149]. These may be
cost and power equivalent to an FPGA, a smartNIC, or an ASIC based design. But,
their performance per watt is unlikely to match the ASIC-based solution. GPUs
are efficient for offloading computation-heavy applications, but as they are not
directly connected to the network, they are less suitable for network-intensive
applications.

FPGA, SmartNIC or Switch? “Where should I place my in-network computing
application?” one may wonder. The answer is not conclusive. Today, a switch
ASIC can provide both the highest performance and the highest performance per
Watt. Running in a switch also cuts in half the number of (application-specific)
packets through the switch: instead of both request and reply packets going
through the switch, only one packet goes through: entering as the request, and
coming out as the reply. A switch may not be, however, the cheapest solution,
with a price tag of ×10 or more compared to other solutions4. Using a switch
as the place to implement in-network computing leads to other questions. What
is the topology of the network? Can and will all messages travel through a spe-
cific (non addressed) switch? What are the implications of a switch failure (as
opposed to a smartNIC/FPGA next to the end-host)? The answers are all applica-
tion and data center dependent. Switches also have limited flexibility compared
to other programmable devices: they have limited resources (per Gbps) and a
vendor-provided target architecture, that may not fit all applications.

SmartNICs maintain the same power consumption as NICs, typically lim-
iting their power consumption to 25W supplied through the PCI express slot,
while achieving millions of operations per Watt, including external memories ac-
cess [150, 151]. There are currently four architectural approaches to SmartNICs:
FPGA based [56, 152, 153], ASIC based [42], combining ASIC and FPGA [154],
and SoC based [155]. The FPGA-based design is closest to the NetFPGA-based de-
sign we discussed, while the ASIC-based smartNICs are closest to the switch-ASIC
approach. SoC-based smartNICs are likely to provide the easiest trajectory for
implementing in-network computing, but their resource and performance scala-
bility is limited compared to other solutions, as they balance both programmable
resources and processing cores, leading the networking requirement to face ear-
lier the resource wall [156]. The power efficiency of SoC based solution depends
on the type of integration between the data plane and the processing cores. Still,
the introduction of SoC FPGA by manufacturers such as Intel is likely to increase

4List prices, obtained from https://colfaxdirect.com

https://colfaxdirect.com
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the use of hybrid in-network computing solutions.
Between FPGA, smartNIC and ASIC, FPGA (and FPGA-based smartNICs) is

likely to provide the poorest performance and performance per Watt, due to its
general purpose nature. Yet, FPGA performance per Watt in real data centers is
not significantly below ASIC. Azure’s FPGA-based AccelNet SmartNIC [56] con-
sumes 17W-19W (standalone) on a board supporting 40GE, providing close to
4Mpps/W for some use cases. This is slightly better, but on a par with, the FPGA-
based power consumption reported in this work. The big advantage of FPGA, and
FPGA-based platforms, is their flexibility—the ability to implement almost every
application and to use (on a bespoke board) any interface, memory or storage
device. ASIC-based smartNICs may not be suitable for every in-network function,
but for many applications, they will provide a good trade-off of programmability,
cost, maturity and power consumption.

6.11 Chapter Summary

This chapter described several in-network computing applications, including a
key-value store, a consensus protocol and a domain name system. It provided a
detailed power/performance analysis of these applications, with focusing on the
effects of specific design trade-offs and on the applicability to ASICs. It gener-
alized the case for in-network computing on demand and discussed alternative
approaches.



Chapter 7

Network-Based Consensus Powering
Fault-Tolerance Memory

Processors communicate in distributed systems using either the shared-memory
model or the message-passing model. The processors communicate by reading
or writing to shared registers in the shared-memory model and by exchanging
messages in a network in the message-passing model.

Then a solution that is designed for one model could also be used for the
other. The consensus problem is one example of this phenomenon. There are
existing solutions for solving consensus in the message-passing model [6, 1, 2]
and in the shared-memory model [157, 158, 159].

In this chapter, we propose an approach that leverages improved performance
achieved by network-accelerated consensus to provide fault-tolerance and low-
latency communication for a non-volatile shared memory system. Our prototype
added minimal latency overhead to conventional unreplicated memory systems.

7.1 A Primer on Computer Memory

Computer memory and storage are organized in a hierarchy with tiers distin-
guished by response time, volatility, and cost. At the top of the hierarchy 7.1
are Registers, SRAM caches and DRAM main memory, which have low latency,
unlimited write endurance, and fine granularity of access. They are, however,
power-hungry, expensive and volatile, necessitating further tiering to solid-state
NAND flash storage (SSD), and finally to spinning disk or tape magnetic storage
at the bottom of the hierarchy. These terminal tiers of non-volatile and durable
bit storage have much higher access latency and granularity than volatile memory
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Figure 7.1. Memory Hierarchy

and, in the case of NAND flash, finite write endurance limiting the total amount
of data that can be written before device replacement is required.

