178 research outputs found

    Study on the Rough-set-based Clustering Algorithm for Sensor Networks

    Full text link
    The traditional clustering algorithm is a very typical level routing algorithm in wireless sensor networks (WSN). On the basis of the classical LEACH (Low Energy Adaptive Clustering Hierarchy) algorithm, this paper proposes an energy efficient clustering algorithm in WSN. Through the introduction of rough set, the new algorithm mainly introduces how to confirm an optimized strategy to choose the cluster head effectively by the simplified decision table. That is to say, by discrete normalized data preprocessing of attribute value, getting discretization decision table. Finally, the results from simulated experiments show that the clustering algorithm based on rough set theory can optimize the clustering algorithm in network data. That is to say, the rough-set-based clustering algorithm can effectively choose the cluster head, balance the energy of the nodes in the cluster and prolong the lifetime of sensor networks

    MeMLO: Mobility-Enabled Multi-Level Optimization Sensor Network

    Get PDF
    The paper presents a technique called as Mobility-enabled Multi Level Optimization (MeMLO) that addressing the existing problem of clustering in wireless sensor net-work (WSN). The technique enables selection of aggregator node based on multiple optimi-zation attribute which gives better decision capability to the clustering mechanism by choosing the best aggregator node. The outcome of the study shows MeMLO is highly capable of minimizing the halt time of mobile node that significantly lowers the transmit power of aggregator node. The simulation outcome shows negligible computational com-plexity, faster response time, and highly energy efficient for large scale WSN for longer simulation rounds as compared to conventional LEACH algorithm

    A Hybrid Optimized Weighted Minimum Spanning Tree for the Shortest Intrapath Selection in Wireless Sensor Network

    Get PDF
    Wireless sensor network (WSN) consists of sensor nodes that need energy efficient routing techniques as they have limited battery power, computing, and storage resources. WSN routing protocols should enable reliable multihop communication with energy constraints. Clustering is an effective way to reduce overheads and when this is aided by effective resource allocation, it results in reduced energy consumption. In this work, a novel hybrid evolutionary algorithm called Bee Algorithm-Simulated Annealing Weighted Minimal Spanning Tree (BASA-WMST) routing is proposed in which randomly deployed sensor nodes are split into the best possible number of independent clusters with cluster head and optimal route. The former gathers data from sensors belonging to the cluster, forwarding them to the sink. The shortest intrapath selection for the cluster is selected using Weighted Minimum Spanning Tree (WMST). The proposed algorithm computes the distance-based Minimum Spanning Tree (MST) of the weighted graph for the multihop network. The weights are dynamically changed based on the energy level of each sensor during route selection and optimized using the proposed bee algorithm simulated annealing algorithm

    EDOCR: ENERGY DENSITY ON-DEMAND CLUSTER ROUTING IN WIRELESS SENSOR NETWORKS

    Get PDF
    Energy management is one of the critical parameters in Wireless Sensor Networks. In this paper we attempt for a solution to balance the energy usage for maximizing the network lifetime, increase the packet delivery ratio and throughput. Our proposed algorithm is based on Energy Density of the clusters in Wireless Sensor Networks. The cluster head is selected using two step method and on-demand routing approach to calculate the balanced energy shortest path from source to sink. This unique approach maintains the balanced energy utilization among all nodes by selecting the different cluster heads dynamically. Our simulation results have compared with one of the plain routing scheme (EBRP) and cluster based routing (TSCHS), which shows the significant improvements in minimizing the delay and energy utilization and maximizing the network lifetime and throughput with respect to these works

    Data-Gathering and Aggregation Protocol for Networked Carrier Ad Hoc Networks: The Optimal and Heuristic Approach

    Get PDF
    In this chapter, we address the problem of data-gathering and aggregation (DGA) in navigation carrier ad hoc networks (NC-NET), in order to reduce energy consumption and enhance network scalability and lifetime. Several clustering algorithms have been presented for vehicle ad hoc network (VANET) and other mobile ad hoc network (MANET). However, DGA approach in harsh environments, in terms of long-range transmission, high dynamic topology and three-dimensional monitor region, is still an open issue. In this chapter, we propose a novel clustering-based DGA approach, namely, distributed multiple-weight data-gathering and aggregation (DMDG) protocol, to guarantee quality of service (QoS)-aware DGA for heterogeneous services in above harsh environments. Our approach is explored by the synthesis of three kernel features. First, the network model is addressed according to specific conditions of networked carrier ad hoc networks (NC-NET), and several performance indicators are selected. Second, a distributed multiple-weight data-gathering and aggregation protocol (DMDG) is proposed, which contains all-sided active clustering scheme and realizes long-range real-time communication by tactical data link under a time-division multiple access/carrier sense multiple access (TDMA/CSMA) channel sharing mechanism. Third, an analytical paradigm facilitating the most appropriate choice of the next relay is proposed. Experimental results have shown that DMDG scheme can balance the energy consumption and extend the network lifetime notably and outperform LEACH, PEACH and DEEC in terms of network lifetime and coverage rate, especially in sparse node density or anisotropic topologies

    Spatial networks with wireless applications

    Get PDF
    Many networks have nodes located in physical space, with links more common between closely spaced pairs of nodes. For example, the nodes could be wireless devices and links communication channels in a wireless mesh network. We describe recent work involving such networks, considering effects due to the geometry (convex,non-convex, and fractal), node distribution, distance-dependent link probability, mobility, directivity and interference.Comment: Review article- an amended version with a new title from the origina

    Swarm intelligence–based energy efficient clustering with multihop routing protocol for sustainable wireless sensor networks

    Get PDF
    © The Author(s) 2020. Wireless sensor network is a hot research topic with massive applications in different domains. Generally, wireless sensor network comprises hundreds to thousands of sensor nodes, which communicate with one another by the use of radio signals. Some of the challenges exist in the design of wireless sensor network are restricted computation power, storage, battery and transmission bandwidth. To resolve these issues, clustering and routing processes have been presented. Clustering and routing processes are considered as an optimization problem in wireless sensor network which can be resolved by the use of swarm intelligence–based approaches. This article presents a novel swarm intelligence–based clustering and multihop routing protocol for wireless sensor network. Initially, improved particle swarm optimization technique is applied for choosing the cluster heads and organizes the clusters proficiently. Then, the grey wolf optimization algorithm–based routing process takes place to select the optimal paths in the network. The presented improved particle swarm optimization–grey wolf optimization approach incorporates the benefits of both the clustering and routing processes which leads to maximum energy efficiency and network lifetime. The proposed model is simulated under an extension set of experimentation, and the results are validated under several measures. The obtained experimental outcome demonstrated the superior characteristics of the improved particle swarm optimization–grey wolf optimization technique under all the test cases
    • …
    corecore