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Abstract

We consider the waiting time distribution of the Gl/Gl /1 queue where customers
are served in random order; inter-arrival and service times may have finite or infinite
variance. Our main result shows that the waiting time in heavy traffic can be written
as a product of two random variables. Our proof is based on the intuitively appealing
fact that in heavy traffic, the queue length stays constant during the sojourn time
of a customer. For the special finite variance case, our result settles a conjecture of
Kingman (1982).
2000 Mathematics Subject Classification: 60K25.
Keywords f3 Phrases: single-server queue, joint queue length and workload distribu
tion, random order of service, heavy traffic, snapshot principle, state-space collapse.

1 Introduction

In this paper we consider the GIIGIII queue where customers are served in random order:
At the completion of a service, the server randomly takes one of the waiting customers into
service. Classical papers on queues with random order of service (ROS) are Kingman [10],
Palm [13] and Pollaczek [14]. Recently, the ROS discipline has received renewed interest.
For example, collision resolution protocols in cable access networks operate in a manner
quite similar to ROS; this was one motivation of the recent paper of Boxma et al. [4].
Other recent papers are by Flatto [7] and Borst et al. [2].
The present study is inspired by [4]. That paper investigates several asymptotic properties
of the GIIGIII ROS queue; in particular the tail of the steady-state waiting time WROS

under heavy-tailed assumptions. They also consider the behavior of W ROS when the
system is in heavy traffic: Under the assumption of Poisson arrivals, it is shown in [4] that
there exists a scaling function !l(p) as p -t 1 such that

(1.1)
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Here, Y is an exponential variable with mean 1, and W FCFS is the corresponding heavy
traffic limit of the workload (which is equal to the waiting time in FCFS). The derivation
in [4] is based on Laplace-transform methods. A similar result was proven by Kingman [10]
for the MIGl1 queue under more stringent conditions on the service-time distribution.
Twenty years after the seminal paper [10], Kingman wrote an intriguing paper [12] in
which he conjectured that an analogue of (1.1) should hold in the GIIGIII queue.
The main goal of this paper is to settle that conjecture. More in particular, we present
an insightful proof of (1.1), which does not need the assumption of Poisson arrivals. The
proof is insightful, since it makes the heuristics outlined in Kingman [12] rigorous. As
Kingman argues in his paper [12], if second moments of service times and inter-arrival
times exist, the queue length (which is the same under ROS and FCFS) fluctuates on a
time scale of 0(1/(1 - p)2) when p~ 1. Since the waiting time is of the order 1/(1 - p),
the fluctuations of the queue length may be ignored. In the heavy traffic literature, this
is known as the "snapshot principle". In Lemma 4.1 we make this precise and show that
this line of thought is still valid if the finite-variance assumptions of Kingman [12] do not
hold. Obtaining heavy traffic limit theorems for queues with heavy tails is currently one
of the main challenges in queueing theory; see the recent monograph of Whitt [16].
This paper is organized as follows. In Section 2 we introduce some notation, and state
our heavy traffic assumptions. Section 3 treats the heavy traffic behavior of the joint
queue length and workload distribution, which may be of independent interest, since these
processes also concern FCFS. In particular, we show that the stationary queue length and
waiting time in heavy traffic exhibit a form of state space collapse - even in the heavy-tailed
case. This complements recent process-level results in Whitt [16]. Our main result, an
analogue of Equation (1.1), is stated and proven in Section 4.

2 Preliminaries: The workload in heavy traffic

In this section we consider the steady-state (w.r.t. customer arrivals) workload Wand
queue length Q - as seen by an arriving customer. Observe that the workload and queue
length processes are identical for the FCFS and ROS disciplines. Thus, we can represent
the steady-state workload as follows:

W = supSn,
n2:0

here Sn = L:~=l Xi, n 2: 1, and Xi = B i - Ai, where B i and Ai, i 2: 1, are i.i.d. sequences
of service and inter-arrival times. Write p = E[B1JlE[A1]. Since we are interested in the
performance of the CIICII1 ROS queue in heavy traffic, we will let p ~ 1.
For this purpose, it is convenient to index all random variables by r; in the r-th system,
inter-arrival times and service times are given by Ai,r and Bi,r. Define the process

