648 research outputs found

    1D Convolutional Neural Network for Detecting Ventricular Heartbeats

    Get PDF
    This paper shows a novel approach for detecting ventricular heartbeats using a 1D Convolutional Neural Network (1D-CNN). The algorithm input is the raw ECG signal, i.e., no signal pre-processing nor feature extraction are involved. The output of the 1D-CNN is filtered using a combination of linear and nonlinear filters to produce the final output. The MIT-BIH arrhythmia database was used for both algorithm training/tuning and evaluation. The assessment methodology followed the interpatient paradigm, where the algorithm was trained and evaluated using independent subsets. The performance of the proposed method was evaluated for two tasks; QRS detection, and heartbeat classification. QRS detection resulted in a sensitivity of 99.0% and a positive predictivity of 96.5%. The performance assessment of the ventricular ectopic beat detection resulted in a sensitivity of 85.8% and a positive predictivity of 64.5%. Although there is still room for improvement, the results suggest that convolutional neural networks are a promising approach for building heartbeat classifiers

    Short-segment heart sound classification using an ensemble of deep convolutional neural networks

    Get PDF
    This paper proposes a framework based on deep convolutional neural networks (CNNs) for automatic heart sound classification using short-segments of individual heart beats. We design a 1D-CNN that directly learns features from raw heart-sound signals, and a 2D-CNN that takes inputs of two- dimensional time-frequency feature maps based on Mel-frequency cepstral coefficients (MFCC). We further develop a time-frequency CNN ensemble (TF-ECNN) combining the 1D-CNN and 2D-CNN based on score-level fusion of the class probabilities. On the large PhysioNet CinC challenge 2016 database, the proposed CNN models outperformed traditional classifiers based on support vector machine and hidden Markov models with various hand-crafted time- and frequency-domain features. Best classification scores with 89.22% accuracy and 89.94% sensitivity were achieved by the ECNN, and 91.55% specificity and 88.82% modified accuracy by the 2D-CNN alone on the test set.Comment: 8 pages, 1 figure, conferenc

    Classification of Arrhythmia by Using Deep Learning with 2-D ECG Spectral Image Representation

    Full text link
    The electrocardiogram (ECG) is one of the most extensively employed signals used in the diagnosis and prediction of cardiovascular diseases (CVDs). The ECG signals can capture the heart's rhythmic irregularities, commonly known as arrhythmias. A careful study of ECG signals is crucial for precise diagnoses of patients' acute and chronic heart conditions. In this study, we propose a two-dimensional (2-D) convolutional neural network (CNN) model for the classification of ECG signals into eight classes; namely, normal beat, premature ventricular contraction beat, paced beat, right bundle branch block beat, left bundle branch block beat, atrial premature contraction beat, ventricular flutter wave beat, and ventricular escape beat. The one-dimensional ECG time series signals are transformed into 2-D spectrograms through short-time Fourier transform. The 2-D CNN model consisting of four convolutional layers and four pooling layers is designed for extracting robust features from the input spectrograms. Our proposed methodology is evaluated on a publicly available MIT-BIH arrhythmia dataset. We achieved a state-of-the-art average classification accuracy of 99.11\%, which is better than those of recently reported results in classifying similar types of arrhythmias. The performance is significant in other indices as well, including sensitivity and specificity, which indicates the success of the proposed method.Comment: 14 pages, 5 figures, accepted for future publication in Remote Sensing MDPI Journa

    Deep Learning in Cardiology

    Full text link
    The medical field is creating large amount of data that physicians are unable to decipher and use efficiently. Moreover, rule-based expert systems are inefficient in solving complicated medical tasks or for creating insights using big data. Deep learning has emerged as a more accurate and effective technology in a wide range of medical problems such as diagnosis, prediction and intervention. Deep learning is a representation learning method that consists of layers that transform the data non-linearly, thus, revealing hierarchical relationships and structures. In this review we survey deep learning application papers that use structured data, signal and imaging modalities from cardiology. We discuss the advantages and limitations of applying deep learning in cardiology that also apply in medicine in general, while proposing certain directions as the most viable for clinical use.Comment: 27 pages, 2 figures, 10 table

    Global ECG Classification by Self-Operational Neural Networks with Feature Injection

    Get PDF
    Objective: Global (inter-patient) ECG classification for arrhythmia detection over Electrocardiogram (ECG) signal is a challenging task for both humans and machines. The main reason is the significant variations of both normal and arrhythmic ECG patterns among patients. Automating this process with utmost accuracy is, therefore, highly desirable due to the advent of wearable ECG sensors. However, even with numerous deep learning approaches proposed recently, there is still a notable gap in the performance of global and patient-specific ECG classification performances. This study proposes a novel approach to narrow this gap and propose a real-time solution with shallow and compact 1D Self-Organized Operational Neural Networks (Self-ONNs). Methods: In this study, we propose a novel approach for inter-patient ECG classification using a compact 1D Self-ONN by exploiting morphological and timing information in heart cycles. We used 1D Self-ONN layers to automatically learn morphological representations from ECG data, enabling us to capture the shape of the ECG waveform around the R peaks. We further inject temporal features based on RR interval for timing characterization. The classification layers can thus benefit from both temporal and learned features for the final arrhythmia classification. Results: Using the MIT-BIH arrhythmia benchmark database, the proposed method achieves the highest classification performance ever achieved, i.e., 99.21% precision, 99.10% recall, and 99.15% F1-score for normal (N) segments; 82.19% precision, 82.50% recall, and 82.34% F1-score for the supra-ventricular ectopic beat (SVEBs); and finally, 94.41% precision, 96.10% recall, and 95.2% F1-score for the ventricular-ectopic beats (VEBs)

    A Novel Method for ECG Signal Classification Via One-Dimensional Convolutional Neural Network

    Get PDF
    This paper develops an end-to-end ECG signal classification algorithm based on a novel segmentation strategy and 1D Convolutional Neural Networks (CNN) to aid the classification of ECG signals and alleviate the workload of physicians. The ECG segmentation strategy named R-R-R strategy (i.e., retaining ECG data between the R peaks just before and after the current R peak) is used for segmenting the original ECG data into segments to train and test the 1D CNN models. The novel strategy mimics physicians in scanning ECG to a greater extent, and maximizes the inherent information of ECG segments for diagnosis. The performance of the proposed end to end ECG signal classification algorithm was verified with the ECG signals from 48 records in the MIT-BIH arrhythmia database. When the heartbeat types were divided into the five classes recommended by clinicians, i.e., normal beat, left bundle branch block beat, right bundle branch block beat, premature ventricular contraction, and paced beat, the classification accuracy, the area under the curve (AUC), the sensitivity, and the F1-score achieved by the proposed model were 0.9924, 0.9994, 0.99 and 0.99, respectively. When the heartbeat types were divided into six classes recommended by clinicians, i.e., normal beat, left bundle branch block beat, right bundle branch block beat, premature ventricular contraction, paced beat and other beats, the beat classification accuracy, the AUC, the sensitivity, and the F1-score achieved by the model reached 0.9702, 0.9966, 0.97, and 0.97, respectively. When the heartbeat types were divided into five classes recommended by the Association for Advancement of Medical Instrumentation (AAMI), i.e., normal beat, supraventricular ectopic beat, ventricular ectopic beat, fusion beat, and unknown beat, the beat classification accuracy, the sensitivity, and the F1-score were 0.9745, 0.97, and 0.97, respectively. Experimental results show that the proposed method achieves better performance than the state-of-the-art methods
    • 

    corecore