8 research outputs found

    Heart Beat Characterization from Ballistocardiogram Signals using Extended Functions of Multiple Instances

    Full text link
    A multiple instance learning (MIL) method, extended Function of Multiple Instances (eeFUMI), is applied to ballistocardiogram (BCG) signals produced by a hydraulic bed sensor. The goal of this approach is to learn a personalized heartbeat "concept" for an individual. This heartbeat concept is a prototype (or "signature") that characterizes the heartbeat pattern for an individual in ballistocardiogram data. The eeFUMI method models the problem of learning a heartbeat concept from a BCG signal as a MIL problem. This approach elegantly addresses the uncertainty inherent in a BCG signal e. g., misalignment between training data and ground truth, mis-collection of heartbeat by some transducers, etc. Given a BCG training signal coupled with a ground truth signal (e.g., a pulse finger sensor), training "bags" labeled with only binary labels denoting if a training bag contains a heartbeat signal or not can be generated. Then, using these bags, eeFUMI learns a personalized concept of heartbeat for a subject as well as several non-heartbeat background concepts. After learning the heartbeat concept, heartbeat detection and heart rate estimation can be applied to test data. Experimental results show that the estimated heartbeat concept found by eeFUMI is more representative and a more discriminative prototype of the heartbeat signals than those found by comparison MIL methods in the literature.Comment: IEEE EMBC 2016, pp. 1-

    Sleep stage classification using hydraulic bed sensor

    Get PDF
    Sleep monitoring can help physicians diagnose and treat sleep disorders. Polysomnography(PSG) system is the most accurate and comprehensive method widely used in sleep labs to monitor sleep. However, it is expensive and not comfortable, patients have to wear numerous devices on their body surface. So a non-invasive hydraulic bed sensor has been developed to monitor sleep at home. In this thesis, the sleep stage classification problem using hydraulic bed sensor was proposed. The sleep process divided into three classes, awake, rapid eye movement (REM) and non-rapid eye movement (NREM). The ground truth sleep stage came from regularly scheduled PSG studies conducted by a sleep-credentialed physician at the Sleep Center at the Boone Hospital Center (BHC) in Columbia, Missouri. And we were allowed to install our hydraulic bed sensors to their study protocol for consenting patients. The heart rate variability (HRV) features, respiratory rate (RV) features, and linear frequency cepstral coefficient(LFCC) were extracted from the bed sensors' signals. In this study, two scenarios were applied, put all subjects together and leave one subject out. In each scenario, two types of classification structures were implemented, a single classifier and a multi-layered hierarchical method. The results show both potential benefits and limitations for using the hydraulic bed sensors to classify sleep stages.Includes bibliographical reference

    A Comparison of Remote Monitoring and Direct Observations on the Implementation of a Motivational System to Improve Independent Living Skills for People with Intellectual and Developmental Disabilities

    Get PDF
    An increasing number of people with intellectual and developmental disabilities have opportunities to live in apartments and homes in the community with assistance from other people. The purpose of this research was to examine whether a remote video monitoring system with cameras linked to an off-site facility, in conjunction with a token system, could be used to maintain a high level of cleanliness of three apartments. Two people with intellectual and developmental disabilities lived in each apartment. Data were recorded daily in the apartments using the video monitoring system as well as in-vivo observations. The token system was implemented in each of the homes within a multiple baseline design. Results indicated that the motivational system was effective with some of the participants. Additionally, the video monitoring system provided an estimate of the cleanliness of the apartments, but a more accurate measure of the cleanliness was obtained through in-vivo observations. Video monitoring systems may aid in the implementation of some interventions, but certain behaviors may require in-vivo observations to ensure precise and valid measurement

    Data-driven methods for analyzing ballistocardiograms in longitudinal cardiovascular monitoring

    Get PDF
    Cardiovascular disease (CVD) is the leading cause of death in the US; about 48% of American adults have one or more types of CVD. The importance of continuous monitoring of the older population, for early detection of changes in health conditions, has been shown in the literature, as the key to a successful clinical intervention. We have been investigating environmentally-embedded in-home networks of non-invasive sensing modalities. This dissertation concentrates on the signal processing techniques required for the robust extraction of morphological features from the ballistocardiographs (BCG), and machine learning approaches to utilize these features in non-invasive monitoring of cardiovascular conditions. At first, enhancements in the time domain detection of the cardiac cycle are addressed due to its importance in the estimation of heart rate variability (HRV) and sleep stages. The proposed enhancements in the energy-based algorithm for BCG beat detection have shown at least 50% improvement in the root mean square error (RMSE) of the beat to beat heart rate estimations compared to the reference estimations from the electrocardiogram (ECG) R to R intervals. These results are still subject to some errors, primarily due to the contamination of noise and motion artifacts caused by floor vibration, unconstrained subject movements, or even the respiratory activities. Aging, diseases, breathing, and sleep disorders can also affect the quality of estimation as they slightly modify the morphology of the BCG waveform.Includes bibliographical reference

    Unobtrusive Monitoring of Heart Rate and Respiration Rate during Sleep

    Get PDF
    Sleep deprivation has various adverse psychological and physiological effects. The effects range from decreased vigilance causing an increased risk of e.g. traffic accidents to a decreased immune response causing an increased risk of falling ill. Prevalence of the most common sleep disorder, insomnia can be, depending on the study, as high as 30 % in adult population. Physiological information measured unobtrusively during sleep can be used to assess the quantity and the quality of sleep by detecting sleeping patterns and possible sleep disorders. The parameters derived from the signals measured with unobtrusive sensors may include all or some of the following: heartbeat intervals, respiration cycle lengths, and movements. The information can be used in wellness applications that include self-monitoring of the sleep quality or it can also be used for the screening of sleep disorders and in following-up of the effect of a medical treatment. Unobtrusive sensors do not cause excessive discomfort or inconvenience to the user and are thus suitable for long-term monitoring. Even though the monitoring itself does not solve the sleeping problems, it can encourage the users to pay more attention on their sleep. While unobtrusive sensors are convenient to use, their common drawback is that the quality of the signals they produce is not as good as with conventional measurement methods. Movement artifacts, for example, can make the detection of the heartbeat intervals and respiration impossible. The accuracy and the availability of the physiological information extracted from the signals however depend on the measurement principle and the signal analysis methods used. Three different measurement systems were constructed in the studies included in the thesis and signal processing methods were developed for detecting heartbeat intervals and respiration cycle lengths from the measured signals. The performance of the measurement systems and the signal analysis methods were evaluated separately for each system with healthy young adult subjects. The detection of physiological information with the three systems was based on the measurement of ballistocardiographic and respiration movement signals with force sensors placed under the bedposts, the measurement of electrocardiographic (ECG) signal with textile electrodes attached to the bed sheet, and the measurement of the ECG signal with non-contact capacitive electrodes. Combining the information produced by different measurement methods for improving the detection performance was also tested. From the evaluated methods, the most accurate heartbeat interval information was obtained with contact electrodes attached to the bed sheet. The same method also provided the highest heart rate detection coverage. This monitoring method, however, has a limitation that it requires a naked upper body, which is not necessarily acceptable for everyone. For respiration cycle length detection, better results were achieved by using signals recorded with force sensors placed under a bedpost than when extracting the respiration information from the ECG signal recorded with textile bed sheet electrodes. From the data quality point of view, an ideal night-time physiological monitoring system would include a contact ECG measurement for the heart rate monitoring and force sensors for the respiration monitoring. The force sensor signals could also be used for movement detection
    corecore