10,715 research outputs found

    Semiclassical study of the vibrational excitation of H2 in collision with He

    Get PDF
    The vibrational excitation and dissociation probabilities of H2 in a collinear collision with He are calculated, using the semi-classical time-dependent method along with the accurate H2 molecular potential of Kolos and Wolniewicz (1965, 1968). The complete set of bound and continuum eigenfunctions are represented in terms of a truncated basis set of harmonic oscillator functions. The results differ significantly from the Morse potential quantum mechanical calculations of Clark and Dickinson (1973). In addition, a state-dependent interaction potential is suggested to allow for the different average sizes of the H2 molecule in its initial and final states. The state dependent potential greatly enhances the transition probabilities to highly excited states and the continuum

    Quantum Kinetic Theory III: Simulation of the Quantum Boltzmann Master Equation

    Get PDF
    We present results of simulations of a em quantum Boltzmann master equation (QBME) describing the kinetics of a dilute Bose gas confined in a trapping potential in the regime of Bose condensation. The QBME is the simplest version of a quantum kinetic master equations derived in previous work. We consider two cases of trapping potentials: a 3D square well potential with periodic boundary conditions, and an isotropic harmonic oscillator. We discuss the stationary solutions and relaxation to equilibrium. In particular, we calculate particle distribution functions, fluctuations in the occupation numbers, the time between collisions, and the mean occupation numbers of the one-particle states in the regime of onset of Bose condensation.Comment: 12 pages, 15 figure

    Nonlinear Enhancement of the Multiphonon Coulomb Excitation in Relativistic Heavy Ion Collisions

    Full text link
    We propose a soluble model to incorporate the nonlinear effects in the transition probabilities of the multiphonon Giant Dipole Resonances based on the SU(1,1) algebra. Analytical expressions for the multi-phonon transition probabilities are derived. Enhancement of the Double Giant Resonance excitation probabilities in relativistic ion collisions scales as (2k+1)(2k)1(2 k +1)(2k)^{-1} for the degree of nonlinearity (2k)1(2k)^{-1} and is able to reach values 1.521.5-2 compatible with experimental data. The enhancement factor is found to decrease with increasing bombarding energy. [KEYWORDS: Relativistic Heavy Ion Collisions,Double Giant Resonance]Comment: 12 pages, 2 figure

    Vibrational energy transfer in high energy collisions

    Get PDF
    Vibrational energy transfer in high energy molecular collisions - time-dependent wave function evaluation of transition probabilities for forced harmonic oscillato

    Collisional Semiclassical Aproximations in Phase-Space Representation

    Get PDF
    The Gaussian Wave-Packet phase-space representation is used to show that the expansion in powers of \hbar of the quantum Liouville propagator leads, in the zeroth order term, to results close to those obtained in the statistical quasiclassical method of Lee and Scully in the Weyl-Wigner picture. It is also verified that propagating the Wigner distribution along the classical trajectories the amount of error is less than that coming from propagating the Gaussian distribution along classical trajectories.Comment: 20 pages, REVTEX, no figures, 3 tables include

    Multi-Channel Atomic Scattering and Confinement-Induced Resonances in Waveguides

    Full text link
    We develop a grid method for multi-channel scattering of atoms in a waveguide with harmonic confinement. This approach is employed to extensively analyze the transverse excitations and deexcitations as well as resonant scattering processes. Collisions of identical bosonic and fermionic as well as distinguishable atoms in harmonic traps with a single frequency ω\omega permitting the center-of-mass (c.m.) separation are explored in depth. In the zero-energy limit and single mode regime we reproduce the well-known confinement-induced resonances (CIRs) for bosonic, fermionic and heteronuclear collisions. In case of the multi-mode regime up to four open transverse channels are considered. Previously obtained analytical results are extended significantly here. Series of Feshbach resonances in the transmission behaviour are identified and analyzed. The behaviour of the transmission with varying energy and scattering lengths is discussed in detail. The dual CIR leading to a complete quantum suppression of atomic scattering is revealed in multi-channel scattering processes. Possible applications include, e.g., cold and ultracold atom-atom collisions in atomic waveguides and electron-impurity scattering in quantum wires.Comment: 35 pages, 18 figure

    Study of vibrational excitation mechanisms of CO2 at high temperatures

    Get PDF
    Calculating vibrational excitation of CO2 for anharmonic coupling and normal mode at high temperatur
    corecore