677 research outputs found

    Documentation administrative des universités le cas d\u27une université parisienne, un exemple pour la constitution d\u27un fonds spécifique à la bibliothèque de l\u27Institut National de la Recherche Pédagogique (La)

    Get PDF
    single server queue;service in random order;heavy-tailed distribution;waiting time asymptotics;heavy-traffic limit theoremInternational audienceWe consider the single server queue with service in random order. For a large class of heavy-tailed service time distributions, we determine the asymptotic behavior of the waiting time distribution. For the special case of Poisson arrivals and regularly varying service time distribution with index −ν, it is shown that the waiting time distribution is also regularly varying, with index 1 − ν, and the pre-factor is determined explicitly. Another contribution of the paper is the heavy-traffic analysis of the waiting time distribution in the M/G/1 case. We consider not only the case of finite service time variance, but also the case of regularly varying service time distribution with infinite variance

    Heavy-traffic asymptotics for the single-server queue with random order of service

    Get PDF

    Queue Length Asymptotics for Generalized Max-Weight Scheduling in the presence of Heavy-Tailed Traffic

    Full text link
    We investigate the asymptotic behavior of the steady-state queue length distribution under generalized max-weight scheduling in the presence of heavy-tailed traffic. We consider a system consisting of two parallel queues, served by a single server. One of the queues receives heavy-tailed traffic, and the other receives light-tailed traffic. We study the class of throughput optimal max-weight-alpha scheduling policies, and derive an exact asymptotic characterization of the steady-state queue length distributions. In particular, we show that the tail of the light queue distribution is heavier than a power-law curve, whose tail coefficient we obtain explicitly. Our asymptotic characterization also contains an intuitively surprising result - the celebrated max-weight scheduling policy leads to the worst possible tail of the light queue distribution, among all non-idling policies. Motivated by the above negative result regarding the max-weight-alpha policy, we analyze a log-max-weight (LMW) scheduling policy. We show that the LMW policy guarantees an exponentially decaying light queue tail, while still being throughput optimal

    Customer sojourn time in GI/G/1 feedback queue in the presence of heavy tails

    Full text link
    We consider a single-server GI/GI/1 queueing system with feedback. We assume the service times distribution to be (intermediate) regularly varying. We find the tail asymptotics for a customer's sojourn time in two regimes: the customer arrives in an empty system, and the customer arrives in the system in the stationary regime. In particular, in the case of Poisson input we use the branching processes structure and provide more precise formulae. As auxiliary results, we find the tail asymptotics for the busy period distribution in a single-server queue with an intermediate varying service times distribution and establish the principle-of-a-single-big-jump equivalences that characterise the asymptotics.Comment: 34 pages, 4 figures, to appear in Journal of Statistical Physic

    Heavy traffic analysis of a polling model with retrials and glue periods

    Full text link
    We present a heavy traffic analysis of a single-server polling model, with the special features of retrials and glue periods. The combination of these features in a polling model typically occurs in certain optical networking models, and in models where customers have a reservation period just before their service period. Just before the server arrives at a station there is some deterministic glue period. Customers (both new arrivals and retrials) arriving at the station during this glue period will be served during the visit of the server. Customers arriving in any other period leave immediately and will retry after an exponentially distributed time. As this model defies a closed-form expression for the queue length distributions, our main focus is on their heavy-traffic asymptotics, both at embedded time points (beginnings of glue periods, visit periods and switch periods) and at arbitrary time points. We obtain closed-form expressions for the limiting scaled joint queue length distribution in heavy traffic and use these to accurately approximate the mean number of customers in the system under different loads.Comment: 23 pages, 2 figure
    corecore