This traditional organization is being shaken up by the advent of Storage Class
Memory (SCM): several emerging memory technologies, such as Phase-Change
Memory (PCM)[43], Resistive RAM (ReRAM)[44], and Spin-Torque Magnetic
RAM (STT-MRAM)[45] are non-volatile, offer byte-addressability, and response
times not much slower than DRAM, but could cost significantly less on account
of simpler memory cell architecture resulting in denser packing. Recent break-
throughs in selector element physics[160] enabled larger memory cell arrays
which result in better utilization of die area, leading to further cost advantages
over DRAM. At the time of writing, one such product based on cross-point PCM
(Intel Optane® M.2) is about 6.7x cheaper per gigabyte at retail as a result of
acute DRAM shortage. Consequently, in some scenarios, it is feasible to re-
place several tiers of the traditional memory/storage hierarchy with a single,
cost-effective, uniform type of memory that also serves as the terminal tier of
non-volatile and durable data storage.

Of the many SCM technologies explored in research laboratories, Phase-Change
Memory [161] has been the most successful in the marketplace to date, at first
in power-constrained mobile devices [162] and more recently in enterprise stor-
age [163]. The memory element relies on the peculiar phase diagram of so-called
amorphous semiconductors, most common alloys of Germanium, Antimony, and
Telluride (GST), which exhibit two distinct solid phases. If the material is heated
and cooled quickly, it stays in an amorphous solid state with high resistivity and
good optical transparency. If instead the material is heated just below the critical
melting temperature, it crystallizes into an opaque solid state of low resistivity.
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GST materials were first explored in the late 1960s [164] and found widespread
use in optical storage media (i.e., Blu-Ray®) but the technology to make them
commercially viable as solid-state memories has only recently matured (e.g.,
Optane® and 3D XPoint® from Intel and Micron). The breakthrough involved
the development of a suitable selector device [160, 165] permitting larger ar-
rays of memory cells and better die utilization, which resulted in reduced cost
and increased profitability of the technology.

PCM has several attractive qualities as a memory technology. First, it has very
fast response time, practically on the order of a hundred nanoseconds but reach-
ing even below one nanosecond under laboratory conditions[166], well into
DRAM’s domain. To put that in context, read latency of modern high-capacity
NAND flash is on the order of 50-70 microseconds, making SSD response times
in the vicinity of 100 microseconds after error correction and protocol overhead.
Second, unlike NAND flash, PCM is byte-addressable on both reads and writes,
so requires no erase block management and garbage collection which cause poor
latency tails[167]. Third, PCM is naturally non-volatile due to the properties of
the GST material. Other forms of non-volatile memory with comparable response
times, such as battery-backed DRAM, require constant power with its associated
cost and logistical complexity. Fourth, PCM has the high write endurance of more
than a million cycles and long retention time of many years. Finally, PCM is in-
herently less expensive to produce than DRAM at lithographic parity as a result
of its denser packing and simpler memory cell structure.

7.1.1 Limitation of Storage Class Memory

While the above sounds appealing from the architectural simplicity and elegance
standpoint, there is a fly in the ointment. All known SCM technologies involve
the movement of atoms, and so have unavoidable wear-out mechanisms result-
ing in finite write (and sometimes read) endurance of devices. This places severe
practical limits on the scalability of storage systems built on top of these tech-
nologies, and even the practicality of single systems where DRAM is replaced
with cheaper SCM main memory that is, alas, guaranteed to fail after brief use.

What this means in practice is that to enable significant displacement of
DRAM in prevailing systems architectures, we must translate a variety of tech-
niques traditionally used for slow durable storage (e.g., RAID for disks or SSDs)
to work at timescales suitable for main memory. This strategy would enable us to
satisfy data replication and consistency requirements that are taken for granted
in the current many-tiered architectures.

Memory faults are not unique to SCM, even though the details of how the
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errors occur differ depending on the storage medium. A wide spectrum of ap-
proaches is used to solve the problem. For main memory, many systems simply
ignore the issue and treat the memory as if there were no errors. This can result
in crashes—any error detected in main memory or caches is handled by simply
shutting down the entire system. In fact, memory errors are one of the largest
causes of machine failures [168]. Clearly, this approach does not scale to larger
main memories for obvious reasons.

Contemporary supercomputers, where memory Mean Time Between Failures
(MTBF) is measured in minutes on account of the sheer number of independent
components that can fail, deal with main memory faults by “checkpointing", i.e.,
periodically storing a copy of all memory on disks. Sophisticated management is
required to keep the overhead of checkpointing reasonable [169], and the cost
is not to be spoken of.

