7 research outputs found

    Heartbeat classification fusing temporal and morphological information of ECGs via ensemble of classifiers

    Get PDF
    ©2019. This manuscript version is made available under the CC-BY-NC-ND 4.0 license https://creativecommons.org/licenses/by-nc-nd/4.0/. This version of the article: Mondéjar-Guerra, V., Novo, J., Rouco, J., Penedo, M. G., & Ortega, M. (2019). “Heartbeat classification fusing temporal and morphological information of ECGs via ensemble of classifiers” has been accepted for publication in Biomedical Signal Processing and Control, 47, 41–48. The Version of Record is available online at: https://doi.org/10.1016/j.bspc.2018.08.007.[Abstract]: A method for the automatic classification of electrocardiograms (ECG) based on the combination of multiple Support Vector Machines (SVMs) is presented in this work. The method relies on the time intervals between consequent beats and their morphology for the ECG characterisation. Different descriptors based on wavelets, local binary patterns (LBP), higher order statistics (HOS) and several amplitude values were employed. Instead of concatenating all these features to feed a single SVM model, we propose to train specific SVM models for each type of feature. In order to obtain the final prediction, the decisions of the different models are combined with the product, sum, and majority rules. The designed methodology approaches are tested on the public MIT-BIH arrhythmia database, classifying four kinds of abnormal and normal beats. Our approach based on an ensemble of SVMs offered a satisfactory performance, improving the results when compared to a single SVM model using the same features. Additionally, our approach also showed better results in comparison with previous machine learning approaches of the state-of-the-art.This work was partially supported by the Research Project RTC-2016-5143-1, financed by the Spanish Ministry of Economy, Industry and Competitiveness and the European Regional Development Fund (ERDF). Also, this work has received financial support from the ERDF and the Xunta de Galicia, Centro singular de investigación de Galicia accreditation 2016–2019, Ref. ED431G/01; and Grupos de Referencia Competitiva, Ref. ED431C 2016-047.Xunta de Galicia; ED431G/01Xunta de Galicia; ED431C 2016-04

    Recognition and Evaluation of Heart Arrhythmias via a General Sparse Neural Network

    Get PDF
    In clinical use, an electrocardiogram (ECG) is an essential medical tool for assessing heart arrhythmias. Thousands of human beings worldwide are affected by different cardiac problems nowadays. As a consequence, studying the features of the ECG pattern is critical for detecting a wide range of cardiac diseases. The ECG is a test which assesses the intensity of the electrical impulses in the circulatory system. In the present investigation, detection and examination of arrhythmias in the heart on the  system using GSNNs (General sparsed neural network classifier) can be carried out[1]. In this paper, the methodologies of support vector regression(SVR), neural mode decomposition(NMD), Artificial Neural Network (ANN), Support Vector Machine(SVM) and are examined. To assess the suggested structure, three distinct ECG waveform situations are chosen from the MIT-BIH arrhythmia collection. The main objective of this assignment is to create a simple, accurate, and simply adaptable approach for classifying the three distinct heart diseases chosen. The wavelet transform Db4 is used in the present paper to obtain several features from an ECG signal. The suggested setup was created using the MATLAB programme. The algorithms suggested are 98% accurate for forecasting cardiac arrhythmias, which is greater than prior techniques

    An Empiric Analysis of Wavelet-Based Feature Extraction on Deep Learning and Machine Learning Algorithms for Arrhythmia Classification

    Get PDF
    The aberration in human electrocardiogram (ECG) affects cardiovascular events that may lead to arrhythmias. Many automation systems for ECG classification exist, but the ambiguity to wisely employ the in-built feature extraction or expert based manual feature extraction before classification still needs recognition. The proposed work compares and presents the enactment of using machine learning and deep learning classification on time series sequences. The two classifiers, namely the Support Vector Machine (SVM) and the Bi-directional Long Short-Term Memory (BiLSTM) network, are separately trained by direct ECG samples and extracted feature vectors using multiresolution analysis of Maximal Overlap Discrete Wavelet Transform (MODWT). Single beat segmentation with R-peaks and QRS detection is also involved with 6 morphological and 12 statistical feature extraction. The two benchmark datasets, multi-class, and binary class, are acquired from the PhysioNet database. For the binary dataset, BiLSTM with direct samples and with feature extraction gives 58.1% and 80.7% testing accuracy, respectively, whereas SVM outperforms with 99.88% accuracy. For the multi-class dataset, BiLSTM classification accuracy with the direct sample and the extracted feature is 49.6% and 95.4%, whereas SVM shows 99.44%. The efficient statistical workout depicts that the extracted feature-based selection of data can deliver distinguished outcomes compared with raw ECG data or in-built automatic feature extraction. The machine learning classifiers like SVM with knowledge-based feature extraction can equally or better perform than Bi-LSTM network for certain datasets

    Research on Multimodal Fusion Recognition Method of Upper Limb Motion Patterns

    Get PDF
    In order to solve the problems of single movement pattern recognition information and low recognition accuracy of multijoint upper limb exoskeleton rehabilitation training, a multimodal information fusion method with human surface electromyography (sEMG) and electrocardiogram (ECG) was proposed, and an Inception-Sim model for upper limb motion pattern recognition was designed. Integrating the advantages of multimodal information, inspired by the convolutional neural network processing image classification problem, the original signal was converted into a Gramian angular summation/difference fields-histogram of oriented gradient (GASF/GADF-HOG) image based on the principle of Grameen angle superposition/difference field, and the directional gradient histogram feature of the GASF/GADF image was extracted. The Inception-Sim model was constructed based on the Inception V3 model, and the human motion pattern recognition was completed on the basis of the transfer learning network. VGG16, ResNet-50, and other backbone networks were selected as comparison models. The recognition accuracy of each motion pattern for all participants reaches up to 90%, which is better than that of the control model. The average iteration speed of the proposed Inception-Sim model improved by about 21% compared to the control model. The experimental results show that the proposed multimodal information fusion recognition method can improve the accuracy and iteration speed of the upper limb motion recognition mode and then improve the effect of upper limb rehabilitation training

    Preface

    Get PDF
    corecore