38,568 research outputs found

    Hedgehog pathway mutations drive oncogenic transformation in high-risk T-cell acute lymphoblastic leukemia.

    Get PDF
    The role of Hedgehog signaling in normal and malignant T-cell development is controversial. Recently, Hedgehog pathway mutations have been described in T-ALL, but whether mutational activation of Hedgehog signaling drives T-cell transformation is unknown, hindering the rationale for therapeutic intervention. Here, we show that Hedgehog pathway mutations predict chemotherapy resistance in human T-ALL, and drive oncogenic transformation in a zebrafish model of the disease. We found Hedgehog pathway mutations in 16% of 109 childhood T-ALL cases, most commonly affecting its negative regulator PTCH1. Hedgehog mutations were associated with resistance to induction chemotherapy (P = 0.009). Transduction of wild-type PTCH1 into PTCH1-mutant T-ALL cells induced apoptosis (P = 0.005), a phenotype that was reversed by downstream Hedgehog pathway activation (P = 0.007). Transduction of most mutant PTCH1, SUFU, and GLI alleles into mammalian cells induced aberrant regulation of Hedgehog signaling, indicating that these mutations are pathogenic. Using a CRISPR/Cas9 system for lineage-restricted gene disruption in transgenic zebrafish, we found that ptch1 mutations accelerated the onset of notch1-induced T-ALL (P = 0.0001), and pharmacologic Hedgehog pathway inhibition had therapeutic activity. Thus, Hedgehog-activating mutations are driver oncogenic alterations in high-risk T-ALL, providing a molecular rationale for targeted therapy in this disease

    Ptch2/Gas1 and Ptch1/Boc differentially regulate Hedgehog signalling in murine primordial germ cell migration.

    Get PDF
    Gas1 and Boc/Cdon act as co-receptors in the vertebrate Hedgehog signalling pathway, but the nature of their interaction with the primary Ptch1/2 receptors remains unclear. Here we demonstrate, using primordial germ cell migration in mouse as a developmental model, that specific hetero-complexes of Ptch2/Gas1 and Ptch1/Boc mediate the process of Smo de-repression with different kinetics, through distinct modes of Hedgehog ligand reception. Moreover, Ptch2-mediated Hedgehog signalling induces the phosphorylation of Creb and Src proteins in parallel to Gli induction, identifying a previously unknown Ptch2-specific signal pathway. We propose that although Ptch1 and Ptch2 functionally overlap in the sequestration of Smo, the spatiotemporal expression of Boc and Gas1 may determine the outcome of Hedgehog signalling through compartmentalisation and modulation of Smo-downstream signalling. Our study identifies the existence of a divergent Hedgehog signal pathway mediated by Ptch2 and provides a mechanism for differential interpretation of Hedgehog signalling in the germ cell niche

    Could an endoneurial endothelial crosstalk between Wnt/β-catenin and Sonic Hedgehog pathways underlie the early disruption of the infra-orbital blood-nerve barrier following chronic constriction injury?

    Get PDF
    BackgroundBlood–nerve barrier disruption is pivotal in the development of neuroinflammation, peripheral sensitization, and neuropathic pain after peripheral nerve injury. Activation of toll-like receptor 4 and inactivation of Sonic Hedgehog signaling pathways within the endoneurial endothelial cells are key events, resulting in the infiltration of harmful molecules and immunocytes within the nerve parenchyma. However, we showed in a previous study that preemptive inactivation of toll-like receptor 4 signaling or sustained activation of Sonic Hedgehog signaling did not prevent the local alterations observed following peripheral nerve injury, suggesting the implication of another signaling pathway.MethodsUsing a classical neuropathic pain model, the infraorbital nerve chronic constriction injury (IoN-CCI), we investigated the role of the Wnt/β-catenin pathway in chronic constriction injury-mediated blood–nerve barrier disruption and in its interactions with the toll-like receptor 4 and Sonic Hedgehog pathways. In the IoN-CCI model versus control, mRNA expression levels and/or immunochemical detection of major Wnt/Sonic Hedgehog pathway (Frizzled-7, vascular endothelial-cadherin, Patched-1 and Gli-1) and/or tight junction proteins (Claudin-1, Claudin-5, and Occludin) readouts were assessed. Vascular permeability was assessed by sodium fluorescein extravasation.ResultsIoN-CCI induced early alterations in the vascular endothelial-cadherin/β-catenin/Frizzled-7 complex, shown to participate in local blood–nerve barrier disruption via a β-catenin-dependent tight junction protein downregulation. Wnt pathway also mediated a crosstalk between toll-like receptor 4 and Sonic Hedgehog signaling within endoneurial endothelial cells. Nevertheless, preemptive inhibition of Wnt/β-catenin signaling before IoN-CCI could not prevent the downregulation of key Sonic Hedgehog pathway readouts or the disruption of the infraorbital blood–nerve barrier, suggesting that Sonic Hedgehog pathway inhibition observed following IoN-CCI is an independent event responsible for blood–nerve barrier disruption.ConclusionA crosstalk between Wnt/β-catenin- and Sonic Hedgehog-mediated signaling pathways within endoneurial endothelial cells could mediate the chronic disruption of the blood–nerve barrier following IoN-CCI, resulting in increased irreversible endoneurial vascular permeability and neuropathic pain development