Disk and NAND flash SSD storage often use RAID. Unfortunately, RAID does
not work well at scale since it depends on a centralized controller, the failure of
which renders the data unavailable and possibly corrupted.

7.1.2 New Approach to Provide Fault-Tolerance for Non-Volatile
Main Memory

We propose a new approach to providing fault-tolerance for non-volatile SCM-
based main memory. Our key insight is to treat the memory as a distributed
storage system and rely on replication with a consensus protocol to keep replicas
consistent through failures. Although consensus protocols have been historically
considered a performance bottleneck, several recent projects have demonstrated
a promising new approach to achieving high-performance consensus [17, 28,
29, 30]. These systems leverage programmable network hardware [48, 47, 170]
to execute consensus logic directly in the network forwarding plane, achieving
tremendous reduction in latency and increase in throughput.

7.2 The Attiya, Bar-Noy, and Dolev Protocol

Attiya, Bar-Noy, and Dolev described a protocol for implementing an atomic reg-
ister in an asynchronous message-passing system [171]. This protocol is well-
suited as a building block for providing fault-tolerance for storage class memory
because the protocol is optimized for read and write requests—i.e., the opera-
tions that we would expect from memory. It is more efficient in terms of com-
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Figure 7.2. The ABD protocol.

munication steps than alternative protocols, such as Paxos [1] and Chain Repli-
cation [172], which allow for arbitrary operations (e.g., increment).

The protocol assumes that there are user processes that have access to mes-
sage channels and would like to execute read and write operations as if they had
some shared memory at their disposal (i.e., emulating shared memory with mes-
sage passing). Although the original paper assumes a single writer, the protocol
can be readily generalized for multiple writers and multiple readers. We refer to
the generalized protocol, which we describe below, as the ABD protocol.

We first describe the general formulation of the protocol, before discussing the
modifications that we need to make for a switch-based deployment in Section 7.3.

The ABD protocol assumes there are M user processes, and N server pro-
cesses. Every user process can send a message to every server process, and vice-
versa. Each user process Ui ∈ {U1, . . . , UM} chooses a unique timestamp of the
form t = pM + i, where p is a positive integer. For example, if M = 32, U1

chooses timestamps from the set {1,33, 65, . . .}. This naming convention allows
us to identify which user process issued a request easily. Both read and write
requests require two phases, as illustrated in Figure 7.2.

To write a value, v, the user process, Ui, sends a message to all server pro-
cesses, requesting their timestamp. Each server process, S j ∈ {S1, . . . , SN} re-
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Figure 7.3. Clients issue memory read/write requests to off-device storage-class
memory instances. A programmable switch runs ABD protocol to keep replicas
consistent.

sponds with their current timestamp, ts j. Upon receiving a majority of responses,
Ui chooses a new timestamp, t, of the form t = pM + i, such that t is greater
than its previous t and any ts j it received. Ui sends the pair (v, t) to all server
processes. The server processes compare t to their local timestamp, tsk. If t is
no less than tsk, the server processes update their value and timestamp to v and
t, and return an acknowledgement to Ui.

To perform a read, the user process, Ui, sends a read message to all server
processes. Each server process, S j ∈ {S1 . . . SN} responds with their current value
and timestamp, (v j, ts j). Upon receiving a majority of responses, Ui chooses
(v, t) = (v j, ts j) for the maximum value of ts j. Then, like the write operation, Ui

then sends the pair (v, t) to all server processes. The server processes compare t
to their local timestamp, tsk. If t is greater than tsk, the server processes update
their value and timestamp to v and t, and return an acknowledgement to Ui.

7.3 System Design

Figure 7.3 illustrates the high-level design of our system. Overall, there are three
main components. Clients, using a custom memory controller, issue read and
write requests. A set of memory instances service those requests. The stored data
is replicated across several memory instances. A programmable switch running
a modified version of the ABD protocol interposes on all requests and ensures
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that the replicas stay consistent.
Implementing the ABD functionality as a part of the switching fabric allows

multiple replicas of data to be kept consistent while satisfying the stringent per-
formance demands on memory accesses. However, implementing this logic on
any ASIC (including reconfigurable ones) imposes constraints due to the physical
nature of the hardware. These constraints include:

• Memory. The amount of memory available in each stage for stateful oper-
ations or match actions is limited [173].

• Primitives. Each stage of the pipeline can only execute a single ALU instruc-
tion per field.

• State between stages. There is a limited amount of Packet Header Vector
(PHV) that pass state between stages.

• Depth of pipeline. There is a fixed number of match-action units.

