77,074 research outputs found

    Leadership Advisory Meeting

    Get PDF
    Audio recording of the Leadership Advisory Meeting from 6 February 1982

    A Message to Landon from the Heartbeat Gang

    Get PDF
    Audio recording of A Message to Landon from the Heartbeat Gang from September 1981

    Heart Beat Characterization from Ballistocardiogram Signals using Extended Functions of Multiple Instances

    Full text link
    A multiple instance learning (MIL) method, extended Function of Multiple Instances (eeFUMI), is applied to ballistocardiogram (BCG) signals produced by a hydraulic bed sensor. The goal of this approach is to learn a personalized heartbeat "concept" for an individual. This heartbeat concept is a prototype (or "signature") that characterizes the heartbeat pattern for an individual in ballistocardiogram data. The eeFUMI method models the problem of learning a heartbeat concept from a BCG signal as a MIL problem. This approach elegantly addresses the uncertainty inherent in a BCG signal e. g., misalignment between training data and ground truth, mis-collection of heartbeat by some transducers, etc. Given a BCG training signal coupled with a ground truth signal (e.g., a pulse finger sensor), training "bags" labeled with only binary labels denoting if a training bag contains a heartbeat signal or not can be generated. Then, using these bags, eeFUMI learns a personalized concept of heartbeat for a subject as well as several non-heartbeat background concepts. After learning the heartbeat concept, heartbeat detection and heart rate estimation can be applied to test data. Experimental results show that the estimated heartbeat concept found by eeFUMI is more representative and a more discriminative prototype of the heartbeat signals than those found by comparison MIL methods in the literature.Comment: IEEE EMBC 2016, pp. 1-

    H2B: Heartbeat-based Secret Key Generation Using Piezo Vibration Sensors

    Full text link
    We present Heartbeats-2-Bits (H2B), which is a system for securely pairing wearable devices by generating a shared secret key from the skin vibrations caused by heartbeat. This work is motivated by potential power saving opportunity arising from the fact that heartbeat intervals can be detected energy-efficiently using inexpensive and power-efficient piezo sensors, which obviates the need to employ complex heartbeat monitors such as Electrocardiogram or Photoplethysmogram. Indeed, our experiments show that piezo sensors can measure heartbeat intervals on many different body locations including chest, wrist, waist, neck and ankle. Unfortunately, we also discover that the heartbeat interval signal captured by piezo vibration sensors has low Signal-to-Noise Ratio (SNR) because they are not designed as precision heartbeat monitors, which becomes the key challenge for H2B. To overcome this problem, we first apply a quantile function-based quantization method to fully extract the useful entropy from the noisy piezo measurements. We then propose a novel Compressive Sensing-based reconciliation method to correct the high bit mismatch rates between the two independently generated keys caused by low SNR. We prototype H2B using off-the-shelf piezo sensors and evaluate its performance on a dataset collected from different body positions of 23 participants. Our results show that H2B has an overwhelming pairing success rate of 95.6%. We also analyze and demonstrate H2B's robustness against three types of attacks. Finally, our power measurements show that H2B is very power-efficient

    Neurohormonal modulation of the Limulus heart: amine actions on neuromuscular transmission and cardiac muscle

    Get PDF
    The responses of Limulus cardiac neuromuscular junctions and cardiac muscle cells to four endogenous amines were determined in order to identify the cellular targets underlying amine modulation of heartbeat amplitude. The amines increased the amplitude of the Limulus heartbeat, with dopamine (DA) being more potent than octopamine, epinephrine or norepinephrine. The effect of DA on heartbeat amplitude was not blocked by phentolamine. DA enhanced the contractility of deganglionated heart muscle, with time course and dose-dependence similar to its effect on the intact heart. The amines also enhanced neuromuscular transmission, with time course and dose-dependence similar to their effects upon the intact heart. The amplitude of unitary excitatory junction potentials (EJPs) and frequency of miniature excitatory junction potentials (mEJPs) were increased by DA, while mEJP amplitude was unchanged. Thus DA, and probably the other amines, had a presynaptic effect. Combined actions upon cardiac muscle and cardiac neuromuscular transmission account for the ability of these amines to increase the amplitude of the Limulus heartbeat

    An Internet Heartbeat

    Get PDF
    Obtaining sound inferences over remote networks via active or passive measurements is difficult. Active measurement campaigns face challenges of load, coverage, and visibility. Passive measurements require a privileged vantage point. Even networks under our own control too often remain poorly understood and hard to diagnose. As a step toward the democratization of Internet measurement, we consider the inferential power possible were the network to include a constant and predictable stream of dedicated lightweight measurement traffic. We posit an Internet "heartbeat," which nodes periodically send to random destinations, and show how aggregating heartbeats facilitates introspection into parts of the network that are today generally obtuse. We explore the design space of an Internet heartbeat, potential use cases, incentives, and paths to deployment

    A Novel Adaptive Spectrum Noise Cancellation Approach for Enhancing Heartbeat Rate Monitoring in a Wearable Device

    Get PDF
    This paper presents a novel approach, Adaptive Spectrum Noise Cancellation (ASNC), for motion artifacts removal in Photoplethysmography (PPG) signals measured by an optical biosensor to obtain clean PPG waveforms for heartbeat rate calculation. One challenge faced by this optical sensing method is the inevitable noise induced by movement when the user is in motion, especially when the motion frequency is very close to the target heartbeat rate. The proposed ASNC utilizes the onboard accelerometer and gyroscope sensors to detect and remove the artifacts adaptively, thus obtaining accurate heartbeat rate measurement while in motion. The ASNC algorithm makes use of a commonly accepted spectrum analysis approaches in medical digital signal processing, discrete cosine transform, to carry out frequency domain analysis. Results obtained by the proposed ASNC have been compared to the classic algorithms, the adaptive threshold peak detection and adaptive noise cancellation. The mean (standard deviation) absolute error and mean relative error of heartbeat rate calculated by ASNC is 0.33 (0.57) beatsĀ·min-1 and 0.65%, by adaptive threshold peak detection algorithm is 2.29 (2.21) beatsĀ·min-1 and 8.38%, by adaptive noise cancellation algorithm is 1.70 (1.50) beatsĀ·min-1 and 2.02%. While all algorithms performed well with both simulated PPG data and clean PPG data collected from our Verity device in situations free of motion artifacts, ASNC provided better accuracy when motion artifacts increase, especially when motion frequency is very close to the heartbeat rate
    • ā€¦
    corecore