3 research outputs found

    Head pose estimation through multi-class face segmentation

    Get PDF
    The aim of this work is to explore the usefulness of face semantic segmentation for head pose estimation. We implement a multi-class face segmentation algorithm and we train a model for each considered pose. Given a new test image, the probabilities associated to face parts by the different models are used as the only information for estimating the head orientation. A simple algorithm is proposed to exploit such probabilites in order to predict the pose. The proposed scheme achieves competitive results when compared to most recent methods, according to mean absolute error and accuracy metrics. Moreover, we release and make publicly available a face segmentation dataset consisting of 294 images belonging to 13 different poses, manually labeled into six semantic regions, which we used to train the segmentation models

    Head Pose Estimation with Improved Random Regression Forests

    No full text

    Gland Instance Segmentation in Colon Histology Images

    Get PDF
    This thesis looks at approaches to gland instance segmentation in histology images. The aim is to find suitable local image representations to describe the gland structures in images with benign tissue and those with malignant tissue and subsequently use them for design of accurate, scalable and flexible gland instance segmentation methods. The gland instance segmentation is a clinically important and technically challenging problem as the morphological structure and visual appearance of gland tissue is highly variable and complex. Glands are one of the most common organs in the human body. The glandular features are present in many cancer types and histopathologists use these features to predict tumour grade. Accurate tumour grading is critical for prescribing suitable cancer treatment resulting in improved outcome and survival rate. Different cancer grades are reflected by differences in glands morphology and structure. It is therefore important to accurately segment glands in histology images in order to get a valid prediction of tumour grade. Several segmentation methods, including segmentation with and without pre-classification, have been proposed and investigated as part of the research reported in this thesis. A number of feature spaces, including hand-crafted and deep features, have been investigated and experimentally validated to find a suitable set of image attributes for representation of benign and malignant gland tissue for the segmentation task. Furthermore, an exhaustive experimental examination of different combinations of features and classification methods have been carried out using both qualitative and quantitative assessments, including detection, shape and area fidelity metrics. It has been shown that the proposed hybrid method combining image level classification, to identify images with benign and malignant tissue, and pixel level classification, to perform gland segmentation, achieved the best results. It has been further shown that modelling benign glands using a three-class model, i.e. inside, outside and gland boundary, and malignant tissue using a two-class model is the best combination for achieving accurate and robust gland instance segmentation results. The deep learning features have been shown to overall outperform handcrafted features, however proposed ring-histogram features still performed adequately, particularly for segmentation of benign glands. The adopted transfer-learning model with proposed image augmentation has proven very successful with 100% image classification accuracy on the available test dataset. It has been shown that the modified object- level Boundary Jaccard metric is more suitable for measuring shape similarity than the previously used object-level Hausdorff distance, as it is not sensitive to outliers and could be easily integrated with region- based metrics such as the object-level Dice index, as contrary to the Hausdorff distance it is bounded between 0 and 1. Dissimilar to most of the other reported research, this study provides comprehensive comparative results for gland segmentation, with a large collection of diverse types of image features, including hand-crafted and deep features. The novel contributions include hybrid segmentation model superimposing image and pixel level classification, data augmentation for re-training deep learning models for the proposed image level classification, and the object- level Boundary Jaccard metric adopted for evaluation of instance segmentation methods
    corecore