The goal of our design is to provide an efficient implementation of the ABD
algorithm that respects the physical limitations of the hardware. While designing
our system, we necessarily make some assumptions about the deployment:

• We do not want to extend the memory controller with logic for replication.
It should only be aware of read/write requests. This is to simplify integra-
tion with existing coherence buses and CPU cache controllers and avoid
re-engineering everything starting from the CPU pipelines.

• We assume that cache lines are 64 bytes. Since the values in the ABD
protocol are cache lines, the size of the values in the protocol are 64 bytes.

• We assume that the switch do not fail. In reality, any device can fail, and
a truly fault-tolerant system would account for those failures. However,
accounting for switch failure would make the protocol significantly more
complicated. Because the mean time to failure for memory is significantly
shorter than the mean time to failure for a switch, we start with the sim-
plified version.

• We assume that clients are directly connected to the switch, with one client
per port. This constrains the deployment topology, and this constraint may
not hold in practice. This assumption could be relaxed given an appropriate
tunneling protocol between clients and the switch. However, again, as a
first step, we make this assumption to simplify the protocol.
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• We assume that the system will need to support ∼1000 CPUs, each issuing
about 10 concurrent requests. So, the load that the switch needs to support
will be about 10K concurrent requests at a time.

Below, we describe the design of the memory controller and switch logic in
more detail.

7.3.1 Memory Controller

The system needs to issue ABD reads and writes transparently without modifying
user applications. To achieve this, we provide a pair of special device drivers
(client and server) to handle page faults. When an application on the client
calls malloc, instead of going to the standard system call implementation of the
library, our system intercepts the library call, and invokes mmap on the character
device we create. The client device driver then allocates the requested size of
memory from the kernel driver on the remote server and returns the address to
the client driver.

The client device driver maintains a local buffer with configurable size (set to
the page size of 4KB by default) to serve the page faults in the first place. When
there is a miss in the local buffer, the driver will issue ABD accesses to fetch the
page remotely. If the local buffer is dirty at the miss, the content of the buffer
will be written to the remote server first, before the requested content can be
retrieved from the server and updated to the local buffer.

The servers and the clients communicate with a remote procedure call (RPC)
mechanism inside the drivers so that the remote servers know how to handle
malloc, free, and ordinary reads and writes issued by the clients.

7.3.2 Switch Logic

Our deployment model and assumptions necessitate that we modify the original
protocol described in Section 7.2. The original protocol is designed to access a
single register. We need to generalize the protocol to support multiple registers,
each corresponding to a different cache line. Moreover, because we do not want
the memory controller to be aware of the replication (i.e., it should simply issue
read and write requests), the switch needs to maintain the timestamps that are
stored at the client in the original protocol.

The amount of state that needs to be stored on the switch is dependent on
a few different variables. First, the size of the address space and the size of the
cache lines determine the number of cache lines that need to be stored:
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# of cache lines=
size of address space

size of cache line
(7.1)

Our implementation used a cache line of 64 bytes, and an address space for
4GB of data.

P4 offers a programming abstraction of “registers”, which are an array of
cells. The size of each cell is bound by the width of the ALU on the underlying
hardware. Since the size of the cell is less than the size of the cache line, the
cache line needs to be split across multiple registers’ entries. The number of
register cells per cache line is determined by the following equation:

cells per cache line=
size of cache line

size of cell
(7.2)

Ideally, we would store one timestamp per cache line. However, if the address
space is too big, then one can keep a timestamp per block of cache lines. Overall,
the number of cache lines and the number of timestamps must be less than the
total memory available:

((# of cache lines× cells per cache line)

+ # of timestamps)× (size of cell)

≤ (memory per stage)× (# of stages)
(7.3)

Moreover, the switch code uses four additional registers, each with (# of timestamps)
entries of size 8-bits for quorum checking in each phase of read/write requests;
including timestamp and write quorums in a write request; and read and write-
back quorums in a read request.

The switch also has a table for forwarding packets. Forwarding is done at
layer 2. To send messages to a set of memory replicas, our implementation uses
Ethernet multicast. We assign one multicast group to each set of replicas; when
sending messages to the replicas, the switch code sets the destination MAC ad-
dress to be the multicast group identifier.

7.3.3 Failure Assumptions

In contrast to Paxos [1], which depends on the election of a non-faulty leader
for progress, the ABD protocol only depends on the availability of a majority of
server processes. The ABD protocol assumes that the failure of a process does
not prevent connectivity between other processes, which can be violated in the
event of a switch failure. To cope with switch failures, there would need to be a
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redundant component, and the protocol would need to be extended to include a
notion of sending to the primary or the backup. For now, our prototype assumes
that switches do not fail. Packet reordering is handled naturally by the ABD
protocol, which ensures atomicity (i.e., serializability). To cope with packet loss,
we rely on time-outs. If a client does not receive a response after a timely limit,
it must resend the request.