Sr(t) = Sr,[tj'

Our first assumption is that the input process Sr(t) satisfies a functional central limit
theorem, and that Pr ~ 1. More precisely, we assume

Assumption 2.1 (Heavy traffic.) There exist normalizing constants Cr and dr = rer such

that the normalized process

Sr(t) = c;:l(Sr(drt) - [drt](E[B1,r] - E[A1,r]))
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converges in D[O, (0) to an a-stable Levy process X(t), t 2:: 0, a E (1,2]. Moreover,

Ai,r !!:.. Ai, Bi,r !!:.. Bi, E[AI,r] ~ E[AI], E[BI,r] -t E[BI] = E[AI] in such a way that
r(l- Pr) = r(l- E[Br]/E[Ar]) -t 1.

Throughout this paper (in particular in Assumption 2.1 above) we use the following n~

tational conventions. If a limit is taken (denoted by -t), it is always the limit as r -t 00,

unless stated otherwise. A similar statement applies to order symbols. With!!:.. we mean
convergence in distribution. In Assumption 2.1 given above, convergence in D[O, (0) is
w.r.t. the (standard) Skorokhod Jr-topology. More information about this space and its
various topologies can be found in Billingsley [5] and Whitt [16].
Two main examples in which the above condition is satisfied are:

Example L: The light-tailed (finite variance) case
Let Bi,r = Bi, and Ai,r = AilPr' Suppose that E[AI] = E[BI], and E[At], E[B?] < 00.

In this case, Assumption 2.1 is satisfied, and one can choose Cr = r, dr = r2. The limiting
process is Brownian motion (i.e. a = 2).

Example H: Heavy-tailed service times
Let again Bi,r = Bi, Ai,r = AilPr, and E[AI] = E[BI]. Moreover, let P(BI > x) =
L(x)x-V ,l < v < 2, with L slowly varying, and assume that E[AiJ < 00 for some TJ > v.

In this case, Assumption 2.1 is satisfied with a = v, and scaling constants Cr chosen such
that CrP(B I > er) '" 11r and dr = err. Thus, Cr is regularly varying of index 1/(v - 1)
and dr is regularly varying with index vI (v - 1).

Other sufficient conditions for Assumption 2.1 to hold are provided in, for example, Resnick
& Samorodnitsky [15], and Whitt [16].
Consider now the workload Wr • Since

we have

=

Since, in view of Assumption 2.1, Sr(t) !!:.. X(t), and c;.-l[drt](E[BI,r] - E[AI,r]) -t -t,
one is tempted to conclude that Wr -t SUPt>o(X(t) - t) as r -t 00. However, this is
not a trivial matter. A reason for this is that the functional suPt>o is not continuous in
D[O, (0). Thus, one can not apply the continuous mapping theorem. In general, additional
regularity conditions are needed. Since the focus of this work is on the ROS policy, we will
just assume that the problem of establishing a heavy-traffic limit theorem for the workload
is settled.

Assumption 2.2 There exists a random variable W* with a continuous distribution such
that

Add
Wr -t W* = supX(t) - t.

t~O
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This assumption turns out to be quite natural in the next two sections, and is valid in our
two motivating examples given above:

Example L (continued)

In the finite variance setting as given above, Kingman [9, 11] has shown that

P((ljr)Wr > x) -+ P(W* > x) = e-cx , (2.2)

(2.3)

with c = 2E[A1Jj(Var[A1] + Var[B1]); see Chapter X.7 of Asmussen [1] for a textbook
treatment.

Example H (continued)

This example falls in the framework of Resnick & Samorodnitsky [15] (their conditions
(A)-(C) are easily shown to hold for our example). In particular, using Corollary 2.2 of
[15] we obtain

P(c-1VV; > x) -+ P(W* > x) =f (_a)n xn(v-1)
r r n=or(1+n(v-1)) '

with a = (v - 1)jr(2 - v), and r(-) the Gamma function. The sum on the right-hand
side is known as the Mittag Leffler function; see Furrer et. al [8] for related result in a risk
model. Note that the Laplace-Stieltjes transform of W* is given by

E[ -sw*] a
e = a + 811-1'

(2.4)

Under more stringent assumptions, the result (2.3) is also obtained by Boxma & Cohen
[3].

