4,542 research outputs found

    Heart rate variability analysis during muscle fatigue due to prolonged isometric contraction

    Get PDF
    Fatigue can be defined as the muscular condition occurring before the inability to perform a task. It can be assessed through the evaluation of the median and mean frequency of the spectrum of the surface electromyography series. Previous studies investigated the relationship between heartbeat dynamics and muscular activity. However, exploitation of such cardiovascular measures to automatically identify muscle fatigue during fatiguing exercises is still missing. To this extent, HRV signals were gathered from 32 subjects during an isometric contraction task, and features defined in the time, frequency and nonlinear domains were investigated. We used surface electromyography to label the occurrence of muscle fatigue. Statistically significant differences were observed by comparing features related to fatigued subjects with the non-fatigued ones. Moreover, a pattern recognition system capable to achieve an average accuracy of 78.24% was implemented. These results confirmed the hypothesis that a relationship between heartbeat dynamics and muscle fatigue might exist

    Performance Fatigability: Mechanisms and Task Specificity

    Get PDF
    Performance fatigability is characterized as an acute decline in motor performance caused by an exercise-induced reduction in force or power of the involved muscles. Multiple mechanisms contribute to performance fatigability and originate from neural and muscular processes, with the task demands dictating the mechanisms. This review highlights that (1) inadequate activation of the motoneuron pool can contribute to performance fatigability, and (2) the demands of the task and the physiological characteristics of the population assessed, dictate fatigability and the involved mechanisms. Examples of task and population differences in fatigability highlighted in this review include contraction intensity and velocity, stability and support provided to the fatiguing limb, sex differences, and aging. A future challenge is to define specific mechanisms of fatigability and to translate these findings to real-world performance and exercise training in healthy and clinical populations across the life span

    Neuromuscular responses to mild-muscle damaging eccentric exercise in a low glycogen state.

    Get PDF
    The aim of this study was to examine the effect of low muscle glycogen on the neuromuscular responses to maximal eccentric contractions. Fourteen healthy men (22±3years) performed single-leg cycling (20min at ∼75% maximal oxygen uptake (V̇O2 max); eight 90 s sprints at a 1:1 work-to-rest ratio (5% decrements from 90% to 55% V̇O2 max until exhaustion) the evening before 100 eccentric (1.57rads(-1)) with reduced (RED) and normal glycogen (NORM). Neuromuscular responses were measured during and up to 48h after with maximal voluntary and involuntary (twitch, 20Hz and 50Hz) isometric contractions. During eccentric contractions, peak torque decreased (RED: -16.1±2.5%; NORM: -6.2±5.1%) and EMG frequency increased according to muscle length. EMG activity decreased for RED only. After eccentric contractions, maximal isometric force was reduced up to 24h for NORM (-13.5±5.8%) and 48h for RED (-7.4±10.9%). Twelve hours after eccentric contractions, twitch force and the 20:50Hz ratio were decreased for RED but not for NORM. Immediate involuntary with prolonged voluntary force loss suggests that reduced glycogen is associated with increased susceptibility to mild muscle-damaging eccentric exercise with contributions of peripheral and central mechanisms to be different during recovery

    Influence of Course Type on Upper Body Muscle Activity in Elite Cross-Country and Downhill Mountain Bikers During Off Road Downhill Cycling

    Get PDF
    This study aimed to investigate upper body muscle activity using surface electromyography (sEMG) in elite cross-country (XCO) and downhill (DH) cyclists during off road descending and the influence of man-made (MM) and natural terrain (NT) descents on muscle activity. Twelve male elite mountain bikers (n=6 XCO; age 23 ± 4 yrs; stature 180.5 ± 5.6 cm; body mass 70.0 ± 6.4 kg and n=6 DH; age 20 ± 2 yrs; stature 178.8 ± 3.1 cm; body mass 75.0 ± 3.0 kg) took part in this study. sEMG were recorded from the left biceps brachii, triceps brachii, latissimus dorsi and brachioradialis muscles and expressed as a percentage of maximal voluntary isometric contraction (% MVIC). Both groups performed single runs on different MM and NT courses specific to their cycling modality. Significant differences in mean % MVIC were found between biceps brachii and triceps brachii (p=.016) and triceps brachii and latissimus dorsi (p=.046) during MM descents and between biceps brachii and triceps brachii (p=.008) and triceps brachii and latissimus dorsi (p=.031) during NT descents within the DH group. Significant differences in mean % MVIC were found between biceps brachii and brachioradialis (p=.022) for MM runs and between biceps brachii and brachioradialis (p=.013) for NT runs within the XCO group. Upper body muscle activity differs according to the type of downhill terrain, and appears to be specific to DH and XCO riders. Therefore, the discipline specific impact on muscle activation and the type of course terrain ridden should be considered when mountain bikers engage in upper body conditioning programmes