7.3.4 Implementation

The switch logic for the client side of the ABD protocol was implemented with
858 lines of P414 code and compiled using Barefoot Capilano to run on a Barefoot
Network’s Tofino ASIC [47]. To simulate the memory endpoints, we used Xilinx
NetFPGA SUME FPGAs. The server-side code of the ABD protocol was written
with 208 lines of P416 code, and compiled using P4-NetFPGA [61] to run on the
NetFPGA SUME boards.

The memory controller emulator is implemented as a Linux character device
driver. It maintains the necessary data structures and handles page faults by
sending and receiving packets to and from the servers. When incoming pack-
ets arrive, the driver handles the actual memory management, updates memory
pages and returns the requested content to the clients (i.e., applications). The
driver is written with 1157 lines of C code.

7.4 Evaluation

Our evaluation quantifies the overhead for page fault handling via calls to remote
replicated memory versus local memory.

For the experimental setup, we used a 32-port ToR switch with Barefoot Net-
work’s Tofino ASIC [47]. The switch, which ran the ABD protocol, was configured
to run at 10G per port. To simulate the memory endpoints, we used three Xilinx
NetFPGA SUME FPGAs, hosted in three Supermicro 6018U-TRTP+ servers. To
issue read and write requests, we used the kernel client running on a separate
Supermicro server. The servers have dual-socket Intel Xeon E5-2603 CPUs, with
a total of 12 cores running at 1.6GHz, 16GB of 1600MHz DDR4 memory and
one Intel 82599 10Gbps NIC. All connections used 10G SFP+ copper cables. The
servers were running Ubuntu 16.04 with Linux kernel version 4.10.0.

For our preliminary experiments, we have not yet implemented a true mem-
ory controller in hardware. Instead, we emulate the behavior using an applica-
tion that calls mmap to map a file into memory, and then issues write requests to
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Figure 7.4. Latency CDF reading a cache line from local memory and from the
replicated remote memories.

addresses at different pages. We recorded the time before and after the write
requests to measure the latency for each request. We repeated the measurement
100K times under two different configurations: one with unmodified Linux page
handler servicing the requests locally, and one with a kernel module requesting
remote, replicated memories.

The results are shown in Figure 7.4. The median latency for fetching a cache
line from local memory is 3 µs and from the remote replicated memories is 18 µs.
The latency is pretty stable around 18 µs. We note that these measurements
include full L2 parsing. A custom protocol could further reduce the latency. These
results are encouraging. The performance is significantly faster than traditional
replicated storage systems and shows great promise for use with scalable main
memory.

7.5 Chapter Summary

This chapter provided an overview and the pros and cons of new memory tech-
nologies. It presented the design of a fault-tolerant non-volatile main memory
system that ported the ABD protocol to the network hardware abstractions. It
presented an evaluation on programmable ASICs and FPGAs.



106 7.5 Chapter Summary



Chapter 8

Related Work

This chapter covers works that have been done in related fields and differentiates
our approach from them. First, we review works which leverage network support
to improve application performance. Second, we go over projects that focus on
improve performance of consensus protocols and coordination services. Finally,
we survey recently works that makes use of hardware to accelerate performance
of replicated systems.

8.1 Network Support for Applications

Several recent projects have investigated leveraging network programmability
for improved application performance. For example, PANE [73] provides an API
on top of current SDN stacks for applications to participate in network man-
agement for better quality of services. With greater visibility and flexibility of
the network, applications can query the current network status and can reserve
network bandwidth to meet their particular needs. Similarly, EyeQ [174] of-
fers fine-grained control over network bandwidth that can be used to isolate the
traffic of a tenant from another. By disaggregating the data center’s bandwidth,
EyeQ can provide a tunnel with a minimum bandwidth between endpoints of a
tenant as if they were directly connected to a switch. As a result, the tail latency
for applications is eliminated and the overall network utilization is increased.

Along the same lines, Merlin [76] provides a management framework that
simplifies the network administrator’s tasks. The framework consists of a high-
level programming language to express applications’ intents (e.g., provisioning
bandwidth or specifying actions on classified packets), and a compiler to gen-
erate a network configuration which satisfies the intentions. Merlin takes into
account the global policies and the current state of the network to allocate suf-
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ficient resources for each application and to produce a low-level configuration
for each resource. Merlin’s evaluation demonstrated the data applications are
benefited from greater network support.