3 The joint workload and queue-length distribution

The present section focuses on the steady-state (again w.r.t. arrival epochs) queue length
Qr in heavy traffic. More precisely, we consider the joint distribution of Qr and Wr as
r -+ 00.

Let Qr = c;:lQr be the rescaled queue length. Furthermore, let B; be the residual service

time of the customer in service. (Put B; =°if Qr = 0). Define B; = C;:l B;. We have
the following identity:

Qr

Wr = B; + LBi,r.
i=l

(3.5)

In this expression, the Bi,r are independent of the pair (Qr, B;). Since it is intuitively
clear that Br;. -+ 0, one is tempted to conclude from Equation (3.5) that Qr and Wr are
equal up to a multiplicative constant when r -+ 00.

However, it is not easy to make this rigorous. For example, a problem is that Qr and B;

are not independent. Therefore, we need another representation for the joint distribution
of Wr and Qr. This representation is given by the following lemma, which may be of
independent interest.
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Lemma 3.1 For any k ;::: 1, y ;::: 0,

P(Qr ;::: k; Wr > y) = P(Wr + Br > Tr,k; max(Wr + Sk, l~~k Si) > y).

Proof
This result, as well as its proof, is an extension of Theorem XA.3 of Asmussen (2003). Let
Qr,n be the queue length seen by the n-th arrival in the r-th system and similarly, let
Wr,n be the amount of work in the system right before the n-th arrival.
As in Asmussen (2003), we observe that

{Qr,n+k ;::: k} = {Tr,n+k ::; Tr,n + Wr,n + Br,n},

where Tr n = Ar 1 + ... + Arn' We now express Wrn+k in terms of Wrn' From Lindley's
'" l ,

recursion, it readily follows that

{Wrn+k > y} = {max(Wr n + Sr n+k - Sr n, max Sr n+i - Sr n) > y}., '" l$i$k' ,

The result now follows by combining the two events, taking probabilities, letting n -t 00,

and observing that the vector (Qr,n, Wr,n) weakly converges to (Qr, Wr).
o

We are now ready to present the main result of this section.

Proposition 3.1 Suppose Assumptions 2.1 and 2.2 hold. Then

Proof
First, we prove joint convergence of (Qr, Wr). From Lemma 3.1, we observe that

P(Qr > X; Wr > y) = P(Wr + Br > Tr [xc]; max(Wr + Sr [xc], max Sri) > y).
, r , r l$i$[xcr] ,

Because of the strong law of large numbers we have (i) Tr,[xcr]/er -t xE[A] a.s.; (ii)
Sr[xcr]-t 0 a.s.; (iii) maxl$i$[xcr] Sr,i -t 0 a.s.. Combining (i), (ii) and (iii) we obtain

P(Qr > X; Wr > y) -t P(W* > E[A]x; W* > y).

This implies convergence in distribution of (Qr, Wr) to (1/E[A], l)W*.
It remains to consider the convergence of Hi-. For this, we use (3.5) to obtain

Using the established convergence for (Wr , Qr) and the strong law of large numbers, it is
straightforward to show that

erQr

(Wr,c;l L Bi,r) .!!; (1, 1)W*.
i=l

The desired statement is now immediate.
o
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4 Main result

Let WrRos be the steady-waiting time of a customer in the GIIGIII ROS queue. Invoking
Assumption 2.1, we can define the scaled waiting time

W' ROS = c-IWROS
r r r .

In this section we prove the following result. Let Y be an exponential random variable
with mean 1, which is independent of everything else.

Theorem 4.1 Assume that Assumptions 2.1 and 2.2 hold. Then

W!WS ~ W~os = YW*.

Before we give a proof of Theorem 4.1, we give two applications:
Example L (continued)

Recall that Bi,r = Bi, Ai,r = Adpr, E[AI ] = E[BI ], and E[Ail, E[BIl < 00. Combining
Theorem 4.1 and (2.2) we obtain

P((I/r)Wr
Ros > x) ~ P(YW* > x) = 100

e-U-CX/Udu = 2JC"XKI (2JC"X), (4.6)

with K I (x) the modified Bessel function of the second kind.

