15 research outputs found

    Sharing gNB components in RAN slicing: A perspective from 3GPP/NFV standards

    Full text link
    To implement the next Generation NodeBs (gNBs) that are present in every Radio Access Network (RAN) slice subnet, Network Function Virtualization (NFV) enables the deployment of some of the gNB components as Virtual Networks Functions (VNFs). Deploying individual VNF instances for these components could guarantee the customization of each RAN slice subnet. However, due to the multiplicity of VNFs, the required amount of virtual resources will be greater compared to the case where a single VNF instance carries the aggregated traffic of all the RAN slice subnets. Sharing gNB components between RAN slice subnets could optimize the trade-off between customization, isolation and resource utilization. In this article, we shed light on the key aspects in the Third Generation Partnership Project (3GPP)/NFV standards for sharing gNB components. First, we identify four possible scenarios for sharing gNB components. Then, we analyze the impact of sharing on the customization level of each RAN slice subnet. Later, we determine the main factors that enable isolation between RAN slice subnets. Finally, we propose a 3GPP/NFV-based description model to define the lifecycle management of shared gNB componentsComment: Article accepted for publication in IEEE Conference on Standards and Networking (CSCN) 201

    Network Slicing Landscape: A holistic architectural approach, orchestration and management with applicability in mobile and fixed networks and clouds

    Get PDF
    Tutorial at IEEE NetSoft2018 - 29th June 2018 Montreal Abstract: A holistic architectural approach, orchestration and management with applicability in mobile and fixed networks and clouds Topics: Key Slicing concepts and history Slicing Key Characteristics & Usage scenarios & Value Chain Multi-Domain Network Function Virtualisation Review of Research projects and results in network and cloud slicing Open Source Orchestrators Standard Organization activities: NGMN, ITU-T, ONF, 3GPP, ETSI, BBF, IETF Industrial perspective on Network Slicing Review of industry Use Cases Network Slicing Challenges Concluding remarks of Network Slicing Acknowledgements & Reference

    View on 5G Architecture: Version 1.0

    Get PDF
    The current white paper focuses on the produced results after one year research mainly from 16 projects working on the abovementioned domains. During several months, representatives from these projects have worked together to identify the key findings of their projects and capture the commonalities and also the different approaches and trends. Also they have worked to determine the challenges that remain to be overcome so as to meet the 5G requirements. The goal of 5G Architecture Working Group is to use the results captured in this white paper to assist the participating projects achieve a common reference framework. The work of this working group will continue during the following year so as to capture the latest results to be produced by the projects and further elaborate this reference framework. The 5G networks will be built around people and things and will natively meet the requirements of three groups of use cases: • Massive broadband (xMBB) that delivers gigabytes of bandwidth on demand • Massive machine-type communication (mMTC) that connects billions of sensors and machines • Critical machine-type communication (uMTC) that allows immediate feedback with high reliability and enables for example remote control over robots and autonomous driving. The demand for mobile broadband will continue to increase in the next years, largely driven by the need to deliver ultra-high definition video. However, 5G networks will also be the platform enabling growth in many industries, ranging from the IT industry to the automotive, manufacturing industries entertainment, etc. 5G will enable new applications like for example autonomous driving, remote control of robots and tactile applications, but these also bring a lot of challenges to the network. Some of these are related to provide low latency in the order of few milliseconds and high reliability compared to fixed lines. But the biggest challenge for 5G networks will be that the services to cater for a diverse set of services and their requirements. To achieve this, the goal for 5G networks will be to improve the flexibility in the architecture. The white paper is organized as follows. In section 2 we discuss the key business and technical requirements that drive the evolution of 4G networks into the 5G. In section 3 we provide the key points of the overall 5G architecture where as in section 4 we elaborate on the functional architecture. Different issues related to the physical deployment in the access, metro and core networks of the 5G network are discussed in section 5 while in section 6 we present software network enablers that are expected to play a significant role in the future networks. Section 7 presents potential impacts on standardization and section 8 concludes the white paper

    D2.2 Draft Overall 5G RAN Design

    Full text link
    This deliverable provides the consolidated preliminary view of the METIS-II partners on the 5 th generation (5G) radio access network (RAN) design at a mid-point of the project. The overall 5G RAN is envisaged to operate over a wide range of spectrum bands comprising of heterogeneous spectrum usage scenarios. More precisely, the 5G air interface (AI) is expected to be composed of multiple so-called AI variants (AIVs), which include evolved legacy technology such as Long Term Evolution Advanced (LTE-A) as well as novel AIVs, which may be tailored to particular services or frequency bands.Arnold, P.; Bayer, N.; Belschner, J.; Rosowski, T.; Zimmermann, G.; Ericson, M.; Da Silva, IL.... (2016). D2.2 Draft Overall 5G RAN Design. https://doi.org/10.13140/RG.2.2.17831.1424

