18,811 research outputs found

    Global Modeling and Prediction of Computer Network Traffic

    Full text link
    We develop a probabilistic framework for global modeling of the traffic over a computer network. This model integrates existing single-link (-flow) traffic models with the routing over the network to capture the global traffic behavior. It arises from a limit approximation of the traffic fluctuations as the time--scale and the number of users sharing the network grow. The resulting probability model is comprised of a Gaussian and/or a stable, infinite variance components. They can be succinctly described and handled by certain 'space-time' random fields. The model is validated against simulated and real data. It is then applied to predict traffic fluctuations over unobserved links from a limited set of observed links. Further, applications to anomaly detection and network management are briefly discussed

    Estimating Dynamic Traffic Matrices by using Viable Routing Changes

    Get PDF
    Abstract: In this paper we propose a new approach for dealing with the ill-posed nature of traffic matrix estimation. We present three solution enhancers: an algorithm for deliberately changing link weights to obtain additional information that can make the underlying linear system full rank; a cyclo-stationary model to capture both long-term and short-term traffic variability, and a method for estimating the variance of origin-destination (OD) flows. We show how these three elements can be combined into a comprehensive traffic matrix estimation procedure that dramatically reduces the errors compared to existing methods. We demonstrate that our variance estimates can be used to identify the elephant OD flows, and we thus propose a variant of our algorithm that addresses the problem of estimating only the heavy flows in a traffic matrix. One of our key findings is that by focusing only on heavy flows, we can simplify the measurement and estimation procedure so as to render it more practical. Although there is a tradeoff between practicality and accuracy, we find that increasing the rank is so helpful that we can nevertheless keep the average errors consistently below the 10% carrier target error rate. We validate the effectiveness of our methodology and the intuition behind it using commercial traffic matrix data from Sprint's Tier-1 backbon

    Exact asymptotics for fluid queues fed by multiple heavy-tailed on-off flows

    Get PDF
    We consider a fluid queue fed by multiple On-Off flows with heavy-tailed (regularly varying) On periods. Under fairly mild assumptions, we prove that the workload distribution is asymptotically equivalent to that in a reduced system. The reduced system consists of a ``dominant'' subset of the flows, with the original service rate subtracted by the mean rate of the other flows. We describe how a dominant set may be determined from a simple knapsack formulation. The dominant set consists of a ``minimally critical'' set of On-Off flows with regularly varying On periods. In case the dominant set contains just a single On-Off flow, the exact asymptotics for the reduced system follow from known results. For the case of several On-Off flows, we exploit a powerful intuitive argument to obtain the exact asymptotics. Combined with the reduced-load equivalence, the results for the reduced system provide a characterization of the tail of the workload distribution for a wide range of traffic scenarios

    State space collapse and diffusion approximation for a network operating under a fair bandwidth sharing policy

    Full text link
    We consider a connection-level model of Internet congestion control, introduced by Massouli\'{e} and Roberts [Telecommunication Systems 15 (2000) 185--201], that represents the randomly varying number of flows present in a network. Here, bandwidth is shared fairly among elastic document transfers according to a weighted α\alpha-fair bandwidth sharing policy introduced by Mo and Walrand [IEEE/ACM Transactions on Networking 8 (2000) 556--567] [α(0,)\alpha\in (0,\infty)]. Assuming Poisson arrivals and exponentially distributed document sizes, we focus on the heavy traffic regime in which the average load placed on each resource is approximately equal to its capacity. A fluid model (or functional law of large numbers approximation) for this stochastic model was derived and analyzed in a prior work [Ann. Appl. Probab. 14 (2004) 1055--1083] by two of the authors. Here, we use the long-time behavior of the solutions of the fluid model established in that paper to derive a property called multiplicative state space collapse, which, loosely speaking, shows that in diffusion scale, the flow count process for the stochastic model can be approximately recovered as a continuous lifting of the workload process.Comment: Published in at http://dx.doi.org/10.1214/08-AAP591 the Annals of Applied Probability (http://www.imstat.org/aap/) by the Institute of Mathematical Statistics (http://www.imstat.org

    The on-off network traffic model under intermediate scaling

    Full text link
    The result provided in this paper helps complete a unified picture of the scaling behavior in heavy-tailed stochastic models for transmission of packet traffic on high-speed communication links. Popular models include infinite source Poisson models, models based on aggregated renewal sequences, and models built from aggregated on-off sources. The versions of these models with finite variance transmission rate share the following pattern: if the sources connect at a fast rate over time the cumulative statistical fluctuations are fractional Brownian motion, if the connection rate is slow the traffic fluctuations are described by a stable L\'evy process, while the limiting fluctuations for the intermediate scaling regime are given by fractional Poisson motion.Comment: 14

    Variable speed limits: conceptual design for Queensland practice

    Get PDF
    Variable Speed Limits (VSL) is an Intelligent Transportation Systems (ITS) control tool which can enhance traffic safety and which has the potential to contribute to traffic efficiency. Queensland's motorways experience a large volume of commuter traffic in peak periods, leading to heavy recurrent congestion and a high frequency of incidents. Consequently, Queensland's Department of Transport and Main Roads have considered deploying VSL to improve safety and efficiency. This paper identifies three types of VSL and three applicable conditions for activating VSL on for Queensland motorways: high flow, queuing and adverse weather. The design objectives and methodology for each condition are analysed, and micro-simulation results are presented to demonstrate the effectiveness of VSL
    corecore