    Assessment of muscle fatigue during isometric contraction using autonomic nervous system correlates

    Get PDF
    Muscle fatigue is a complex phenomenon that results in a reduction of the maximal voluntary force. Measuring muscle fatigue can be a challenging task that may involve the use of intramuscular electrodes (i.e., intramuscular electromyography (EMG)) or complex acquisition techniques. In this study, we propose an alternative non-invasive methodology for muscle fatigue detection relying on the analysis of two autonomic nervous system (ANS) correlates, i.e., the electrodermal activity (EDA) and heart rate variability (HRV) series. Based on standard surface EMG analysis, we divided 32 healthy subjects performing isometric biceps contraction into two groups: a fatigued group and a non-fatigued group. EDA signals were analyzed using the recently proposed cvxEDA model in order to derive phasic and tonic components and extract effective features to study ANS dynamics. Furthermore, HRV series were processed to derive several features defined in the time and frequency domains able to estimate the cardiovascular autonomic regulation. A statistical comparison between the fatigued and the non-fatigued groups was performed for each ANS feature, and two EDA features, i.e., the tonic variability and the phasic response rate, showed significant differences. Moreover, a pattern recognition procedure was applied to the combined EDA-HRV feature-set to automatically discern between fatigued and non-fatigued subjects. The proposed SVM classifier, following a recursive feature elimination stage, exhibited a maximal balanced accuracy of 83.33%. Our results demonstrate that muscle fatigue could be identified in a non-invasive fashion through effective EDA and HRV processing

    The effects of isometric exercise training on resting blood pressure with specific reference to selected cardiovascular, neuromuscular, and metabolic variables

    Get PDF
    There were two purposes to the work of this thesis (a) to identify the role of isometric training intensity in the training-induced reductions in resting blood pressure, and (b) to identify whether the mechanism for the reduced resting blood pressure is best reflected in what can be broadly termed cardiovascular, neuromuscular or metabolic markers of that training. Firstly, in a cross-sectional study, the only strong correlation was found between heart rate variability (a cardiovascular marker) and resting blood pressure. Secondly, this cardiovascular marker was also significantly affected by a single session of isometric exercise, an effect that persisted for at least 4 hours after exercise. However, thirdly, this marker and other cardiovascular markers (such as cardiac output and stroke volume) did not correlate with reductions in blood pressure seen after 4 weeks of isometric training. Instead, the training-induced reductions in blood pressure correlated strongly with neuromuscular and metabolic markers of isometric training. The extent to which local muscle fatigue was induced during isometric training correlated with the reductions in resting blood pressure. Therefore (a) isometric training intensity appears to be of utmost importance in the reductions in resting blood pressure (when bilateral-leg exercise is performed in 2 minute bouts), and (b) the mechanism whereby the adaptations in resting blood pressure occur is best reflected in neuromuscular and metabolic markers of local muscle fatigue during that training. These findings are discussed with a particular focus on the possible role of muscle metaboreceptor stimulation, during isometric training in the mechanism of training-induced reduction in resting blood pressure

    Muscle Fatigue and Motor Output Variability with Acute Stress in Healthy Young Adults and Veterans with Posttraumatic Stress Disorder