    Network virtualization in next generation cellular networks

    Get PDF
    The complexity of operation and management of emerging cellular networks significantly increases, as they evolve to correspond to increasing QoS needs, data rates and diversity of offered services. Thus critical challenges appear regarding their performance. At the same time, network sustainability pushes toward the utilization of haring Radio Access Network (RAN) infrastructure between Mobile Network Operators (MNOs). This requires advanced network management techniques which have to be developed based on characteristics of these networks and traffic demands. Therefore it is necessary to provide solutions enabling the creation of logically isolated network partitions over shared physical network infrastructure. Multiple heterogeneous virtual networks should simultaneously coexist and support resource aggregation so as to appear as a single resource to serve different traffic types on demand. Hence in this thesis, we study RAN virtualization and slicing solutions destined to tackle these challenges. In the first part, we present our approach to map virtual network elements onto radio resources of the substrate physical network, in a dense multi-tier LTE-A scenario owned by a MNO. We propose a virtualization solution at BS level, where baseband modules of distributed BSs, interconnected via logical point-to-point X2 interface, cooperate to reallocate radio resources on a traffic need basis. Our proposal enhances system performance by achieving 53% throughput gain compared with benchmark schemes without substantial signaling overhead. In the second part of the thesis, we concentrate on facilitating resource provisioning between multiple Virtual MNOs (MVNOs), by integrating the capacity broker in the 3GPP network management architecture with minimum set of enhancements. A MNO owns the network and provides RAN access on demand to several MVNOs. Furthermore we propose an algorithm for on-demand resource allocation considering two types of traffic. Our proposal achieves 50% more admitted requests without Service Level Agreement (SLA) violation compared with benchmark schemes. In the third part, we devise and study a solution for BS agnostic network slicing leveraging BS virtualization in a multi-tenant scenario. This scenario is composed of different traffic types (e.g., tight latency requirements and high data rate demands) along with BSs characterized by different access and transport capabilities (i.e., Remote Radio Heads, RRHs, Small Cells, SCs and future 5G NodeBs, gNBs with various functional splits having ideal and non-ideal transport network). Our solution achieves 67% average spectrum usage gain and 16.6% Baseband Unit processing load reduction compared with baseline scenarios. Finally, we conclude the thesis by providing insightful research challenges for future works.La complejidad de la operación y la gestión de las emergentes redes celulares aumenta a medida que evolucionan para hacer frente a las crecientes necesidades de calidad de servicio (QoS), las tasas de datos y la diversidad de los servicios ofrecidos. De esta forma aparecen desafíos críticos con respecto a su rendimiento. Al mismo tiempo, la sostenibilidad de la red empuja hacia la utilización de la infraestructura de red de acceso radio (RAN) compartida entre operadores de redes móviles (MNO). Esto requiere técnicas avanzadas de gestión de redes que deben desarrollarse en función de las características especiales de estas redes y las demandas de tráfico. Por lo tanto, es necesario proporcionar soluciones que permitan la creación de particiones de red aisladas lógicamente sobre la infraestructura de red física compartida. Para ello, en esta tesis, estudiamos las soluciones de virtualización de la RAN destinadas a abordar estos desafíos. En la primera parte de la tesis, nos centramos en mapear elementos de red virtual en recursos de radio de la red física, en un escenario LTE-A de múltiples niveles que es propiedad de un solo MNO. Proponemos una solución de virtualización a nivel de estación base (BS), donde los módulos de banda base de BSs distribuidas, interconectadas a través de la interfaz lógica X2, cooperan para reasignar los recursos radio en función de las necesidades de tráfico. Nuestra propuesta mejora el rendimiento del sistema al obtener un rendimiento 53% en comparación con esquemas de referencia. En la segunda parte de la tesis, nos concentramos en facilitar el aprovisionamiento de recursos entre muchos operadores de redes virtuales móviles (MVNO), al integrar el capacity broker en la arquitectura de administración de red 3GPP con un conjunto míinimo de mejoras. En este escenario, un MNO es el propietario de la red y proporciona acceso bajo demanda (en inglés on-demand) a varios MVNOs. Además, para aprovechar al máximo las capacidades del capacity broker, proponemos un algoritmo para la asignación de recursos bajo demanda, considerando dos tipos de tráfico con distintas características. Nuestra propuesta alcanza 50% más de solicitudes admitidas sin violación del Acuerdo de Nivel de Servicio (SLA) en comparación con otros esquemas. En la tercera parte de la tesis, estudiamos una solución para el slicing de red independiente del tipo de BS, considerando la virtualización de BS en un escenario de múltiples MVNOs (multi-tenants). Este escenario se compone de diferentes tipos de tráfico (por ejemplo, usuarios con requisitos de latencia estrictos y usuarios con altas demandas de velocidad de datos) junto con BSs caracterizadas por diferentes capacidades de acceso y transporte (por ejemplo, Remote Radio Heads, RRHs, Small cells, SC y 5G NodeBs, gNBs con varias divisiones funcionales que tienen una red de transporte ideal y no ideal). Nuestra solución logra una ganancia promedio de uso de espectro de 67% y una reducción de la carga de procesamiento de la banda base de 16.6% en comparación con escenarios de referencia. Finalmente, concluimos la tesis al proporcionando los desafíos y retos de investigación para trabajos futuros.Postprint (published version