Example H (continued)

Recall that the setting in this example is Bi,r = Bi , Ai,r = AdPr, and E[AI ] = E[BI ].

P(BI > x) = L(x)x-V
, 1 < 11< 2, and E[Ai] < 00 for some fJ > II. Combining Theorem

4.1 with (2.3) we obtain

p(c;:IWr
ROS > x) ~100

e-X/YdP(W* ::; y) = 100

e-YP(W* > xly)dy,

where the distribution of W* is given by the right-hand side of (2.3). If II is irrational,
one can rewrite the above integral (using r(1 - y) = 1rI (r(y) sin y)) to obtain

p(c-IWROS > x) ~ f 1r(-a)n. Xn(v-l).
r r n=O sin(1rn(1I - 1))r(n(1I - 1))r(1 + n(1I - 1))

It is also possible to obtain heavy traffic approximations of Wr in the heavy-tailed case
when the condition E[A1J] < 00 is violated, see e.g. Cohen [6]. These results can be com
bined with Theorem 3.1 to get the corresponding heavy-traffic limit for WrRos.

We now turn to a proof of Theorem 4.1. Our proof relies on the following crucial lemma,
for which we need to introduce some more notation. Let Qr(t) be the number of customers
at time t in the r-th system, and take Qr(O) = Qr. Define also the scaled queue length
process Qr(t) = c;:IQr(t).

Lemma 4.1 Assume that Assumptions 2.1 and 2.2 hold. Then, for every fixed M E
(0, (0) and every 'Y > 0,

P( sup IQr(t) - Qr(O)1 > 'Y) ~ O.
tE[O,Mcr ]
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In words, this lemma states that the scaled queue length process does not fluctuate much
between time 0 and MCr. Since waiting times will be shown to be of order Cr, this lemma
shows that the snapshot principle as desribed in the introduction is indeed valid.

Proof
Fix M and take an arbitrary 'TJ > O. Note that

P( sup IQr(t) - Qr(O)1 > /,)
tE[O,Mcr ]

< P(Qr(t):s 'TJ) + P( sup IQr(t) - Qr(O)1 > /" Qr(t) > 'TJ).
tE[O,Mcr ]

Note that the first probability converges to 0 for any'TJ > 0, using Proposition 2.1 and the

fact that P(Q* > 0) = P(W* > 0) = l.
We now proceed by using a variation of the argument made in Lemma 3.1 of [4J.
Consider the event Er,8 given by

Er,8 = {Qr(t) E [(1- 5)Qr(O) - (1 - Pr + 5)t, (1 + 5)Qr(O) - (1 - Pr - 5)tj, 0 < t < M Cr}.

By the strong law of large numbers, for every 8 > 0 sufficiently small (w.r.t. 'TJ) there
exists a r* = r(5, 'TJ) such that

P(Er,8 IQr(t) > 'TJ) > 1 - 5, r ~ r*.

It is not difficult to show that, under E r ,8,

sup IQr(t) - Qr(O)1 :s 5(Qr(0) + M).
tE[O,Mcr ]

Thus, we conclude that for every 'TJ> 0 and for every 8 « 'TJ, 5> 0,

P( sup IQr(t) - Qr(O)1 > /,)
tE[O,Mcr ]

< P(Qr(t):s 'TJ) + P( sup IQr(t) - Qr(O)1 > /" Qr(t) > 'TJ)
tE[O,Mcr ]

< P(Qr(O):S 'TJ) + P(Eg) + P(8(Qr(0) + M) > /,)
-+ P(Q*:S 'TJ) + 0 + P(Q* + M > /,/8),

as r -+ 00. Finally, let first 5 10 and then 'TJ 10 to complete the proof.
o

We are now ready to prove Theorem 4.l.
The idea behind the proof is simple: Lemma 4.1 implies that, on the time scale Cr, the
queue length process hardly changes in heavy traffic (Le., as r -+ 00). Thus, a snapshot
principle holds: in heavy traffic, a customer does not see any change in the queue lenght
during its waiting time. In the ROS context, this means that the probability of being
the next customer in service is l/Qr(O) throughout its waiting time. This implies that its
waiting time is approximately given by

G(l/Qr(O))

Wr
ROS

,::;;j L Br,i,
i=l
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with G(p) a geometrically distributed random variable with rate p. Since pG(p) weakly
converges to the exponentially distributed random variable Y, this implies that, as r ~ 00,

wr
ROS ~ YE[B]W*/E[A] = YW*.

