3 research outputs found

    From Real-time Attention Assessment to “With-me-ness” in Human-Robot Interaction

    Get PDF
    Measuring ``how much the human is in the interaction'' -- the level of engagement -- is instrumental in building effective interactive robots. Engagement, however, is a complex, multi-faceted cognitive mechanism that is only indirectly observable. This article formalizes with-me-ness as one of such indirect measures. With-me-ness, a concept borrowed from the field of Computer-Supported Collaborative Learning, measures in a well-defined way to what extent the human is with the robot over the course of an interactive task. As such, it is a meaningful precursor of engagement. We expose in this paper the full methodology, from real-time estimation of the human's focus of attention (relying on a novel, open-source, vision-based head pose estimator), to on-line computation of with-me-ness. We report as well on the experimental validation of this approach, using a naturalistic setup involving children during a complex robot-teaching task

    A single-camera gaze tracking system under natural light

    Get PDF
    Gaze tracking is a human-computer interaction technology, and it has been widely studied in the academic and industrial fields. However, constrained by the performance of the specific sensors and algorithms, it has not been popularized for everyone. This paper proposes a single-camera gaze tracking system under natural light to enable its versatility. The iris center and anchor point are the most crucial factors for the accuracy of the system. The accurate iris center is detected by the simple active contour snakuscule, which is initialized by the prior knowledge of eye anatomical dimensions. After that, a novel anchor point is computed by the stable facial landmarks. Next, second-order mapping functions use the eye vectors and the head pose to estimate the points of regard. Finally, the gaze errors are improved by implementing a weight coefficient on the points of regard of the left and right eyes. The feature position of the iris center achieves an accuracy of 98.87% on the GI4E database when the normalized error is lower than 0.05. The accuracy of the gaze tracking method is superior to the-state-of-the-art appearance-based and feature-based methods on the EYEDIAP database
    corecore