    5G Multi-access Edge Computing: Security, Dependability, and Performance

    Full text link
    The main innovation of the Fifth Generation (5G) of mobile networks is the ability to provide novel services with new and stricter requirements. One of the technologies that enable the new 5G services is the Multi-access Edge Computing (MEC). MEC is a system composed of multiple devices with computing and storage capabilities that are deployed at the edge of the network, i.e., close to the end users. MEC reduces latency and enables contextual information and real-time awareness of the local environment. MEC also allows cloud offloading and the reduction of traffic congestion. Performance is not the only requirement that the new 5G services have. New mission-critical applications also require high security and dependability. These three aspects (security, dependability, and performance) are rarely addressed together. This survey fills this gap and presents 5G MEC by addressing all these three aspects. First, we overview the background knowledge on MEC by referring to the current standardization efforts. Second, we individually present each aspect by introducing the related taxonomy (important for the not expert on the aspect), the state of the art, and the challenges on 5G MEC. Finally, we discuss the challenges of jointly addressing the three aspects.Comment: 33 pages, 11 figures, 15 tables. This paper is under review at IEEE Communications Surveys & Tutorials. Copyright IEEE 202

    Deliverable D2.1 - Ecosystem analysis and 6G-SANDBOX facility design

    Get PDF
    This document provides a comprehensive overview of the core aspects of the 6G-SANDBOX project. It outlines the project's vision, objectives, and the Key Performance Indicators (KPIs) and Key Value Indicators (KVIs) targeted for achievement. The functional and non-functional requirements of the 6G-SANDBOX Facility are extensively presented, based on a proposed reference blueprint. A detailed description of the updated reference architecture of the facility is provided, considering the requirements outlined. The document explores the experimentation framework, including the lifecycle of experiments and the methodology for validating KPIs and KVIs. It presents the key technologies and use case enablers towards 6G that will be offered within the trial networks. Each of the platforms constituting the 6G-SANDBOX Facility is described, along with the necessary enhancements to align them with the project's vision in terms of hardware, software updates, and functional improvements

    The 5G era of mobile networks: a comprehensive study of the related technologies accompanied by an experimentation framework

