We develop a probabilistic framework for global modeling of the traffic over
a computer network. This model integrates existing single-link (-flow) traffic
models with the routing over the network to capture the global traffic
behavior. It arises from a limit approximation of the traffic fluctuations as
the time--scale and the number of users sharing the network grow. The resulting
probability model is comprised of a Gaussian and/or a stable, infinite variance
components. They can be succinctly described and handled by certain
'space-time' random fields. The model is validated against simulated and real
data. It is then applied to predict traffic fluctuations over unobserved links
from a limited set of observed links. Further, applications to anomaly
detection and network management are briefly discussed