    Gli2a protein localization reveals a role for Iguana/DZIP1 in primary ciliogenesis and a dependence of Hedgehog signal transduction on primary cilia in the zebrafish

    Get PDF
    Background: In mammalian cells, the integrity of the primary cilium is critical for proper regulation of the Hedgehog (Hh) signal transduction pathway. Whether or not this dependence on the primary cilium is a universal feature of vertebrate Hedgehog signalling has remained contentious due, in part, to the apparent divergence of the intracellular transduction pathway between mammals and teleost fish. Results: Here, using a functional Gli2-GFP fusion protein, we show that, as in mammals, the Gli2 transcription factor localizes to the primary cilia of cells in the zebrafish embryo and that this localization is modulated by the activity of the Hh pathway. Moreover, we show that the Igu/DZIP1 protein, previously implicated in the modulation of Gli activity in zebrafish, also localizes to the primary cilium and is required for its proper formation. Conclusion: Our findings demonstrate a conserved role of the primary cilium in mediating Hedgehog signalling activity across the vertebrate phylum and validate the use of the zebrafish as a representative model for the in vivo analysis of vertebrate Hedgehog signalling

    Hedgehog Signalling in Androgen Independent Prostate Cancer

    Get PDF
    Objectives: Androgen-deprivation therapy effectively shrinks hormone-naïve prostate cancer, both in the prostate and at sites of distant metastasis. However prolonged androgen deprivation generally results in relapse and androgen-independent tumour growth, which is inevitably fatal. The molecular events that enable prostate cancer cells to proliferate in reduced androgen conditions are poorly understood. Here we investigate the role of Hedgehog signalling in androgen-independent prostate cancer (AIPC). Methods: Activity of the Hedgehog signalling pathway was analysed in cultured prostate cancer cells, and circulating prostate tumour cells were isolated from blood samples of patients with AIPC. Results: AIPC cells were derived through prolonged culture in reduced androgen conditions, modelling hormone therapy in patients, and expressed increased levels of Hedgehog signalling proteins. Exposure of cultured AIPC cells to cyclopamine, which inhibits Hedgehog signalling, resulted in inhibition of cancer cell growth. The expression of the Hedgehog receptor PTCH and the highly prostate cancer-specific gene DD3PCA3 was significantly higher in circulating prostate cancer cells isolated from patients with AIPC compared with samples prepared from normal individuals. There was an association between PTCH and DD3PCA3 expression and the length of androgen-ablation therapy. Conclusions: Our data are consistent with reports implicating overactivity of Hedgehog signalling in prostate cancer and suggest that Hedgehog signalling contributes to the androgen-independent growth of prostate cancer cells. As systemic anti-Hedgehog medicines are developed, the Hedgehog pathway will become a potential new therapeutic target in advanced prostate cancer.Peer reviewedFinal Accepted Versio

    Primary cilia disassembly down-regulates mechanosensitive hedgehog signalling: a feedback mechanism controlling ADAMTS-5 expression in chondrocytes