    Get PDF
    Οι συνεχώς αυξανόμενες απαιτήσεις από τα δίκτυα κινητών επικοινωνιών για τη παροχή καλύτερων υπηρεσιών και τη διασύνδεση όλων και περισσότερων συσκευών, ωθούν τη κοινότητα του κλάδου στην ανάπτυξη νέων μεθόδων και τεχνολογιών οργάνωσης των δικτύων προκειμένου να αντιμετωπιστεί αποτελεσματικά αυτή η πρόκληση. Δεδομένου ότι η παρούσα τεχνολογία έχει φτάσει στα όρια της από άποψη ικανότητας διαχείρισης της κίνησης, απαιτείται η ανάπτυξη ενός νέου πλαισίου λειτουργίας το οποίο θα μπορεί να ανταποκριθεί αποτελεσματικά στις νέες συνθήκες που διαμορφώνονται από τη τηλεπικοινωνιακή αγορά. Η 5 η γενιά των δικτύων κινητών επικοινωνιών (5G) αποσκοπεί στην επίλυση ακριβώς αυτού του ζητήματος, μέσα από την ανάπτυξη ενός νέου μοντέλου λειτουργίας. Το μοντέλο αυτό αναδιαρθρώνοντας εκ βάθρων τον τρόπο λειτουργίας του δικτύου σε όλα τα επίπεδα, σχηματίζει ένα νέο οικοσύστημα δικτυακών υποδομών και λειτουργιών το οποίο επιτρέπει τη παροχή στους χρήστες υπηρεσιών υψηλού επιπέδου, προσαρμοσμένες στις εκάστοτε ανάγκες τους. Στα πλαίσια της παρούσας εργασίας μελετήθηκαν εκτενώς οι θεμελιώδεις αρχές και οι κυριότερες τεχνολογίες που διέπουν τη λειτουργία ενός δικτύου νέας γενιάς καθ’ όλο το μήκος του. Ξεκινώντας από τις καινοτομίες που αφορούν τη δομή των 5G δικτύων σε επίπεδο αρχιτεκτονικής, η ανάλυση επεκτείνεται με μία προσέγγιση από κάτω προς τα πάνω· στα επίπεδα εκπομπής και πρόσβασης στο δίκτυο (C-RAN & MAC), στους μηχανισμούς που είναι υπεύθυνοι για παροχή των λειτουργιών και υπηρεσιών του δικτύου (NFV), ενώ εν συνεχεία γίνεται αναφορά στο νέο μοντέλο δρομολόγησης και διαχείρισης της κίνησης συνολικά στο δίκτυο (SDN) και σε επόμενο στάδιο παρουσιάζεται η τεχνολογία που αφορά την ικανότητα παροχής διακριτών υπηρεσιών στους χρήστες (E2E Slicing). Ακόμα, παρουσιάζονται ορισμένοι χαρακτηριστικοί δείκτες και μετρικές που σχετίζονται με τη προτυποποίηση των τεχνολογιών του δικτύου καθώς και όλες οι τρέχουσες εξελίξεις που αφορούν την ανάπτυξη του 5G στην Ευρώπη. Στη συνέχεια παρουσιάζονται τα δεδομένα του πειράματος που διεξήχθη για τους σκοπούς της εργασίας και αφορά αφενός τη μοντελοποίηση ενός υφιστάμενου δικτύου με βάση τα νέα πρότυπα του 5G και αφετέρου την αξιολόγηση της απόδοσης του με βάση ορισμένα σενάρια σχετικά με τη τοπολογία και το πλήθος των δεδομένων που ανταλλάσσονται κάθε στιγμή στο δίκτυο. Η εξέταση των παραμέτρων αποδοτικότητας εστιάζει στην ικανότητα του ONOS SDN Controller να διαχειρίζεται τη κίνηση των δεδομένων όταν προκύπτουν ορισμένα συμβάντα που επηρεάζουν την αρχική δομή του δικτύου. Ως προς τα αποτελέσματα των μετρήσεων που διεξάγονται, παρόλο που φαίνεται το θετικό αντίκτυπο που θα έχει η ενσωμάτωση των νέων τεχνολογιών στην απόδοση των δικτύων κινητών επικοινωνιών, υπάρχουν ακόμα ορισμένα επιμέρους ανοικτά ζητήματα τα οποία χρήζουν περαιτέρω έρευνας από τη πλευρά των μελών της τηλεπικοινωνιακής κοινότητας ώστε να μην υποσκαφθεί τελικά το αρχικό όραμα της καθολικής λειτουργίας όλων των κινητών συσκευών υπό μία ενιαία ομπρέλα.The ever-increasing demand from mobile communications networks for the provision of better services and interconnection of more devices is pushing the industry's community to develop new network organization methods and technologies in order to effectively address this challenge. As the current technology has reached its limits in terms of traffic management capability, it is necessary to develop a new operating framework that can effectively respond to the new conditions created by the telecommunications market. The 5th generation of mobile communication networks (5G) aims to solve this exact issue by developing a new operating model. This model, by thoroughly restructuring the way the network operates at all levels, forms a new ecosystem of network infrastructures and functions that enables the provision of high-level services to users, tailored to their particular needs. The fundamental principles and key technologies that govern the operation of a new generation network throughout its entire length were extensively studied in the context of this paper. Starting with the innovations regarding the structure of 5G networks at the architectural level, the analysis extends to a bottom-up approach: from the broadcast and access levels to the network (C-RAN & MAC) to the mechanisms responsible for delivering the network's functions and services (NFV). Then, the new network-based routing and traffic management (SDN) model is introduced, and the technology for providing distinctive services to users (E2E Slicing) is presented. Furthermore, some characteristic indicators and metrics related to the standardization of the network's technologies are presented, as well as all the current developments related to the development of 5G in Europe. Then, the data of the experiment carried out for the purposes of the paper is presented. On the one hand, this data concerns the modeling of an existing network based on the new 5G standards and, on the other hand, the evaluation of its performance based on some scenarios regarding the topology and the amount of data exchanged at any time on the network. The examination of the efficiency parameters focuses on the ability of the ONOS SDN controller to manage the traffic of the data when certain events affecting the original network structure occur. In terms of the results of the measurements being carried out, although the positive impact of the incorporation of new technologies on the performance of mobile communications networks appears to be positive, there are still some individual open issues that need further research by members of the telecommunications community in order for the original vision of the universal operation of all mobile devices under one single umbrella not to be ultimately undermined
    corecore