NetAgg [75] suggests another approach to accelerate data center applica-
tions’ performance. Specifically, performance of applications following parti-
tion/aggregation pattern (e.g., Map/Reduce frameworks) is limited by by the net-
work bandwidth of the servers at the edge of the network (typically 1G or 10G
links). Then, to increase the application performance, upgrading the bandwidth
for these servers is necessary but it is costly. To remedy that cost, NetAgg places
middleboxes with larger bandwidth links along the path of the data flow (e.g.,
at the ToR and Aggregation switches) to absorb the aggregation traffic. Offload-
ing aggregation task to middleboxes would improve the application performance.
However, the relative performance increment is not sufficient as the middleboxes
in software undergo the tremendous packet processing overhead [175].

While these projects advocates for network support to to improve application
performance, they largely focus on specific applications and rely on the manage-
ment layer of the network. In contrast, this thesis argues for moving consensus
logic into the data plane of network devices.

8.2 Consensus Protocols and Coordination Services

Existing approaches for replication with some form of consistency (e.g., lineariz-
ability, serializability) can be roughly divided into three classes [176]: (a) state
machine replication [11, 5], (b) primary-backup replication [172, 6], and (c) de-
ferred update replication [24]. We will go into details of each class in the sections
below.

8.2.1 State Machine Replication

State machine replication (SMR) is a method to provide fault tolerance for the
services implemented by the state machine. State machine guarantees that if it
processes the same input, it will produce the same output. For availability SMR
replicates a state machine on multiple replicas, and for consistency, it provides
the same sequence of requests to every state machine in the system. Consensus
protocols [11, 5] can be used to order a sequence requests by executing a separate
instance of consensus to select a request for each position in the sequence.

Schneider [5] detailed the designs and implementations of state machine pro-
tocols. Three methods are classified to order clients requests: 1) using a single
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logical clock, 2) using synchronized real-time clocks, and 3) using an agreement
protocol to assign a unique identifier for each request. Pointed out by the au-
thor, the last method has an advantage comparing to the former ones as it is not
necessary for a process to communicate with all other processes.

8.2.2 Primary-Backup Replication

The primary-backup protocols [6, 23, 2, 59] rely on a designated primary replica
to handle all requests and manage the replicated logs. VR (Viewstamp Repli-
cation) [6], published nearly at the same time as Paxos, is the pioneer protocol
in this category. Zab (ZooKeeper Atomic Broadcast) [23], Raft [2] and Specu-
lative Paxos [59] are protocols derived from VR. Although each protocol differs
from VR in some aspects (e.g., leader election [23, 2] or process communica-
tion [17]), they are all similar in replicating logs and repairing the logs after the
primary fails.

ZooKeeper [22] is a coordination service for distributed systems used by Twit-
ter, Netflix, and Yahoo!, among others, and is a critical component of HBase.
ZooKeeper uses Zab to provide availability and consistency for services in the
face of network failures.

Since the primary backup protocols rely on a single primary replica to han-
dle all client requests and to manage replicated logs, their performance may be
adversely affected by heavy load. Because their role is to provide coordination
for other services, such negative effects are undesirable.

8.2.3 Deferred Update Replication

Deferred update replication (DUR) is a technique to improve performance for
databases [24]. Transactions are concurrently executed on different servers and
only the updated state are sent to the other servers. If a transaction is certified
by other servers, its updated state is applied on all servers. An advantage of DUR
is that read transactions do not need to be certified. As a result, the system can
deliver high performance for read-intensive workload. On the other hand, under
write-intensive workload, the system may not have good performance as many
transactions can be conflicted and they have to abort.

Despite the long history of research in replication protocols, there exist few
examples of protocols that explores network conditions to improve performance.
One exception of which we are aware are systems that exploit spontaneous mes-
sage ordering, [16, 77, 78, 59, 29]. The idea behind these systems is to check
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whether messages reach their destination to reduce the overhead, instead of con-
structing the order by the protocol. Our work differs from those by not making
ordering assumptions.

8.3 Hardware accelerations

FaRM [177] provides distributed transactions with strong consistency and high
performance. FaRM demonstrated a sheer performance as it achieved 140 mil-
lions TATP transactions per second and recovered from a failure within 50ms.
The key idea behind FaRM is that it leverages the two emerging technologies,
RDMA for low latency network communication and non-volatile DRAM for fast
persistent storage. For replication, it uses Vertical Paxos [21] with Primary-
Backup schema to reduce the number of messages in the network. Further, FaRM
uses one-sided RDMA operations to reduce the overhead of remote CPUs. Over-
all, FaRM relies heavily on locking to achieve consistency and to avoid transaction
abort. The locking mechanism becomes a major performance bottleneck while
the system is under high-contention workloads.

DARE [27] propose a set of protocols using RDMA primitives for state ma-
chine replication. The system consists of three subprotocols, including leader
election, normal operation and reconfiguration which resemble the VR’s coun-
terparts. Instead of using message-passing model, DARE uses remote memory
access model to implement those subprotocols. A benefit of using RDMA is the
remote memory access is performed by the hardware allowing DARE to achieve
an order magnitude performance better than software SMR implementations.