    Get PDF
    SummaryObjectiveHedgehog signalling is mediated by the primary cilium and promotes cartilage degeneration in osteoarthritis. Primary cilia are influenced by pathological stimuli and cilia length and prevalence are increased in osteoarthritic cartilage. This study aims to investigate the relationship between mechanical loading, hedgehog signalling and cilia disassembly in articular chondrocytes.MethodsPrimary bovine articular chondrocytes were subjected to cyclic tensile strain (CTS; 0.33 Hz, 10% or 20% strain). Hedgehog pathway activation (Ptch1, Gli1) and A Disintegrin And Metalloproteinase with Thrombospondin Motifs 5 (ADAMTS-5) expression were assessed by real-time PCR. A chondrocyte cell line generated from the Tg737ORPK mouse was used to investigate the role of the cilium in this response. Cilia length and prevalence were quantified by immunocytochemistry and confocal microscopy.ResultsMechanical strain upregulates Indian hedgehog expression and activates hedgehog signalling. Ptch1, Gli1 and ADAMTS-5 expression were increased following 10% CTS, but not 20% CTS. Pathway activation requires a functioning primary cilium and is not observed in Tg737ORPK cells lacking cilia. Mechanical loading significantly reduced cilium length such that cilia became progressively shorter with increasing strain magnitude. Inhibition of histone deacetylase 6 (HDAC6), a tubulin deacetylase, prevented cilia disassembly and restored mechanosensitive hedgehog signalling and ADAMTS-5 expression at 20% CTS.ConclusionsThis study demonstrates for the first time that mechanical loading activates primary cilia-mediated hedgehog signalling and ADAMTS-5 expression in adult articular chondrocytes, but that this response is lost at high strains due to HDAC6-mediated cilia disassembly. The study provides new mechanistic insight into the role of primary cilia and mechanical loading in articular cartilage

    Activation of the hedgehog pathway in advanced prostate cancer

    Get PDF
    BACKGROUND: The hedgehog pathway plays a critical role in the development of prostate. However, the role of the hedgehog pathway in prostate cancer is not clear. Prostate cancer is the second most prevalent cause of cancer death in American men. Therefore, identification of novel therapeutic targets for prostate cancer has significant clinical implications. RESULTS: Here we report that activation of the hedgehog pathway occurs frequently in advanced human prostate cancer. We find that high levels of hedgehog target genes, PTCH1 and hedgehog-interacting protein (HIP), are detected in over 70% of prostate tumors with Gleason scores 8–10, but in only 22% of tumors with Gleason scores 3–6. Furthermore, four available metastatic tumors all have high expression of PTCH1 and HIP. To identify the mechanism of the hedgehog signaling activation, we examine expression of Su(Fu) protein, a negative regulator of the hedgehog pathway. We find that Su(Fu) protein is undetectable in 11 of 27 PTCH1 positive tumors, two of them contain somatic loss-of-function mutations of Su(Fu). Furthermore, expression of sonic hedgehog protein is detected in majority of PTCH1 positive tumors (24 out of 27). High levels of hedgehog target genes are also detected in four prostate cancer cell lines (TSU, DU145, LN-Cap and PC3). We demonstrate that inhibition of hedgehog signaling by smoothened antagonist, cyclopamine, suppresses hedgehog signaling, down-regulates cell invasiveness and induces apoptosis. In addition, cancer cells expressing Gli1 under the CMV promoter are resistant to cyclopamine-mediated apoptosis. All these data suggest a significant role of the hedgehog pathway for cellular functions of prostate cancer cells. CONCLUSION: Our data indicate that activation of the hedgehog pathway, through loss of Su(Fu) or overexpression of sonic hedgehog, may involve tumor progression and metastases of prostate cancer. Thus, targeted inhibition of hedgehog signaling may have significant implications of prostate cancer therapeutics

    Matrix metalloproteinase-9 activity and a downregulated Hedgehog pathway impair blood-brain barrier function in an <i>in vitro</i> model of CNS tuberculosis

    Get PDF
    Central nervous system tuberculosis (CNS TB) has a high mortality and morbidity associated with severe inflammation. The blood-brain barrier (BBB) protects the brain from inflammation but the mechanisms causing BBB damage in CNS TB are uncharacterized. We demonstrate that Mycobacterium tuberculosis (Mtb) causes breakdown of type IV collagen and decreases tight junction protein (TJP) expression in a co-culture model of the BBB. This increases permeability, surface expression of endothelial adhesion molecules and leukocyte transmigration. TJP breakdown was driven by Mtb-dependent secretion of matrix metalloproteinase (MMP)-9. TJP expression is regulated by Sonic hedgehog (Shh) through transcription factor Gli-1. In our model, the hedgehog pathway was downregulated by Mtb-stimulation, but Shh levels in astrocytes were unchanged. However, Scube2, a glycoprotein regulating astrocyte Shh release was decreased, inhibiting Shh delivery to brain endothelial cells. Activation of the hedgehog pathway by addition of a Smoothened agonist or by addition of exogenous Shh, or neutralizing MMP-9 activity, decreased permeability and increased TJP expression in the Mtb-stimulated BBB co-cultures. In summary, the BBB is disrupted by downregulation of the Shh pathway and breakdown of TJPs, secondary to increased MMP-9 activity which suggests that these pathways are potential novel targets for host directed therapy in CNS TB
    corecore