    Get PDF
    Acute stress can alter motor performance differently for men and women. The first aim of this dissertation addresses possible causes for the sex difference in the motor response of a low-intensity fatiguing contraction of the elbow flexor muscles to an acute stressor (difficult mental math) in young, healthy adults. Muscle fatigue increased for men and women when exposed to the stressor, but impairment was more prominent for the women. This work showed that fatigue in the central nervous system, specifically in cortical motor and premotor areas, as well as relaxation rates of the muscle (quantified with cortical stimulation) were not responsible for the stress-induced motor fatigue. The greater fatigue with stress was associated with the strength of the individual such that weaker individuals (mainly women) fatigued more quickly when exposed to the stressor than stronger individuals (mainly men). Thus, the mechanism of stress-induced fatigability in weaker subjects may be due to differences in blood perfusion to the muscle. Furthermore, women were less steady than men for very low-intensity contractions in the presence and absence of stress. Steadiness was impaired at failure of the fatiguing contraction but persisted more for women than men, up to 20 minutes recovery. A second aim was to determine muscle fatigability and steadiness in veterans with posttraumatic stress disorder (PTSD) in the presence and absence of the cognitive stressor. Male veterans with PTSD and male civilian controls performed a low-intensity contraction till task failure with the handgrip muscles. Veterans with PTSD fatigued more quickly and were less steady than the control subjects. When exposed to a cognitive stressor, neither the veterans with PTSD nor control subjects had greater fatigability or reduced steadiness. Veterans with PTSD however, were more fatigable compared with the control subjects in both stressful and non-stressful conditions, suggesting that the chronic stress condition (vs. acute stress) has a greater influence on motor performance for the hand muscles. Understanding how motor control is altered in the presence of acute stress and in clinical populations can lead to more tailored treatment interventions for optimized rehabilitation programs for specific motor impairments and for clinical populations

    Monitoring neuromuscular fatigue in high performance athletes

    Get PDF
    With improving professionalism of sports around the world, the volume and frequency of training required for competitive performances at the elite level has increased concurrently. With this amplification in training load comes an increased need to closely monitor the associated fatigue responses, since maximising the adaptive response to training is also reliant on avoiding the negative consequences of excessive fatigue. The rationale for the experimental chapters in this thesis was established after considering survey responses regarding current best practice for monitoring fatigue in high performance sporting environments (Chapter 3). On the basis of the results, vertical jump assessments were selected for further investigation regarding their utility in determining neuromuscular fatigue responses. Outcomes from the subsequent series of studies aimed to provide practitioners working in high performance sport with guidelines for using vertical jumps to monitor athletic fatigue. The results from Chapter 4 indicate using the mean value of at least six jumps enhances the ability to detect small but practically important changes in performance from week to week. This study also highlighted large differences (4-6%) in morning and afternoon performance, indicating that the time of day performance is assessed needs to be accounted for when monitoring changes in jump performance. Chapter 5 explored the theory that the time of day effect observed in Chapter 4 can be explained by internal temperature differences. This theory was supported by demonstrating that an extended warm-up period can negate differences in jump performance in the morning and the afternoon. Researchers who are unable to standardise the time of day that assessment occurs are able, therefore, to control for performance differences by manipulating the warm-up protocols. The third study examined changes in vertical jump performance over a three month training period and produced several novel outcomes. A major finding was that unloaded jumps were more sensitive to neuromuscular fatigue during intensive training than loaded jumps (Chapter 6). Furthermore, this set of results showed that all subjects changed their jump technique via a reduction in the amplitude of the countermovement when they were highly fatigued. Using the same data, an analysis was performed to quantify individual differences in within-subject variation (Chapter 7) during normal and intensive training. These results provided the first indication that within-subject variability in vertical jump performance is substantially different between individuals and between different training phases, an important consideration for interpreting the practical importance of performance changes. In Chapter 8 the relationship between vertical jump performance and electrically elicited force of the knee extensors was examined to better understand the mechanism(s) of changes in jump performance associated with neuromuscular fatigue during intensive overload training. The results showed that the fatigue assessed by vertical jump performance was likely not only peripheral in origin as previously suggested by other authors. Further research is required to further understand the mechanisms of reduced performance during overload training, although the preliminary evidence presented implicates central mechanisms. To conclude the thesis, the findings presented in the experimental chapters are summarised, with a series of practical recommendations for using vertical jumps to monitor athletic fatigue presented
    • …
    corecore