Speculative Paxos et al. [59] expects the network mostly providing in-ordered
delivery to simplify the consensus algorithm. Speculative Paxos uses a combina-
tion of techniques to increase the likelihood of ordering in data centers, includ-
ing IP multicast, fixed length network topologies, and a single top-of-rack switch
acting as a sequencer. NoPaxos et al. [29]) provides an Ordered Unreliable Mul-
ticast primitive. NoPaxos divides linearizability into two separate properties: or-
dering which is ensured by the network layer and reliable delivery which is han-
dled at the application layer of the replication protocol. However, performance
is significantly reduced when there is re-ordering or packet loss in the network.
Similarly, Eris [103] proposes a network-integrated protocol for transaction iso-
lation, fault tolerance and atomic coordination. The network layer ensures that
replicas of each shard receive messages in order and the applicaion-level coordi-
nation protocol is resonsible for handling message loss.

The work by István et al. [28] implements Zookeeper’s atomic broadcast using
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Xilinx Virtex-7 VC709 FPGAs. The system provisions the conventional TCP stack
and a custom application networking stack on FPGAs. It also offloads a key-value
store to the FPGAs. This thesis differs philosophically, in that it explores deploy-
ing consensus into the network data plane, as opposed to a particular hardware
device. More concretely, the differences are in several ways: (i) The FPGA im-
plementation does not provide an application-level API. Thus, any application
that wishes to use consensus must also be implemented inside of the FPGA. (ii)
The implementation is platform-specific and is not portable to other targets, such
as programmable ASICs, SmartNICs, other FPGA boards, or software switches.
(iii) Zookeeper atomic broadcast is a restricted version of Paxos that has not
been used in storage systems other than Zookeeper.

NetChain [30] aims to provide fast coordination enabled by programmable
switches [37]. NetChain implements a variant of chain replication protocol [172]
to build a strongly consistent fault-tolerant key-value store. Switches are orga-
nized in a chain structure with read queries handled by the tail and write queries
sent to the head, processed by each node along the chain, and replied to at the
tail. While NetChain is restricted to the chain network topology and a limited
key-value store API, this thesis aims to provide a general-purpose replicated ser-
vice which is not bound to a particular topology or particular application.

The above approaches show the promising performance improvement by hard-
ware acceleration. While those systems have achieved a great improvement in
throughput and latency, they tend to tie to specific applications or hardware de-
vices. Our approach provides a general-purpose API that could be used by any
off-the-shelf applications and can be realized by a variety of hardware devices.

8.4 In-Network Computing On Demand

Green computing and power efficiency are extremely important to cloud comput-
ing [111], attracting the interest of the research community (e.g., [178, 179]).
A significant amount of this work has been dedicated to power efficient comput-
ing and the assignment of workloads (e.g., [180, 181, 182]), including dynamic
offloading to GPUs (e.g., [183]).

The concept of in-network computing is not new either, with significant prior
work on moving computation from the software to the network. Previous systems
have leveraged middleboxes, hardware accelerators, and offering the network-
as-a-service improve system performance [184, 185, 186].

In-network computing contrasts with acceleration solutions offered by cloud
providers today, such as Amazon’s F1 [132] and Google’s TPUs [187]. While
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the power consumption of such platforms is not divorced from our results [187],
the main difference is that these solutions are additions to the data center envi-
ronment, whereas in-network computing takes advantage of equipment that is
already part of the data center. Furthermore, some acceleration platforms are
not connected directly to the network, rather using the PCIe dangling from the
CPU as the means to handle all transactions [132]. This approach is ideal for
applications that are computation intensive, but not suited to network intensive
applications.



Chapter 9

Conclusion

Consensus is essential for state machine replication to provide high-availability
and data consistency for distributed applications. However, consensus perfor-
mance is the primary concern that applications are reluctant to use consensus for
strong consistency. Because of the performance reason, the applications opt for
weakly consistent replication mechanisms which could cause data loss in some
failure scenarios. The need for a high-speed consensus service is obvious. Un-
fortunately, it simply does not exist.

This thesis explores how to accelerate performance of consensus protocols
by implementing them in data center networks. We have made the following
contributions:

NetPaxos. We first introduce a set of sufficient operations which network de-
vices should be able to perform for a network-based consensus implementation.
At the time hardware is incapable to implement those operations, we propose an
alternative protocol which depends on network order assumptions to run con-
sensus. Our preliminary results show great potential performance improvements
can be gained by moving consensus in networks.