Proof of Theorem 4.1
According to Lemma 4.1 we have

(4.7)

as r ~ 00, where the event Ar(r, y) is given by

Under this event, it is possible to get tractable lower and upper bounds for Wr
ROS . The

remainder of this proof consists of deriving these bounds and showing that they behave
similarly when r ~ 00.

Let G(p),p E (0,1) be a family of geometrically distributed random variables with success
parameter p, independent of everything else. Define the random variable

1

Let G-y,r be a "mixed" geometric random variable, i.e.,

P(G-y,r > u) =11

P(G(p) > u)dP(p-y,r :S p).

Then, because of the nature of the ROS discipline, the following inequalities are valid:

G-y,r

p(W!DS > y; Ar(r, y)) :S P(B; + c;1 :L Bi,r > y; Ar(r, y)),
i=l

G--y,r

P(W[WS > y; Ar(r, y)) ~ P(B; + c;1 :L Bi,r > Yi Ar(-'Y, y)).
i=1

(4.8)

(4.9)

Since G-y,r ~ 00 as r ~ 00, we can simplify the above lower and upper bounds using the
strong law of large numbers for L~=1 Bi,r. Combining this once more with Lemma 4.1 we
then obtain, for each f > 0, the following upper bound from (4.8):

(4.10)

The lower bound (4.9) can be simplified even further since B; ~ 0:

(4.11)

It thus suffices to consider the weak convergence properties of the random variable G-y,r =
c;IG-y,r for any fixed 'Y in a neighborhood of O. More precisely, we need to investigate the
joint convergence properties of the vector (B;, G-y,r)'
This is done in the following Lemma, which is proven after having finished the proof of
Theorem 4.1. Define Q* = W* / E[A] = W* / E[B].
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Lemma 4.2 If Assumptions 2.1 and 2.2 are satisfied, then

A A d +
(B~, G-y,r) -t (0, Y(Q* + ,) ).

Combining Lemma 4.2 with (4.7) and (4.10) we obtain, for every, > 0,

lim sup P(Wr
ROS > y) ::; P(Y(Q* + ,)E[B](l + E) > y).

Since this is true for any choice of " E > °we obtain,

lim sup p(WfOS > y) ::; P(YW* > y).
r->oo

Similarly, from Lemma 4.2 with (4.7) and (4.10) we obtain, for every, > 0,

liminf p(WfwS > y) ~ P(Y(Q* - ,)+E[B](1 - E) > y).
r->oo

Since this is true for any choice of" E > 0, we obtain

liminf P(Wr
ROS > y) ~ P(YW* > y).

r->oo

Combining (4.12) and (4.13) completes the proof.

It remains to prove Lemma 4.2.

Proof of Lemma 4.2
Take 5 > 0, and consider the probability

Since (B;,p-y,r) ~ (0, 1/(Q* + ,)+), we immediately obtain, by Fatou's lemma,

liminf P(B~ < 5, c:;lG(p-y r) > x) ~ P(Y(Q* + ,)+ > x).
r-+oo '

(4.12)

(4.13)

o

To get an upper bound, note that (1 - a)b ::; e-ab if a E (0,1]. In addition, take E > 0,
and note that c;:-l ::; E for r large enough. Thus, for r large enough, we conclude that

P(B~ < 5, c:;lG(P-y,r) > x) ::; l Cr

e-(x-E)YdP(Crp-y,r::; y; B: < 5).
y=o

From the weak convergence of (B~, CrP-y,r) we finally conclude that, for every E > 0,

lim sup P(B~ < 5, c:;lG(P-y,r) > x) ::; P(Y(Q* + ,)+ > X - E).
r->oo

Letting E 1°completes the proof.
o
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