P4xos. We realize an optimization of the Paxos protocol on a new breed of
forwarding switches that allow programming the data plane. The optimization
employs the fact that the first leader does not need to run phase 1 of Paxos, so
it could reach consensus even faster. In case the first leader fails, a designated
backup leader is summoned to take over the primary role. We have evaluated our
system by implementing the service using a high-level, domain-specific language
which is portable to multiple software and hardware platforms. A switch-based
implementation achieved 2.5 billion consensus messages per second, a four order
of magnitude improvement while comparing to performance of software-based
consensus systems. We demonstrated that P4xos could be used as a replace-
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ment for software-based consensus implementations while providing better per-
formance.

Partitioned Paxos. While in-network consensus systems can provide a higher
order of performance, applications cannot fully take this advantage due to the
tight integration of agreement and execution. We presented a sharding technique
which separates those two concerns of state machine and optimizes each of them
independently. We showed that RocksDB, a production quality key-value store
used at Facebook, Yahoo! and Linkedin, is scaled proportional to the number of
partitions when using Partitioned Paxos for replication.

Energy-Efficient In-Network Computing. Despite the performance benefits
of the in-network computing approach, its power consumption is a concern for
data centers. Network operators are skeptical about the performance benefits
because of its operational costs. We provided a detailed analysis of in-network
computing and proposed a method for shifting applications between end-hosts
and the network. The evaluation showed that our switching methodology has
both increased application performance and used power more efficiently.

Fault-tolerance for non-volatile main memory. non-volatile memory of-
fers byte-addressability and better price-performance which could potentially re-
places system DRAMs. However, the non-volatile memory has endurance limi-
tation due to its internal mechanical operations. Our key insight is to treat the
memory as a distributed storage system and rely on replication with a consen-
sus protocol optimized for memory access to keep replicas consistent through
failures.

9.1 Limitations and Future Work

This thesis consists of five components: a collection of data plane operations for
consensus; the P4xos library for network-accelerated consensus; a partitioning
mechanism for scaling application performance; a power analysis and a shift-
ing methodology for in-network computing, and last but not least, a use case for
network-accelerated consensus service. Collectively, those components have suc-
cessfully provided a general-purpose high-performance consensus middleware
for data center applications. However, this thesis does not address all the fea-
tures of a consensus middleware. This section identifies some of the limitations
and proposes future work in this area.

Leader Election. Although P4xos and Partitioned Paxos address the issue of
the leader failure by failing over to a designated leader, a full-flex consensus
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middleware should have a dynamic leader election protocol. The leader election
should promote any node to be the new leader instead of pre-defining a specific
node to take the responsibility.

Paxos Reconfiguration. In P4xos and Partitioned Paxos, a failure of Paxos ac-
ceptor is tolerated by the original protocol. However, if more acceptors fail, the
whole system cannot progress as a majority of acceptors does not exist. To han-
dle additional acceptor failures, we need to replace the failed acceptors using
a reconfiguration protocol. The reconfiguration protocol would replace one set
of acceptors by another. The number of acceptors in the new set can be bigger,
equal to or smaller than the original set.

Value Size. Whereas P4xos, Partitioned Paxos and other network-based con-
sensus systems offer an enormous boost in performance, they limit the size of
the value to be replicated. This severely limits the number of applications that
can build on top of the network-based consensus middleware. Only applications
that need to replicate from few to a hundred of bytes of data can benefit from the
middleware. Recent work by Kim et al. demonstrates that external DRAMs can
be used to extend the memory capacity of a Tofino switch through RDMA [100].
One possible approach to enlarge the value size is to buffer the value to off-device
DRAM via RDMA requests.

Multi-Shard Requests. Partitioned Paxos only supports single-shards request
because sharding is most effective when requests are single-shard, and the load
among shards is balanced. However, there still be cases which require supporting
multi-shard requests (e.g., a request updating states spread into multiple shards).
Multi-shard requests require the involved shard to synchronize so that a single
shard can complete the requests. One way to synchronize the shards is using
locking mechanisms which may introduce some overhead to consensus services.

Energy Efficiency. Achieving high-performance also comes at the cost of en-
ergy. While ASICs offer higher performance than general-purpose CPUs, they
also consume more power. The problem is that applications are not always op-
erating at peak throughput, but the energy consumed by the ASICs is constant.
Then, much of energy is wasted. A management plane which monitors applica-
tion throughput and energy consumption for elastically switching between soft-
ware and hardware solutions would save a significant amount of energy.
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9.2 Final Remarks

In summary, the advent of expressive data plane programming languages will
have a profound impact on networks. One possible use of this emerging technol-
ogy is to move logic traditionally associated with the application layer into the
network itself. In the case of Paxos and similar consensus protocols, this change
could dramatically improve performance of data center infrastructure, and open
the door for new research challenges in designing network protocols.
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